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2.19. Let X = {rock, paper, scissors}. Recall the game whose rules are: paper dominates rock, rock domi-
nates scissors, and scissors dominates paper. Draw a subset of X x X showing that domination is a relation
on X.

To be honest, I'm not really sure what it means to “draw a subset of X x X showing that domination is
a relation on X.” Accordingly, this may not be the intended solution.

w3 *
°

is a graph of X x X where the relation is given by the pairs indicated by the bullets. In words, the relation
is given by rRs, pRr, and sRp.
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2.22. Find sgn(a) and o~ !, where
(1234567809
““\os8s 765 4321)

We begin by rewriting a as the cycle (19)(28)(37)(46). Because « is written as four 2-cycles, we know
that « is an even permutation and that sgn(a) = 1. We also notice that all the 2-cycles of « are disjoint, so
that

a® = (19)(28)(37)(46)(19)(28)(37)(46) = (19)(19)(28)(28)(37)(37)(46)(46) = (1),

and o = o L.

2.25.

(a) If & is an r-cycle, show that " = (1).

Proof. Suppose « is the r-cycle represented as (agajas . ..ar—1). We will show by induction n that the
image of ay under o™ is ag where d =k +n (mod r).

For the base case when n = 1, the result is clear: a; is mapped to agi1 except in the case when
k =7 —1. In this case, k + 1 = r which is 0 (mod r).

The induction step is just as easy. Assume that the result is true for n. The image a"*1(a;) can be
rewritten as a(a™(ay)). Applying our inductive hypothesis, we see that a"*1(ay) is going to be a(ag)
where d = k +n (mod r) and 0 < d < r. In particular, we have that d + 1 =k + (n + 1) (mod 7).
Applying « to ag we find that the image of aq is ag+1 if d < r — 1 and ag otherwise. Specifically, the
image of ar under " is a; where [=d+1=k+ (n+ 1) (mod r), as required.

Now we shall investigate a"(ay). By our lemma, we see that a”(ax) = ag where d = k 4+ r (mod 7).
In particular, d = k, and o"(ay) = aj, for all 0 < k < r. In other words, a” = (1). O

(b) If a is an r-cycle, show that r is the smallest positive integer k such that o* = (1).

Proof. Using the setup and the lemma we proved above, let d < . We will show that a? # (1).
Specifically, notice that a?(ag) = a4, since d < r. Since the a; are all distinct, we have that o # r.
Hence, r is the least positive integer with o” = (1). O

2.27. Given X = {1,2,...,n}, let us call a permutation 7 of X an adjacency if it is a transposition of the
form (144 1) for ¢ < n. If i < j, prove that (i j) is a product of an odd number of adjacencies.

Proof. We prove a stronger result from which the required one should be evident. We will show that the
transposition (i) can be written as the product of transpositions

(G=D)G=2)G=1) - (C+ D +2)E6E+ 1))+ 1) +2) - (G —2)(F = D)IE = 1)),

and the proof proceeds by induction on the difference j — i. The base case j —i = 1 is clear since the
transposition in that case is (ij).

Assume that the result holds for all transpositions (ab) with b — a = k and suppose that (ij) is a
transposition such that j —¢ = k + 1. We notice that

(i) = (G = DHEG = DG = 1)4),

and apply the inductive hypothesis to (i(j — 1)) to finish the proof. |
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2.31.

(a)

Prove, for all 4, that o € S,, moves i if and only if o' moves i.

Proof. Let j be the image of i under a. Now assume that a~! does not move i, so that a=1(i) = i.
Composing the two

i=[aoca (i) =ala'(i) = a(i) = j,
so we see that a does not move ¢ either.

The other direction is analogous: in the proof above, choose a@ = 37! for some 3 € S, and notice
that (871 =1 = B. O

Prove that if a, 8 € S,, are disjoint and if af = (1), then a = (1) and 8 = (1).

Proof. By the assumptions, we know that 3 = a~!. By part (a), we know that if @ moves some element
i, then B = ! must also move i. In particular, if they are disjoint, neither must move any element, so
both must be the identity. |

2.36. True or false with reasons.

(a)

The function e : N x N — N defined by e(m,n) = m", is associative.

False. Try 2, 2, 3.

Every group is abelian.

False. Ss.

The set of all positive real numbers is a group under multiplication.

True. (Prove it!)

The set of all positive real numbers is a group under addition.

False. For a € RT, —a ¢ RT.

For all a,b € G, where G is a group, aba='b~! = 1.

False, this would imply that ab = ba, or that the group is abelian.
Every permutation of the vertices vy, vq, v3 of an equilateral triangle 73 is the restriction of a symmetry
of URE

True.

Proof. The group of symmetries is a group of order six contained in the group of permutations on three
letters. Since the permutation group on three letters has order six, it follows that they are equal, and
that every such permutation can be obtained as a symmetry of 3. |

Every permutation of the vertices vy, vs, v3,v4 of a square my is the restriction of a symmetry of 7.
False. If we arrange the square as follows

v — Vg

[

Vg < Vs

then with the rotation going in the direction of the arrows and the flip being about the vertical axis
through the center of the square, then the permutation viv3vov4 cannot be obtained from rotations and
flips.
If a,b € G, where G is a group, then (ab)™ = a™b" for all n € N.

False, this would imply that the group is abelian.
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(i) Every infinite group contains an element of infinite order.
False, but I'm not sure how to prove it given the information available to us currently. Otherwise,
the infinite direct sum of copies of Z/2 suffices.
(j) Complex conjugation permutes the roots of every polynomial having real coefficients.
True, if a polynomial has real coefficients, yet does not factor completely over R, then its set of
roots must contain pairs of complex conjugates, so the action of complex conjugation on the roots of a
polynomial with real coefficients is well defined.

2.37. If ay,...,a, are (not necessarily distinct) elements in a group G, prove that
(arag---an) ™t =aba,t,--ap!

Proof. The proof proceeds by induction on n. For the case when n = 1, the result is clear. In the case when
n =2, we let a,b € G. Tt follows that ab(ab)~! = 1, so that we may multiply first by a=! on the left and
then finally by b=! on the left again to obtain (ab)~ = b"1a"!.

