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Abstract

From large cardinals, we combine methods of Cummings-Foreman and Sinapova to
show it is consistent to have a singular strong limit κ with the tree property holding
simultaneously at κ+n for each natural number n ≥ 1. With the same assumptions,
we also add collapses to show that it is consistent to have a ℵω2 strong limit with the
tree property holding simultaneously at ℵω2+n for each natural number n ≥ 1.

1 Introduction

The tree property is a compactness property in set theory motivated by König’s result
that an infinite finitely branching tree has an infinite branch (equivalently, ω has the tree
property). A natural follow-up question is whether or not that this extends to ω1. This was
settled in the negative by Aronszajn who proved that there is an ω1-Aronszajn tree. What
about for infinite cardinals larger than ℵ1?

Interestingly, the consistency of the tree property at ℵ2 turns out to have large cardinal
strength. In particular, results of Mitchell and Silver in 1972 tell us that it is consistent that
the tree property holds at ℵ2 if and only if it is consistent that there is a weakly compact
cardinal. This paper will be in the same vain as the converse. In other words, we will
concern ourselves with how certain large cardinal hypotheses entail certain instances of the
tree property.

Given the large cardinal consistency strength of the tree property at ℵ2, it becomes an
interesting question as to whether or not the only outright ZFC-provable result on the
failure tree property at regular cardinals occurs at ℵ1. (The singular cardinal case is not
very interesting because it is an easy exercise to show that the tree property always fails at
a singular cardinal.) In the case where κ is inaccessible, the tree property at κ is actually
equivalent to κ being weakly compact. One could ask an even stronger question: is there a
model in which the tree property holds simultaneously every regular cardinal κ > ℵ1? This
would provide a model of ZFC with a lot of compactness in the universe. Such a result
must have large cardinal cardinal strength greater than a weakly compact, because if the
tree property holds simultaneously at ℵ2 and ℵ3, then 0# exists [1].

Towards getting the tree property to hold simultaneously, the first results are due to Abra-
ham [1] in 1983, who showed that from sufficient large cardinal hypotheses, it is consistent
to have the tree property holding at both ℵ2 and ℵ3. Inspired by Abraham, Cummings and
Foreman [3] in 1998 showed that it is consistent (modulo large cardinals) to have the tree
property at ℵn for each natural number n > 1.

We reach a difficulty, though, if try to get the tree property to hold simultaneously above
a singular strong limit cardinal. In particular, Specker [15] proved that if κ<κ = κ, then
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the tree property fails at κ+. It follows that, for the tree property to hold at the double
successor of a singular κ, SCH must fail at κ. This presents a host of difficulties.

An outline of this paper is as follows. First we give some preliminaries that are necessary
for understanding the remainder of the paper. Then we give the definition of the main forcing
notion and prove that it satisfies many of the same properties as the original Cummings-
Foreman forcing [3]. Next, we argue that κ+n satisfies the tree property in the resulting
model. The case for n ≥ 2 is modeled after [3], whereas the case for n = 1 is modeled after
[12]. Afterwards, we give the definition of the forcing that adds collapses, and argue that
the conclusion of Theorem 1.2 holds.

1.1 Main Theorems

Theorem 1.1. Let (κn : n < ω) and (λn : n < ω) be increasing sequences of supercompact
cardinals with supn κn < λ0, and κ0 = κ. There is a forcing extension in which κ is singular
strong limit and the tree property holds simultaneously at κ+n for each natural number
n ≥ 1.

Theorem 1.2. Let (κn : n < ω) and (λn : n < ω) be increasing sequences of supercompact
cardinals with supn κn < λ0. There is a forcing extension in which ℵω2 is strong limit and
the tree property holds simultaneously at ℵω2+n for each natural number n ≥ 1.

2 Background and preliminaries

2.1 Trees, Forcing, and Branch Lemmas

Let us recall the following notions related to the tree property:

Definition 2.1. Let κ be an infinite cardinal.

• For α < ht(T ), the αth-level of T is defined as Levα(T ) = {x ∈ T : ht(x) = α}.

• A κ-tree T is a tree of height κ where each level of T has size strictly less than κ.

• A branch b through T is a totally ordered subset of T such that b ∩ Levα(T ) is
non-empty for each α < ht(T ).

• The tree property holds at κ, denoted TPκ, if every κ-tree T has a branch. The
witness to the failure of TPκ is called a κ-Aronszajn tree.

We also recall some elementary properties of forcing posets:

Definition 2.2. Let κ be an infinite cardinal and P be a forcing poset.

• P is κ-closed if every decreasing (pi : i < θ) with θ < κ has a lower bound.

• P is (canonically) κ-directed closed if every directed set D ⊆ P has a (greatest) lower
bound. Recall that D is directed if every two elements in D has a common extension
in D.

• P is < κ-distributive if, whenever f ∈ V [G] is a function from some λ < κ into V ,
then f ∈ V .
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If we have a forcing notion P which has some chain condition and another Q which is
closed, it is useful to understand the closure and chain condition of these forcings after
iterating P followed by Q or vice versa. This is the content of Easton’s Lemma:

Lemma 2.1 (Easton’s Lemma). Let κ be regular. If P has the κ-cc and Q is κ-closed, then

1. 
Q P has the κ-cc.

2. 
P Q is < κ-distributive.

3. If G is P-generic over V and H is Q-generic over V then G and H are mutually generic
(i.e G is P-generic over V [H] and vice versa).

Assume that we have a tree T in our ground model. Of great importance in tree property
arguments is knowing which properties about a poset P allow you to conclude that you do
not add a branch through T after forcing with P. The first noteworthy branch lemma is that
Knaster forcings do not add branches through κ-trees. Normally the result assumes that the
κ-tree is branchless in the ground model (as in [3] and [16]), and Spencer Unger even says in
[16] that it “seems like it should be able to be eliminated.” Indeed it can be eliminated and
we present the proof below. The result when κ = ω1 is proven in Baumgartner’s Survey of
Iterated Forcing [2].

Lemma 2.2. If P is κ-Knaster, then forcing with P does not add a new branch through a
κ-tree T .

Proof. Assume otherwise. Without loss of generality, assume that ḃ be a P-name for a
branch through T such that 
 ḃ 6∈ V . Consider the set T ∗ = {t ∈ T : ∃p ∈ P, p 
 t ∈ ḃ}.
For any α < κ, we may find a pα ∈ P and a tα ∈ T ∗ such that pα 
 tα ∈ ḃ ∩ Levα(T ).
Since ḃ is a name for a new branch, it follows that there is some A ⊆ κ of size κ such that
pi 6= pj for distinct i, j ∈ A. Since P is κ-Knaster, let B ⊆ A be of size κ such that any
two elements of B are compatible. Since the conditions of B are compatible, it follows that
{tα : α ∈ B} induces a branch d through T . Since 
 ḃ 6∈ V , it follows that for any t ∈ T ∗
there are incompatible x, y ∈ T ∗ such that t ≤ x, y. Since d is a branch through T , it must
be that at least one of these nodes is not in d. So, if we define T ∗∗ ⊆ T ∗ as

T ∗∗ = {t ∈ T ∗ : t is ≤-minimal such that t 6∈ d},

we have that T ∗∗ has size κ and elements of T ∗∗ are pairwise incompatible. This implies
that the set {pi : i < κ and ti ∈ T ∗∗} is an antichain of size κ, a contradiction.

Lemma 2.3 (Silver’s Branch Lemma). Let κ be a regular cardinal. Assume that T is a
κ-tree and P is τ+-closed for some regular τ < κ such that 2τ ≥ κ. Then forcing with P
does not add new branches through T .

We also have the following key branch lemma, see [17].

Lemma 2.4. Suppose that in V , P is κ-cc, Q is κ-closed forcing, and κ is not strong limit.
Let G×H be P×Q generic over V . If T ∈ V [G] is a κ-tree and T has a branch in V [G][H],
show that T has a branch in V [G].
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2.2 Projections

We summarize some well-known information on projections as they are crucial for analyzing
the various forcings later in this paper.

Definition 2.3. We say that π : P→ Q is a projection1 if the following hold:

1. π(1P) = 1Q

2. for any p, q ∈ P, if p ≤ q then π(p) ≤ π(q),

3. for any q ∈ Q, p ∈ P, if q ≤ π(p), then there’s an r ≤ p such that π(r) ≤ q.