Assume the statement is true for & < n and suppose n > 3. Let aq,...,a, be elements of G. We first
note that the product a; - - - a,, may be written as the product (a; - - an—1)a,. In particular, we have that
we may apply the inductive hypothesis for £ = 2 to this product to obtain

(a1 an) "t = (a1~ an-1)an) "' = a; (a1 - an—1) "'

We may then apply the inductive hypothesis for k =n — 1 to (a;---a,_1)""! to find that

-1 _—1 —1
n Qp—1°"°01

as desired. 0

a;l(al cbp1) t=a

2.39.

(a) How many elements of order 2 are there in S5 and Sg?

We will solve the more general problem below, but you should work these things out in cases of small
order first to gain an intuition.
(b) How many elements of order 2 are there in S,,?

Proof. We have that an element of order two in \S,, must be the product of disjoint transpositions, and
therefore must be of the cycle type

(araz)(asaq) - - (aj-1a;)(aj41) -~ (an).

The maximum number of disjoint two cycles that such an element of S, can contain is [ § | where [*] is
the floor function. Assume that m is the number of disjoin two cycles in a given cycle type. The number
of elements remaining is n — 2m which can be arranged in any order to achieve the same element in 5.
Similarly, each two cycle may be written in two distinct ways, and all the two cycles may be arranged

in m! ways to achiave the same element of S,,. Therefore, there are

n!

2m - m! - (n —2m)!
such cycles of this type. Taking the sum from m =1 to m = | 5] gives

L3

—

n!

.m). — |
= 2m-m!-(n—2m)

elements of order two. O
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2.40. Let G be a group and y € G have order m. If m = dt for some d > 1, prove that y* has order d.

Proof. First,

1= ym — ydt — (yt)d7
so that #(y") < d. Assume that there is some natural number e for which (y*)¢ = 1 with e < d. In this case,
the product te < td = m since e < d, but

1=(y") =y"
which contradicts that y has order m. Hence, there is no such e and d is the order of y*. ]

2.41. Let G be a group and let a € G have order dk, where d,k > 1. Prove that if there is x € G with

z¢ = a, then the order of x is d2k. Conclude that the order of x is larger than the order of a.

Proof. Let x € G be such an element, so that @k = (x4)9* = q9* = 1. Suppose there is some integer
e < d?k such that the order of x is e. It follows that a® = (z%)¢ = (2¢)? = 1 and therefore dk | e. Let e = bdk
for some natural number b, then 1 = z2¢ = 2% = (29)** = g% implies that dk | bk and therefore that d | b.
Hence, e = cd?k for some natural number ¢. But e < d?k, so ¢ =1 and e = d?k. O

0 -1 0 1
A—<1 0>andB—<1 1).

Show that A* = I = B®, but that (AB)"™ # I for all n > 0. Conclude that AB can have infinite order even
though both factors A and B have finite order (this cannot happen in a finite group).

2.42. Let G = GL(2,Q), and let

Proof. For the first part, just compute it:

2
4 _ a2 (1 0 _

3
-1 1 -1 1 0 -1
6 _ (p2\3 _ — . =
peo= (T ) = (Do) (D)=t
To see that AB™ # I for any n > 0, we prove the stronger result that
n_ (1 —-n

AB" = (0 ; )

by induction on n. The base case is trivial since
1 -1
= (b ).
For the induction step, assume that the result holds for n, then

1 —n\ (1 -1 1 —(n+1)
n+1 __ n — . =
apr—asreas= (g ) (o 1) = (0 ")

by the inductive hypothesis.
We conclude the last part due to the counter example we just computed. O

and
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2.43.
(a) Prove, by induction on k > 1, that

cosf —sinf k _ [coskf —sinkf
sinf  cosf " \sinkf® coskf |-

Proof. The base case when k = 1 is obvious. Now suppose that the hypothesis holds for arbitrary k,
and notice that

cos® —sin0)"" __ [cosf —sind g [cos —sinf)  (coskf —sink#) (cosf —sinf
sinf  cosf ~ \sinf cosf sinf cosf ) \sinkf coskf sinf  cosf
by the inductive hypothesis. Now perform the multiplication to achieve the matrix

cosklcos —sink0@sinf — sin6 cos kO — sin k0 cos 0
coskfsinf + sin kO cos —sinkfsinf + cosklcosb )’

and apply the angle sum and difference identities to obtain the result. |
(b) Find all the element of finite order in SO(2,R), the special orthogonal group.

Proof. We know that SO(2,R) is all matrices representing rotation about the origin by some angle 6.
By what we did above, we see that only rotations such that k6 = 27l for some [ € Z will have finite
order, and therefore rotations by angles 27q for ¢ € Q will have finite order. O

2.44. If G is a group in which 22 = 1 for every = € G, prove that G must be abelian.

Proof. Let a,b € G. We must show that a and b commute. Notice that the requirement that x2 = 1 for all
x € G is equivalent to saying that z is its own inverse for all € GG. Hence,

ab=(ab)"' =b"ta"! =ba""! = ba,

so the two commute. Since our choice of a,b € G was arbitrary, we are done. (]

2.46. If G is a group with an even number of elements, prove that the number of elements in G of order 2
is odd. In particular, G must contain an element of order 2.

Proof. We define a relation ‘!’ on G such that a!b if b = a=! or if b = a. In this way, ‘!’ is an equivalence
relation: ala by definition, a!lb implies that @ = b or b = a~! so that in either case bla, and alb with blc gives
that a =bor b=a"! and b = c or ¢ = b~! so that in any case alc. We have then that G is represented as
the disjoint union of equivalence classes as dictated by !’.

Each equivalence class has either one or two elements. Let k be the number of equivalence classes with
two elements, let 2n = #G, and let m be the number of equivalence classes with a single element. We know
that m > 1 since the identity is its own inverse. It follows that

m=2n—2k =2(n— k)

is even, so m — 1 is odd and there are an odd number of elements of order two. O
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2.48. The stochastic group %(2,R) consists of all those matrices in GL(2, R) whose column sums are 1; that

a c .
b d witha+b=1=c+d.