Lemma 2.5. If G is P-generic over V , then the upwards closure H = (π“G) ↑ 2 is Q-generic
over V . In particular, V Q ⊆ V P.

Lemma 2.6. Let H be Q-generic over V . In V [H], define P/H = π−1[H], ordered as a
suborder of P. Then, P/H is nonempty, and if G is P/H-generic over V [H], then it’s actually
P-generic over V . Further, H = (π“G) ↑.

Lemma 2.7. We may factor forcing with P as a forcing first by Q followed by a forcing
by P/H. More specifically, given a P-generic G, there’s a Q-generic H such that V [G] =
V [H][G].

Projections can also give us a sufficient condition on when we may lift an elementary
embedding. For this we first state a result by Silver.

Lemma 2.8 (Silver’s Lifting Criterion). Let j : V → M be an elementary embedding.
Suppose that G is P-generic over V and G∗ is j(P)-generic over N . If j”G ⊆ G∗, then we
may lift j to an elementary embedding j : V [G]→M [G∗], where j(G) = G∗. Furthermore,
if G∗ ∈ V [G][H] for some generic extension of V [G], then our lifted embedding is definable
in V [G][H].

Lemma 2.9. Assume that j : V → M is an elementary embedding, j(P) projects to P via
π, and q ≤j(P) j(π(q)) for any q ∈ j(P). Then, for any P-generic G over V we may find a
j(P)-generic H over M letting us lift our embedding to j : V [G]→M [H].

2.3 Prikry Forcing

In the original Cummings-Foreman forcing notion, the left coordinate of the original factor
was Cohen forcing. Since our goal is singularize κ and get the tree property at κ+, however,
we going to have to modify the Cummings-Foreman forcing to include a Prikry poset. We
will be summarizing the information in Section 3 of Spencer Unger’s paper [16] and so the
enthusiastic reader should refer to his paper for more details.

Let (κn : n < ω) be an increasing sequence of supercompact cardinals, κ = κ0, κω =
supn κn, and µ = κ+ω . Assume that κ is indestructibly supercompact. Further, let λ0 be
a supercompact cardinal above µ and U∗ a normal measure on λ0. Let A = Add(κ, λ0).
Working in V A, κ is still supercompact, so we may let U be the supercompactness measure

1Often a slightly weaker notion of projection is used; namely, that there is a projection from P to Q if,
given any P-generic G, we can define a Q-generic H such that V [H] ⊆ V [G]. This implies that there is a
projection (in our sense) from P to RO(Q), where RO(Q) is the complete boolean algebra that Q densely
embeds into.

2(π“G) ↑ is the upwards closure of the pointwise image of G under π
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on Pκ(µ) and Un be the projections of U to Pκ(κn). For notation, if x and y are sets of
ordinals, let κy denote the set κ∩ y and x ≺ y hold when x ⊆ y and and ot(x) < κy. In V A,
define the diagonal Prikry forcing I, originally developed by Gitik and Sharon in [6] and by
Itay Neeman in [11], as follows:

Definition 2.4. I has conditions of the form

p = (x0, x1, . . . , xn−1, An, An+1, . . .)

where

1. xi ∈ Pκ(κi) for i < n,

2. xi ≺ xi+1 for i < n− 1, and

3. Ai ∈ Ui for i ≥ n.

The string (x0, . . . , xn−1) is the stem of p an denoted stem(p). Given another condition

q = (y0, y1, . . . , ym−1, Bm, Bm+1 . . .),

we say that p ≤ q if

1. m ≤ n,

2. stem(p) � m = stem(q),

3. Ai ⊆ Bi for i ≥ n, and

4. xi ∈ Bi for m ≤ i < n.

In other words, extensions of q lengthen the stem of q by choosing elements from the
Bi’s while also shrinking the Bi’s. This forcing adds a generic sequence (xn : n < ω) ∈∏
n<ω Pκ(κn) such that

⋃
n<ω xn = κω. This generic sequence singularizes each κn to have

cofinality ω and forces µ = κ+.

Lemma 2.10. Importantly, I sastifies the Prikry property: for any statement ϕ and any
p ∈ I, there is a direct extension q ≤∗ p deciding ϕ.

Definition 2.5. Given a formula ϕ and a stem h, write h 
∗ ϕ if there is a condition p ∈ I
with stem h forcing ϕ.

Let U̇ be an A-name for U and for α < λ0, let Aα = Add(κ, α). It is important that we
are able to project our Prikry posets onto smaller Prikry posets, so we show that we can do
this on a measure 1 set.

Lemma 2.11. There is a B ⊆ λ of Mahlo cardinals with B ∈ V such that

1. if g is A-generic over V , then U̇G ∩ V [g � α] ∈ V [g � α] and

2. B ∈ U∗.

From this, for each α ∈ B and each A-generic g over V , we can define supercompactness
measures Uα on Pκ(λ0) in V [g � α] and the diagonal Prikry forcing Iα obtained from Uα

as in Definition 2.4. The generic object for A ∗ İ induces generic objects for Aα ∗ İα with
α ∈ B, so we have the following relationships between the Prikry posets and their regular
open algebras.
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Lemma 2.12. For all α ∈ B there is a projection πα : A ∗ İ→ RO(Aα ∗ İα)

Lemma 2.13. For all α, β ∈ B with α < β there is a projection πα,β : Aβ∗ İβ → RO(Aα∗ İα)

Lemma 2.14. A ∗ İ is µ-cc and Aα ∗ İα is µ-cc for each α ∈ B.

Lemma 2.15. Forcing with A ∗ İ yields the following cardinal structure:

1. κ is singular strong limit of cofinality ω,

2. κ+ = (κ+ω )V = µ, and

3. 2κ = λ0.

2.4 The Cummings-Foreman Model

Our main forcing notion modifies the factors of the Cummings-Foreman model in [3], so it
is worth summarizing the material found in the original paper. The original definition of
the forcing notion is quite general, so it will be helpful for us when proving that the generic
extension follows a certain the cardinal structure.

Definition 2.6. Let V ⊆ W be models of set theory. Suppose that τ and κ are cardinals
such that W |= τ is regular and κ is inaccessible. Let P = Add(τ, κ)V and assume that
W |= P is τ+-cc and < τ -distributive. Also, let P � β = Add(τ, β)V for β < κ. Let F ∈ W
be a function from κ to (Vκ)W . Define R = R(τ, κ, V,W, F ) in W by recursion on β ≤ κ and
set R = R � κ. Let R � 0 is the trivial forcing. Otherwise, (p, q, f) is a condition in R � β
when the following hold:

1. p ∈ P � β,

2. q is a partial function on β and |dom(q)| ≤ τ , and if α ∈ dom(q), then

(a) α is a successor ordinal,

(b) q(α) ∈W P�α, and

(c) 
WP�α q(α) ∈ Add(τ+, 1)W P�α ,

3. f is a partial function on β and |dom(f)| ≤ τ , and if α ∈ dom(f), then

(a) 
WR�α F0(α) is a canonically τ+-directed closed forcing,

(b) α is a limit ordinal,

(c) f(α) ∈WR�α, and

(d) 
WR�α f(α) ∈ F (α).

We also define the ordering (p1, q1, f2) ≤ (p2, q2, f2) when the following hold:

1. p1 ≤P�α p2,

2. dom(q2) ⊆ dom(q1) and if α ∈ dom(q2), then p1 � α 
WP�α q1(α) ≤ q2(α),

3. dom(f2) ⊆ dom(f1) and if α ∈ dom(f2), then (p1, q1, f1) � α 
WR�α f1(α) ≤ f2(α).

Lemma 2.16. This forcing satisfies the following properties. Each reference is from [3].
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1. (Lemma 3.2) |R| = κ and R is κ-Knaster.

2. (Lemma 3.3) We have that R projects onto P, P � α∗Add(τ+, 1)W P�α , and R � α∗F (α).

3. (From Section 3.3) Let U be all conditions in R of the form (0, q, f) with the ordering
induced from R. Then, U is canonically τ+-directed closed, κ-cc, and the product
forcing P× U projects onto R.

4. (Variant of Lemma 3.6) If θ ≤ τ and P is canonically θ-directed closed in W , then R
is canonically θ-directed closed in W .

5. (Lemma 3.11) U is ≤ τ -distributive in W P.

6. (Corollary 3.16) R is < τ -distributive in W .

7. (Lemma 3.20) Let G be R-generic over W and S be the quotient forcing of P × U
defined in W [G]. It follows that W [G] |= “S is < τ+-distributive, τ -closed, and κ-cc.”