Prove that the product of two stochastic matrices is again stochastic, and that the inverse of a stochastic
matrix is stochastic.

is, (2, R) consists of all the nonsingular matrices (

Proof. We first show that the subset of stochastic matrices is closed. Let

a c Ty
R )
be stochastic matrices so that a +b=c+d =z + 2z = y + w = 1. Their product is

ar +cz ay+ cw

bxr +dz by+ dw
with

(ax+cz)+ (br+dz) =z(a+b)+z2(c+d)=z+2=1
and
(ay + cw) + (by + dw) = y(a+b) +w(c+d) =y +w=1.
Hence, the product of any two stochastic matrices is stochastic.
Using the a, ¢, b, d matrix above, its inverse is

1 d —c
ad—bc \—-b a
d—b
ad — be’
However, since ¢+ d = 1, we have that d =1 — c and ad —bc = a(1 —¢) —bec = a — ¢(a+ b) = a — ¢ while

a+b—(c+d) = 0so a—c = d—b and the fraction above is equal to one. The right column is analogous, so that
we have that the stochastic matrices are closed under inverses and are therefore a subgroup of GL(2,R). O

whose left column sums to

2.49. Show that the symmetry group X(C) of a circle C is infinite.

Proof. We need only exhibit an infinite number of isometries of the plane R? such that their restriction to
the circle is an automorphism. To do this, we make the simple observation that rotations around the origin
are isometries of the plane which are automorphisms of the circle, and two rotations by the angles ¢ and
0 are equal only when o0 = 6 + 2kw for k € Z. In particular, any angle 0 < € < 27 incduces a unique
automorphism of the circle, which completes the proof. O

2.50. Prove that every element in a dihedral group Ds,, has a unique factorization of the form a’b’, where
0<i<nandj=0orl.

Proof. This problem is frustrating without the language of free groups and presentations, but we are able
to do it anyways.

We let a, b be as in the definition of the dihedral group, so that it only remains to show that any sequence
a'bir @22 ... ' bJ* can be rewritten as required with i;, j; as nonnegative integers and 0 < 4; < n and
0 <j; <2foreach 1 <[ < k. Notice that any element of the dihedral group as we’ve defined it can be
written uniquely this way, possibly with 71 = 0 or j; = 0 and with no other 7;, j; equal to zero. To show this,
we induct on k, and the base case is trivial.
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For the inductive step, assume that the result holds for k, and we will show the k 4+ 1 case. Let
a’*bra"2b*2 .- - a"b" be such a sequence. We apply our inductive hypothesis to the k; part to achieve a
representation for our sequence as

ambPat* b
with 0 <m <nand p=0or p=1. If p < ji, then we are done, as we simply apply the relation bab = a~!
the lesser of p or iy times and then the relation a™ = 1 to achieve the required representation. In the other
case, let © = min {ig, ji } we're left with the product
a™BP gk,

If z = i}, we're again done, so assume that iz — j, > 0. We can derive the relation aba = b from bab = a~!

and apply this the required number of times to achieve the desired result. O
2.51. Lete; = (1,0) and e2 = (0, 1), If ¢ is an isometry of the plane fixing O, let p(e1) = (a,b), p(e2) = (¢, d),

and let A = (Z 2) Prove that det(A) = £1.

Proof. We need to show that ad — bc = £1. This is equivalent to showing that (ad — bc)? = 1, so we will
show this instead. Since ¢ is an isometry, it preserves distance and therefore length of vectors. It follows
that

A=+ d =1
and that
(a—c)?+(b—d)?=(1-0>%+(0-1)72=2
Using the latter, we find that
a® + % + % + d* = 2(ac + bd) + 2,
but a? + b = ¢ + d? = 1. Hence,
ac+bd =0,

and more importantly, its square is zero. Multiplying the two equations from the first equality and rearrang-
ing the terms gives

1= (a® +b*)(* + d?) = (ad — bc)* + (ac + bd)?,
so (ad — bc)? =1 as required. O

2.52. True or false with reasons. Here, G is always a group.
(i) If H is a subgroup of K and K is a subgroup of G, then H is a subgroup of G.
True. Prove it.
(ii) G is a subgroup of itself.
True, but this is a tautology, and therefore has no content.
(iii) The empty set @ is a subgroup of G.
False, the identity is not in H. This also has no content.
(iv) If G is a finite group and m is a divisor of #G, then G contains an element of order m.

False! This is obviously not true, as we have exhibited noncyclic groups of finite order.
(v) Every subgroup of S,, has order dividing n!.

True, this is the statement of Lagrange’s theorem applied to S,,.
(vi) If H is a subgroup of G, then the intersection of two (left) cosets of H is a (left) coset of H.

False, cosets of H partition G, so their intersection is empty.
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(vii) The intersection of two cyclic subgroups of G is a cyclic subgroup.
The intersection of two subgroups is a subgroup of each. Subgroups of cyclic groups are cyclic, so
this is true.
(viii) If X is a finite subset of G, then (X) is a finite subgroup.
False. The set {1} containing only the element 1 € Z is a finite subgroup, but generates all of Z.
(ix) If X is an infinite set, then

F = {0 € Sx : o moves only finitely many elements of X}
is a subgroup of Sx.

Proof. This is true. The composition of two such elements moves only a finite number of elements of
X, and the inverse of such an element ¢ moves on the elements moved by o. Thus F' is closed under
products and inverses, and the identity is clearly in F'. This proves F' is a subgroup. O

(x) Every proper subgroup of S3 is cyclic.

Proof. True, every proper subgroup of S3 has order 1,2, or 3 by Lagranges theorem, which all must be
cyclic. O

(xi) Every proper subgroup of Sy is cyclic.

False. S3 is a subgroup of Sy in a natural way, and is not cyclic.
2.55. Give an example of two subgroups H and K of a group G whose union H U K is not a subgroup of G.

Proof. We appeal to our favorite counter example, S3. In particular, take the subgroup generated by the
cycle (12) and the subgroup generated by the cycle (123). The former has order two, while the latter has
order three, and their intersection is just the identity (see the following problem for a proof, or just compute
it!). Their union is a set of order four, which cannot be a subgroup of S5 by Lagrange’s theorem. (]

2.57. If H and K are subgroups of a group G and if #H and #K are relatively prime, prove that H N K =
{1}.

Proof. The intersection H N K of two subgroups H, K of G is a subgroup of H, K, and G (if this is not
clear you should prove it yourself). By Lagrange’s theorem, we have that the order of H N K must divide
the order of H and divide the order of K. But #H,#K are coprime, so the only positive integer dividing
both is one. Hence, #(H N K) = 1, and therefore #(H N K) = {1}. O

2.58. Prove that every infinite group contains infinitely many subgroups.

Proof. If there exists an element g € G of infinite order, then we’re done, since the subgroup generated by
g* for each k € N is never equal to the subgroup generated by ¢' for [ # k.

Now assume that G has no elements of infinite order, and assume that G has only finitely many cyclic
subgroups (a;) for 1 < i < n with (a;) Z (a;) for i # j. Each element of G generates a cyclic subgroup, how-
ever, and is therefore in some (a;): if it weren’t then it would generate a new cyclic subgroup, contradicting
our assumption. It follows that

G = U<a’i>7
(]

but each (a;) is finite, so G is finite.
Thus, if G is infinite, G must have infinitely many cyclic subgroups (a;) such that (a;) € (a;) for i # j or
G must have an element of infinite order. Hence G has infinitely many subgroups. O
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2.59. Let G be a group of order 4. Prove that G is cyclic or 22 = 1 for every z € G. Conclude, using
Exercise 2.44 on page 147, that G must be abelian.

Proof. Assume G is not cyclic, and let € G be any element but the identity. Since G is not cyclic, #x # 4.
Furthermore, Lagrange’s theorem tells us that #x | #G = 4, so #x = 2 (since it is nonidentity). Exercise
2.44 proves GG must be abelian. O

2.67.

(a) Prove that the composite of two homomorphisms is itself a homomorphism.
Proof. Let A, B,C be groups, ¢ : A — B, 1 : B — C be group morphisms, and x,y € A. It follows that
[¢h o ol(zy) = p(p(zy)) = V(p(@)e(y)) = Y(e(@)d(e(y)) = [¥ o @l(z) - [¥ o ©](y),

so the composition ¥ o ¢ is a homomorphism of groups. O
(b) Prove that the inverse of an isomorphism is an isomorphism.

Proof. We should already know that the inverse of a bijection is a bijection, so we need only show that
the inverse of an isomorphism is a homomorphism of groups.

Let A, B be a groups, ¢ : A — B be an isomorphism, and x,y € B. Also assume by surjectivity that
there exists Z,7 € A such that p(Z) = z and () = y. Notice that applying ¢! to both sides of the
previous two equalities gives that =1 (x) = z while ¢ ~!(y) =  while 2y = p(Z)p(y) = ©(zy). Now,

M ay) = o7 p(@y) =25 = ¢~ (@) (y)-
This shows that ¢! is a homomorphism and therefore an isomorphism. Also, it is important to note
that we made heavy use of the fact that ¢ was both surjective and injective. O

(¢) Prove that isomorphism is an equivalence relation on any family of groups.

Proof. We will show that ‘=’ is an equivalence relation by way of showing that it is reflexive, symmetric,
and transitive. Fortunately, we did most of the work in the previous parts.

The identity is an automorphism of any group G, so ‘=’ is clearly reflexive.

Assume that A 2 B so that there exists a group isomorphism ¢ : A — B. We showed in part (b) that
o~ 1: B — A is an isomorphism of groups also, so B = A.

Assume that ¢ : A — B and ¥ : B — C are group isomorphisms. By part (a), v op: A — Cis a
homomorphism of groups. The composition of two bijections is a bijection, so that ¥ o ¢ is a bijective
homomorphism of groups. Hence, it is an isomorphism of groups, and A = C. (|

(d) Prove that two groups that are isomorphic to a third group are isomorphic to each other.

Proof. Assume that A =2 B and C = B for groups A, B,C. Since ‘2’ is an equivalence relation by the
above, symmetry gives us that C' = B implies B = (', and transitivity gives us that A = C. O
2.70.
(a) Show that every group G with #G < 6 is abelian.
Proof. The group of order 1 is simply the group {1}, which is abelian. By Lagrange’s theorem, any
nonidentity element of any group of order two, three, or five must have order two, three, or five (respec-

tively). Hence, such a group is cyclic. Cyclic groups are abelian (if this isn’t clear, you should prove it!).
For groups of order four, we appeal to Exercise 2.59 in the text. ]

(b) Find two nonisomorphic groups of order 6.
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Proof. This is easy. The groups Z/6Z (or the cyclic group of order six) and S3 are nonisomorphic by
the simple observation that the center of a group is invariant under isomorphism. Specifically, Z/67Z is
its center, while the center of S3 is trivial. O

2.75. If G is a group and a,b € G, prove that ab and ba have the same order.
Proof. Suppose that (ab)” = 1, then a=*(ab)"a = a~'a = 1 also, and
1=a"Y(ab)"a = a ta(ba)" " (ba) = (ba)".
We may now conclude that ab and ba have the same order. O

2.76.
(a) If f : G — H is a homomorphism and 2 € G has order k, prove that f(z) € H has order m, where m | k.

Proof. Assume that x € G of order k, then

F(1) = f(a*) = f()*
but f(1) =1, so f(z) has finite order which divides k. O

(b) If f: G — H is a homomorphism and if (#G,#H) = 1, prove that f(z) =1 for all z € G.

Proof. Let z € G and note that the order of x must divide #G while the order of f(z) must divide
#H. But the order of f(x) must also divide the order of x, and therefore must divide #G. Hence,
#(f(z)) =1, and f(x) is the trivial morphism. O

2.78. Let G be the additive group of all polynomials in z with coefficients in Z, and let H be the multiplicative
group of all positive rationals. Prove that G & H.

Proof. Let f(z) € Z[z] be the polynomial
ant"™ + ap_12" L+ +ag
and let p; be the i*" prime (ordered by size, if you wish). The map
v:G—H

such that the image o(f(z)) = pg°p]* - --p% is a homomorphism of groups. Indeed, it is bijective: given
q € @, we just write down the polynomial with coefficients given by the exponents of the prime decomposition,
and the kernel is obviously trivial.

As a clever side note, we could have used heavier machinery: these are both free Z-modules with a

countable basis and are therefore isomorphic as Z-modules (which is stronger than being isomorphic as
abelian groups) by the classification theorem of modules over a PID. |

2.92. An automorphism of a group G is an isomorphism G — G.

(a) Prove that Aut(G), the set of all automorphisms of a group G, is a group under composition.