8. (From Section 3.3) Let G be R-generic over W .

(a) If g is the P-generic induced by G, then W [G] and W [g] have the same τ -sequences
of ordinals.

(b) W [G] |= τ+ is preserved and 2τ = κ = τ++.

(c) Every set of ordinals of size τ in W [G] is covered by a set of size τ in W .

9. (Corollary 3.17) WU |= κ = τ++.

10. (From Section 3.5) R projects onto R � α. In WR�α, there are forcings P∗,U∗ such
that P∗ is τ+-cc, U∗ is τ+-closed, and P∗ × U∗ projects onto R/R � α.

We also collect some more facts from [3] that will be useful later. Again, the reference is
from the original paper.

Lemma 2.17 (Lemma 2.6). Let τ < κ, and assume that V |= “τ is regular and κ is inaccessible”.
Let P = Add(τ, η). Let W ⊇ V be a model of ZFC such that

1. κ and τ are cardinals in W ,

2. if X ∈ W is a set of ordinals such that W |= |X| < κ, then there is a Y ⊇ X such
that Y ∈ V and V |= |Y | < κ.

Then P is κ-Knaster in W .

Lemma 2.18 (Lemma 2.13). Let τ be regular and let A = Add(τ, η) for some η. Let κ be
inaccessible with τ < κ. Then

1. If Q is κ-cc and Q is a projection of P×U, where P is τ -cc and U is τ -closed, then V Q

believes that A is κ-Knaster and < τ -distributive.

2. Suppose that V Q believes that Q∗ is a projection of Add(τ, ζ)V × U∗ and that U∗ is

κ-closed. Then V Q∗Q̇∗ |= A is κ-Knaster.
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3 The factor Q0

For the remainder of this paper, let (κn : n < ω) be an increasing sequence of indestructibly
supercompact cardinals, κ = κ0, κω = supn κn, and µ = κ+ω . Further, let (λn : n < ω) be
another increasing sequence of supercompact cardinals with µ < λ0. Let λ = sup(λi). Fix
Laver functions (Fn : n < ω) for the λn’s. Set P0 = A ∗ İ and P0,β = Aβ ∗ İβ . If β 6∈ B,
abuse notation and let P0,β := P0,γ where γ > β is least such that γ ∈ B. If β = λ0, set
P0,β := P0.

We will begin by defining a modification of the forcings R in [12] and [3], to be denoted
Q0. This definition will be by induction, where we define forcings Q0 � β for β ≤ λ0. We
finally set Q0 := Q0 � λ0.

Definition 3.1. Let Q0 � 0 be the trivial forcing. Otherwise, ((f, ṗ), r, g) is a condition in
Q0 � β when the following hold:

1. (f, ṗ) ∈ P0,β

2. r is a partial function on β with dom(r) ⊆ B, and |dom(r)| < µ

3. if α ∈ dom(r) then 
P0,α
r(α) ∈ Add(µ, 1)V P0,α

4. g is a partial function on β, |g| < µ,
and dom(g) ⊆ {α : 
Q0�α F0(α) is a canonically µ-directed closed forcing}

5. if α ∈ dom(g), then 
Q0�α g(α) ∈ F0(α)

The ordering is defined by (f1, ṗ1, r1, g1) ≤ (f2, ṗ2, r2, g2) exactly when

1. (f1, ṗ1) ≤P0,β
(f2, ṗ2)

2. dom(r1) ⊇ dom(r2) and for every α ∈ dom(r2), we have that
(f1, ṗ1) � α 
P0,α

r1(α) ≤ r2(α)

3. dom(g1) ⊇ dom(g2) and for every α ∈ dom(g2), we have that
(f1, ṗ1, r1, q1) � α 
Q0�α g1(α) ≤ g2(α).

In the above, (f1, ṗ1) � α is really πα(f1, ṗ1), where πα is the projection from P0 to
RO(P0,α). Similarly, (f1, ṗ1, r1, q1) � α is (πα(f1, ṗ1), r1 � α, q1 � α).

Structural Properties of Q0

Proposition 3.1. |Q0| = λ0 and Q0 has the λ0-Knaster property, and for all β ∈ B, Q0 � β
is β-Knaster.