Proof. In problem 2.67 we showed that the inverse of an isomorphism is an isomorphism and that the
composition of two isomorphisms is an isomorphism. It follows easily that Aut(G) is closed under
composition and inverses. The identity map idg : G — G such that idg(x) = « for all © € G serves as
the identity element. The associativity of composition of homomorphisms follows from the associativity
of composition of maps between sets. O

(b) Prove that v : G — Aut(G), defined by g — v, (conjugation by g), is a homomorphism.
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Proof. Let g, h,x be elements of G. We will denote the operation in Aut(G) explicitely by o, while the
operation is G will be denoted as normal to reduce confusion. The product of y(g) and v(h) is
[1(9) 0 v(M))() = v9(yn(2)) = Yo (hah ™) = ghah™ g™ = ghz(gh)~" = ~(gh)

S0 <y is a homomorphism of groups. O
Prove that kery = Z(G).

Proof. Assume that g is in the kernel of 7. Then v(g) = idg, so that gzg~! = 2 for all x € X, and
hence gz = xg for all x € X. Therefore, g € Z(G), the center of G, and Z(G) C ker 7.

For the other containment, assume that g € Z(G). Then grg~! = x for all x € G, and [y(g)](z)
grg~! =z for all x € G. Hence, v(g) = idg, and Z(G) C ker .

Ol

Prove that imy < Aut(G).

Proof. Tt suffices to show that if g € G and o € Aut(G), then ay(g)a™! = v(h) for some h € G. But for
all z € G,

[aoy(g) 0 a™ (@) = [a0(9)l(a™(2)) = alga™ (2)g7") = alg)zalg™) = a(g)zalg)
and hence ay(g)a=! = v(alg)). O

—1

2.93. If G is a group, prove that Aut(G) = {1} if and only if #G < 2.

Proof. Suppose first that #Aut(G) = {1}. By what we have seen in the above problem, G/Z(G) = im~ C
Aut(G), so that G must be abelian. Furthermore, if G is an abelian group containing an element with order

£

ele

2, then the homomorphism sending every element to its inverse is a nontrivial automorphism, so every
ment of G must have order 2. If #G > 2, then there exists two such elements, and the homomorphism

permuting these two and fixing everything else is a nontrivial automorphism. Hence, #G < 2.

The other direction is obvious. O

2.95. True or false, with reasons.

(1) If [a] = [b] in L,,, then a = b in Z.
False. [0] = [2] in .
(2) There is a homomorphism I,,, — Z defined by [a] — a.
False. This homomorphism is not well defined.
(3) If a=bin Z, then [a] = [b] in L,,.
True. If two elements are equal, then they have the same remainder after division by m.
(4) If G is a group and K < G, then there is a homomorphism G — G/K having kernel K.
True.

Proof. The projection map 7 : G — G/K sending a € G to the coset aK is a surjective homomor-
phism. Thus, the first isomorphism theorem tells us that G/ kerm =2 G/K, so kerm = K. O

(5) If G is a group and K < G, then every homomorphism G — G/K has kernel K.

False. The zero map from G — G/K has kernel equal to G.
(6) Every quotient group of an abelian group is abelian.

True.

Proof. The homomorphic image of an abelian group is abelian (if this isn’t clear to you, you should
prove it), and a quotient of an abelian group is the image of the surjective projective map. O
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(7) If G and H are abelian groups, then G x H is an abelian group.
True.

Proof. Let (g1,h1), (g2, h2) € G x H, then
(91, h1) - (92, h2) = (9192, h1h2) = (9291, hoh1) = (92, h2) - (91, h1),

since G, H are abelian. |

(8) If G and H are cyclic groups, then G x H is a cyclic group.
False. This is true if and only if (#G,#H) = 1. In particular, see Example 2.125 in the text.
(9) If every subgroup of a group G is a normal subgroup, then G is abelian.
False. The quaternion group is such a group, see Example 2.98.
(10) If G is a group, then {1} <G and G/ {1} = G.
True. The projection map in this case is an isomorphism.

2.96. Prove that U(Hg) = I[ﬁ and U(]I15) =1y x 1.

Proof. For the first one, note that ¢(9) = 32 — 327! = 9 — 3 = 6 is the number of elements of U(ly). It
suffices then to show that it is generated by a single element, and is therefore isomorphic to Is. The unit in
U(Iy) is 1, so we will use 2 as a generator. To see that it generates, simply compute its powers modulo nine
that divide six: 22 =4 # 1, 23 =8 # 1, so 20 is the order of 2 in U(Iy).

While it goes unstated, the proof of Corollary 2.131 almost proves what we need: if g(U(I,n)) = U(L,) X
U(l,) and U(Iyy) = U(L,) x U(LL,) since g is an injection. Hence U(I3.5) = U(I5) - U(I3). But U(l3) = I,
and U(I5) = 14, so we're done. O

2.98. If G is a group and G/Z(G) is cyclic, where Z(G) denotes the center of G, prove that G is abelian;
that is, G = Z(G). Conclude that if G is not abelian, then G/Z(G) is never cyclic.

Proof. We will denote Z(G) by just Z. Assume G/Z is cyclic with generator 7, and let a,b € G. The
cosets of Z are all of the form 2°Z and partition G, so every element of G may be written as the element of
some coset. In particular, we may write a = £z, and b = £z, for nonnegative integers m,n and z,, 2z € Z.
But then,
ab= 2"z, 2"z, = 2" 2" 20z = 2" 2" 2p2q = " 22" 24 = ba,
since & commutes with itself and z,, 2z, commute with everything in G (they are elements of the center!).
The conclusion is just the contrapositive of our statement. O

2.103. Let A and B be groups, let A’ << A and B’ <t B be normal subgroups, and let @ : A — B be a
homomorphism with «(A4’) < B’.

(1) Prove that there is a (well-defined) homomorphism . : A/A" — B/B’ given by . : aA’ — «a(a)B’.
Proof. First we show that this map is well defined. To do this, choose g and h to be representatives
of the same coset in A/A’. In particular, gh=! = a € A’, so a(gh™') = b € B’. But then

a*(gh™'A") = a(gh™")B' = B,
and it follows that
a,(gA") = a(g)B' = a(h)B' = a,(hA’),
as required. This is clearly a homomorphism because « is. ]

(2) Prove that if « is surjective, then v, is surjective.
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Proof. Let bB’ be a coset in B/B’. Since « is surjective, there exists a € A such that a(a) = b.
Hence,

a.(aA") = a(a)B' = bB’,

and «, is surjective. a
(3) Give an example in which « is injective and «, is not injective.

Proof. Let G be a group of order greater than or equal to two, and take A = B = G with A’ = {0},
B’ =G, and a = idg. The map « is clearly an injective homomorphism and «({0}) C G, but «, is
the zero map, and is therefore not injective.

2.107. Prove the converse of Lemma 2.112: if K is a subgroup of a group G, and if every left coset aK is
equal to a right coset Kb, then K is normal in G.

Proof. Assume the hypothesis, and let b € G. Then Kb = aK for some a € G, so there exists some k € K
such that a = kb. But then ab~! = k € K, so aK = bK, and therefore bK = Kb. Since our choice of b was
arbitrary it follows that bK = Kb for all b € G, and therefore K is normal. ]

2.108. Let G be a group and regard G x G as the direct product of G with itself. If the multiplication
u: G x G — G is a group homomorphism, prove that G must be abelian.

Proof. If a,b € G, then (a,1) and (1,b) are elements of G x G, and
(CL, 1) : (17b) = (a7b) = (Lb) ' (laa)'
Assume that multiplication p: G x G — G is a group homomorphism. It follows that
pu(a, 1) - p(1,b) = p((a, 1) - (1,0)) = p((1,0) - (a,1)) = p(1,b) - p(a, 1).
But, p(a,1) = a and p(1,b) = b, so
ab = p(a, 1) - p(1,b) = p(1,b) - p(a, 1) = ba.
Therefore, G is abelian. O
2.109. Generalize Theorem 2.128 as follows. Let G be a finite (additive) abelian group or order mn, where
(m,n) = 1. Define
Gn={9€G:#g|m} and G, ={h € G: #h |n}.
(a) Prove that G, and G,, are subgroups with G,,, N G,, = {0}.
Proof. 1t suffices to show that G,, is a subgroup, as the argument for GG, is analogous. It is clear that
the identity is in G,,, and that G, is closed under inverses, so we need only show closure under the
group operation. Assume that g1 € G, and go € G,,, such that #g1 = k | m and #g> = [ | m. We need
that the sum g1 + g2 has order dividing m. But it is easy to see that the order of g; + go is the least
common multiple of [ and &, and the least common multiple of two numbers divides every multiple of

the two, so it divides m.
For the disjoint part, notice that if g € G,,, N G, then #g | (m,n) =1, so g = {0}. O

(b) Prove that G =G, + G, ={9g+h:9€ G, and h € G, }.
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Proof. We need to show that every element x € G can be written as the sum of something in G,,, and
something in G,,. We know that (m,n) = 1, so there exist integers a,b such that am +bn = 1. In

particular,
am-+bn

am bn
xr = Z x:ZerZx.

n [am 7] amn a

D STIED SEED 9) SIED S

But

and similarly,
m [ bn ] bmn b nm b

)SIPSEIED SEEH 3) PR S

Hence, " z has order dividing n and an x has order dividing m, so x can be expressed as the sum
of something in G,, and something in G,,, as required. |

Prove that G =2 G,,, x G,,.

Proof. This follows immediately from the previous two parts. |

2.110.

(a)

2.113. If G is a group and z,y € G, define their commutator to be xyz 1y~

Generalize Theorem 2.128 by proving that if prime factorization of an integer m is m = p{* - - - p&», then
Hm gﬂp? Xoeee X]Ip;n.

Proof. The proof proceeds by induction on the number of prime factors in the prime factorization. The
base case is proved in Theorem 2.128. Assume then that m = p{* ---p;*, and that the result holds true
for k—1. If m' = p{* - p*', then
]Im = Hm/ X I e
Py
by Theorem 2.128, so that by the inductive hypothesis,

>~ 3 ce . )
I, x ]Ip;;+1 = Hp;q X X Hf’ik—11 X ]Ipik’

as was necessary to show. (Il
Generalize Corollary 2.131 by proving that if the prime factorization of an integer m is m = p{* - - - p&,
then

U(Hm) = U(]Ip?) X oo X U(pr;n).
Proof. This proof is analogous to the above by replacing 2.128 with 2.131 and taking unit groups. [

L and define the commutator

subgroup G’ to be the subgroup generated by all the commutators (the product of two commutators need
not be a commutator).

(a)

Prove that G’ is normal in G.

Proof. We begin by showing that the conjugate of a commutator is a commutator. Notice that this
is not enough — we will need to do more to prove the required result! Assume that z,y € G, write
7y = xyx 'y~ ! for their commutator. If g € G, then

1 1 1

gzyg " = gayzy g7 = grg gy g g gy g = (g D (gyg ) (gmg ) Hgyg ) T,
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1

so that the conjugate gZgg~' is the commutator (gxg=1)(gyg~1). Now, if x;,y; € G for 1 < i < n, then

n n n
9 (H Iy> 9~ = gTim (H glgxiyz) |
1 2 1

But every conjugate of a commutator is a commutator, so that the conjugate of a product of commutators
is a product of commutators, and is therefore in G’. It follows that G’ is normal in G. ]

(b) Prove that G/G’ is abelian.

Proof. Let aG’ and bG’ be elements of G/G’. Since (ab)(ba)™! = aba=1b~1 € G, it follows that ab is
congruent to ba modulo G'. Hence, abG’ = baG’, so G/G’ is abelian. O

(¢) If o : G — A is a homomorphism where A is an abelian group, prove that G’ < ker . Conversely, if
G’ < ker ¢, prove that im ¢ is abelian.

Proof. Tt suffices to show that the image of every commutator in A is the identity. Let Ty be the
commutator of two elements z,y € G, then

-1 -1

p(T7) = playa™ y™") = p(@)p(y)e(z) " e(y)

But A is abelian, so these elements all commute and cancel. Thus G’ C ker .
Conversely, assume that G’ C ker ¢, so that ¢ factors through a unique homomorphism ¢ : G/G" — A,
i.e., o = gom. But then im ¢ is the homomorphic image of an abelian group, and is therefore abelian. [

(d) If G’ < H < G, prove that H is normal in G.

Proof. Subgroups of G/G’ correspond to subgroups of G containing G’. Even more so, normal subgroups
of G/G’ correspond to normal subgroups of G containing G’. But every subgroup of G/G’ is normal
since G/G’ is abelian, so any subgroup containing G’ is normal also. O

2.133. Prove that if a simple group G has a subgroup of index n, then G is isomorphic to a subgroup of S,,.

Proof. Let H be a subgroup of G with index n. There is an action of G on G/H by left multiplication.
There is a map ¢ : G — S, sending each element of G to the permutation it induces on the cosets of H. In
fact, ¢ is a homomorphism, which follows easily from the action axioms. Also, any element not in H induces
a nontrivial permutation, so ¢ is not the zero map.

The kernel of ¢ is a normal subgroup of G, so it is either G or trivial. We have already seen that this
is not the zero map, so it must be trivial. Therefore, ¢ is injective, and G is isomorphic to its image, a
subgroup of .S,,. O

2.134. Let G be a group with #G = mp, where p is a prime and 1 < m < p. Prove that G is not simple.

Proof. G has an element g of order p by Sylow’s first theorem (this is proved as result in chapter 2, but left
unnamed). Consider G acting by left multiplication on G/(g), the set of right cosets of (g), which has order
m. This induces a homomorphism ¢ : G — S, since each element of G permutes the cosets of (g). The
kernel of G is a normal subgroup of G, so it suffices to show that ¢ is not injective (it is obviously not the
zero map, as there are elements outside of (g)).

Assume ker ¢ = {1}, then G | m!, but p f m! since m < p: every prime factor of anything less than or
equal to m is less than p. Therefore ker ¢ # {1}, so we have exhibited a nontrivial normal subgroup of G.
Hence, G is not simple. O



18

ALEXANDER J STATHIS

CHAPTER 3

3.1. True or false with reasons.

(a)

(b)

The subset {r + s7: r,s € Q} is a subring of R.

Proof. False, the issue is with closure: m -7 = 72, but 72 is not in the above set. O
Every subring of a domain is a domain.

Proof. True. The product on the subring S C R is the restriction of the product on R x Rto Sx.S. O
The zero ring is a subring of Z.

Proof. False. Rings should have multiplicative identities. I'm not sure what the book says, but it’s
wrong if it says otherwise. (|

There are infinitely many positive integers m for which I, is a domain.

Proof. True, any prime p fulfills this requirement. There are infinitely many primes (if you don’t know
why this is true, you should figure it out!). |

If S is a subring of a commutative ring R, then U(S) is a subgroup of U(R).

Proof. True, it suffices to show that U(.S) is closed under the product, but S is a subring and the result
follows immediately. O

If S is a subring of a commutative ring R, then U(S) = U(R)N S.

Proof. False, take R =R and S = Z. O
If R is an infinite commutative ring, then U(R) is infinite.

Proof. False, Z is infinite, while Z* 2 Z/2 (as groups). a

If X is an infinite set, then the family of all finite subsets of X forms a subring of the Boolean ring
B(X).

Proof. False, the product is intersection, and the multiplicative identity is the space itself which is not
a finite subset. O

3.2. Prove that a commutative ring R has a unique one 1; that is, if e € R satisfies er = r for all » € R,
then e = 1.

Proof. This is the same proof from that of groups: e =¢-1=1. O

3.5. Assume that S is a subset of a ring R such that
(i) 1eS;

(ii) if a,b € S, then a + b € S,

(iii) if a,b € S, then ab € S.

Give an example of a commutative ring R containing such a subset S which is not a subring of R.

Take R =7 and S to be the set of positive integers. 0 ¢ S, so S is not a subring.
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3.6. Find multiplicative inverses of nonzero elements in ;.

Proof. Every element but 0 has a multiplicative inverse since 11 is prime. Also, every element but 1 generates
the group of units of Z/117Z which has order 10, so that its inverse is itself to the ninth power modulo 11. O

3.13. Prove that the only subring of Z is Z itself.

Proof. 7Z is a cyclic group under addition with generator 1. In particular, if 1 € S C Z and S is closed under
sums and inverses, then S = Z, but every subring of Z is closed under sums and inverses and contains 1. [

3.17. True or false with reasons.

(i) Every field is a domain.

Proof. True, units are never zero divisors. O
(ii) There is a finite field with more than 10%° elements.

Proof. True, there is a finite field with 11'°° elements. O
(iii) If R is a domain, then there is a unique field containing R.

Proof. False, R = Z is contained in both Q and R. O
(iv) Every commutative ring is a subring of some field.

Proof. False, fields do not have zero divisors, but some commutative rings do. (Il
(v) The subset R = Q[i] = {a+ bi : a,b € Q} is a subfield of C.

Proof. True, prove it by hand. O
(vi) The prime field of Q[i] = {a + bi : a,b € Q} is Q.

Proof. True, it is clear that Q is a subfield of the prime field, as Q is a subfield of Q[i]. However, Q
contains no proper subfields (it is the field of fractions of Z which every subring of Q[é] contains). O

(vii) If R = Q[v/2], then Frac(R) = R.
Proof. False, v/3 is not an element of Frac(R). O

3.19. Define F4 to be the set of all 2 x 2 matrices

a b
fo [0 0, ] asen).

(a) Prove that Fy is a commutative ring whose operations are matrix addition and matrix multiplication.

Proof. Tt suffices to show that Fy4 is closed under sums and additive inverses, and that it is closed under
products since it is a subset of Ms(F2), the set of 2 x 2 matrices with coefficients in Fo. This is clear by
direct computation. O

(b) Prove that Fy is a field having exactly four elements.
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Proof. The entries of any matrix in 4 have two degrees of freedom, and there are 2 choices for each,
hence there are four such matrices. To see that any nonzero ones are invertible, we simply compute the

determinant
a b _ 2 2 32
det{b a_’_b}—a(a—i—b) b*=a°—b"+ab
with the requirement that either a or b is nonzero. In any of the three cases, the determinant is nonzero
and the matrix is invertible. (]
(c) Show that I, is not a field.
Proof. 2 is a zero divisor in I . |

3.21. Find all the units in the ring Z[i] of Gaussian integers.

Proof. We define the norm function N : Z[i] — N to be the multiplicative function
N(a+bi) = (a+bi)(a — bi) = a® + b,

You should verify this function is multiplicative, that is, that N(z)N(w) = N(zw) for z,w € Z[i]. If u € Z][i]
is a unit, then its norm N (u) divides N(1) = 1 since N(u)N(u~!) = N(1) = 1. If N(u) = a® +b? and divides
1, then it follows that N(u) = £1 so that either a = £1,b =0 or a = 0,b = £1. Indeed, any such choice of
a, b produces a number a + bi which is a unit, and we have therefore exhibited them all. To be succinct,

U(Z[i]) ={1,-1,4,—i},
the fourth roots of unity. O
3.26. Let k be a field, and let R be a subring

R={n-1:ne€Z}Ck.
(a) If F is a subfield of k, prove that R C F.

Proof. Any subfield F of k is a subring so that it contains 1 and therefore contains any integer multiples
of 1. Hence, R C F. ]

(b) Prove that a subfield F' of k is the prime field of & if and only if it is the smallest subfield of k containing
R; that is, there is no subfield F’ with R C F' C F.

Proof. Every subfield contains R by the above, so that it suffices to note that the prime field is the
smallest subfield of F' by definition. O

(c) If R is a subfield of k, prove that R is the prime field of k.

Proof. This follows directly from the previous part: if R is already a field and the prime field is the
smallest field containing R, then the prime field is R. O

3.30. Show that if R is a nonzero commutative ring, then R[z] is never a field.

Proof. Tt suffices to exhibit an element that is not invertible. In particular, the element z € R[z] has no
inverse: if f(x) was an inverse for x, then zf(x) = 1. But then if
f(z) = apx™ + arz" ' 4+ 4 ay,
for nonzero ag, then
of(x) = apz" ™ +ayx" + - 4 apx.
Thus, deg(zf(z)) =1+ deg(f(x)) = deg(1) = 0, a contradiction. O
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3.32.

(a) Let R be a domain. Prove that a polynomial in f(x) is a unit in R[z] if and only if f(x) is a nonzero
constant which is a unit in R.

Proof. If R is a domain, then so is R|[x], so the degree of a product of two polynomials is the sum of the
degrees of the factors. Therefore, f(z) is a unit if and only if its degree is zero (and also its inverse is
zero). But if it is degree zero and invertible, then it is a unit in R. O

(b) Show that ([2]z+[1])? = [1] in I4[z]. Conclude that the statement in part (i) may be false for commutative
rings that are not domains.

Proof.
(224 1)(2z + 1) = 42% + 42 + 1,

and modulo 4 gives the required property. O
3.33. Show that if f(z) = 2 — 2 € Fp[z], then its polynomial function 1o F, — F, is identically zero.
Proof. This is Fermat’s Little Theorem. O

3.39. If R is a commutative ring, define R[[z]] to be the set of all formal power series over R.

(a) Show that the formulas defining addition and multiplication on R[x] make sense for R[[z]], and prove
that R[[z]] is a commutative ring under these operations.

Proof. Just verify the formulas, this is tedious but worthwhile to do once on your own so that you
memorize and understand them. O

(b) Prove that R[z] is a subring of R[[z]].
Proof. R[z] is a ring and it embeds canonically in R[[z]], therefore it is a subring. O
(c) Denote a formal power series o = (g, 81,82, .., Sn,-..) by
a:so+slx+52x2+--- .
Prove that if c =1+ 2+ 2? + -+, then 0 = 1/(1 — ) is in R[[z]].

Proof. T think this is just asking us to prove that (1 — z)o = 1, which it is. Again, you should check
this on your own using the formulas. It’s not tedious, but it leads to a much deeper result: elements
f(x) € R[[z]] are invertible if and only if their constant terms are invertible in R. O

3.43.
(a) Prove that the field with 4 elements and I are not isomorphic commutative rings.

Proof. 1, has a zerodivisor!, therefore it is not a field. |
(b) Prove that any two fields having exactly four elements are isomorphic.
Proof. |

3.58. Find the ged of 22 — x — 2 and 2® — 7z + 6 in Fs[z], and express it as a linear combination of them.

LA nonzero element a € R is a zerodivizor if there exists nonzero b € R such that ab = 0. Elements which are not zero
divisors are called nonzerodivisors.
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3.60. If R is a domain and f(z) € R[x] has degree n, show that f(z) has at most n roots in R.

Proof. Let k be the field of fractions of R. k[z] is a Euclidean domain (we can perform division), so that
f(x) has at most n roots in k. But R embeds into k, so if f(x) has at most n roots in k, then it has at most
n roots in R. ]

3.64. Let k be a field, and let f(z),g(x) € k[z] be relatively prime. If h(x) € k[z], prove that f(z) | h(z)
and g(x) | h(z) imply f(z)g(x) | h(z).

Proof. k[x] is a Euclidean domain (we can perform division), so that in particular it is a UFD. Factoring f(x)
and g(x) into their prime factorizations gives that each prime factor divides h(x), and their factorizations
are disjoint: no factor dividing ¢ divides f (and vice versa) by the ged assumption. Hence each prime factor
from both f and ¢ divides h, so that the product of the prime factors does and therefore fg does. O

3.67. Let f(x) = (x —a1) - (x — ay) € R[z], where R is a commutative ring. Show that f(z) has no
repeated roots (that is, all the a; are distinct) if and only if the ged(f’, f) = 1, where f’ is the derivative of
I

Proof. Taking derivatives, the product rule gives that

Py =3 —a) @) (- an)
i=1

where the hat indicates that the factor is omitted. Indeed, we see that f’(x) vanishes at a; if, and only if,
f(z) vanishes a; with multiplicity greater than two. (]

3.75. If k is a field, show that the ideal (x,y) in k[z,y] is not a principal ideal.

Proof. Assume that there was some element a which generated the ideal (x,y), i.e., (x,y) = a. Then a would
have to divide z and a would have to divide y. But z and y are both irreducible and k[z,y] is a UFD, so
that a = 2 and a = +y. Obviously, this cannot be since +z # +y. |
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