Proof. |Q0| = λ0 follows since |P0| = λ0, |P0,β | < λ0 for each β ∈ B and for any α, there
are less than λ0 possibilities for q(α) or f(α). This follows since 
Q0�α g(α), f(α) ∈ Vλ0 .
The Knasterness part of the proposition follows from a ∆-system argument and since Prikry
conditions with the same stem are compatible.

Proposition 3.2. For α ∈ B, Q0 can be projected to P0, Q0 � α∗F0(α), P0,α∗Add(µ, 1)V [P0,α]

and Q0 � α.

Proof. The projections are the following:
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1. π1 : ((f, ṗ), r, g) 7→ (f, ṗ)

2. π2 : ((f, ṗ), r, g) 7→ ((f, ṗ, r, g) � α, g(α))

3. π3 : ((f, ṗ), r, g) 7→ ((f, ṗ) � α, r(α))

4. π4 : ((f, ṗ), r, g) 7→ (f, ṗ, r, g) � α

We prove that π2 and π4 are projections and leave the rest to the imagination of the
reader. Recall that (f, ṗ, r, q) � α is (πα(f, ṗ), r � α, q � α). We start with π4 and then deal
with π2. To check π4 is order preserving, observe that if (f1, ṗ1, r1, g1) ≤ (f2, ṗ2, r2, g2),
then πα(f1, ṗ1) ≤ πα(f2, ṗ2) because πα is a projection. We still have that dom(r1) � α ⊇
dom(r2) � α and for every β ∈ dom(r2), (f1, ṗ1) � β 
P0,β

r1(β) ≤ r2(β). The similar
condition holds for the gi’s and so it follows that π4(f1, ṗ1, r1, g1) ≤Q0�α π4(f2, ṗ2, r2, g2).

Next we check the other condition for a projection. Assume that (a, ḃ, c, d) ≤Q0�α π4(f2, ṗ2, r2, g2).

It follows that (a, ḃ) ≤ πα(f2, ṗ2), and since πα is a projection we may find a (f1, ṗ1) ≤
(f2, ṗ2) such that πα(f1, ṗ1) ≤ (a, ḃ). We define r1 by first setting dom(r1) = dom(c) ∪
dom(r2). Then, we let r1(β) = c(β) when β ∈ dom(c) and r1(β) = r2(β) otherwise.

Finally, define g1 by setting dom(g1) = dom(d) ∪ dom(g2) and letting g1(β) = d(β) when
β ∈ dom(d) and g1(β) = g2(β) otherwise. It follows by construction that (f1, ṗ1, r1, g1) ≤
(f2, ṗ2, r2, g2) and that π4(f1, ṗ1, r1, g1) ≤ (a, ḃ, c, d). So π4 is a projection.

For π2, assume that (f1, ṗ1, r1, g1) ≤ (f2, ṗ2, r2, g2). Since π4 is a projection we know
that (f1, ṗ1, r1, g1) � α ≤ (f2, ṗ2, r2, g2) � α. Further, by definition of the ordering on Q0

we have that (f1, ṗ1, r1, g1) � α 
 q1(α) ≤ q2(α). So, π2(f1, ṗ1, r1, g1) ≤ π2(f2, ṗ2, r2, g2) by
definition of a two-step iteration.

Next, assume that ((a, ḃ, c, d), e) ≤Q0�α∗F0(α) ((f2, ṗ2, r2, g2) � α, g2(α)). From the first co-

ordinate, we know that (a, ḃ, c, d) ≤ (f2, ṗ2, r2, g2) � α. Since π4 is a projection, there’s some
(f1, ṗ1, r1, g1) ≤Q0

(f2, ṗ2, r2, g2) such that (f1, ṗ1, r1, g1) � α ≤Q0�α (a, ḃ, c, d). The idea is
to modify g1 to g∗1 by setting g∗1 = g1 below α, by setting g∗1(α) = e, and by setting g∗1 = g2
above α. Since (a, ḃ, c, d) 
Q0�α e ≤ g2(α), it follows that (f1, ṗ1, r1, g

∗
1) ≤Q0 (f2, ṗ2, r2, g2).

But then we also have that ((f1, ṗ1, r1, g
∗
1) � α, g∗1(α)) ≤Q0�α∗F0(α) ((a, ḃ, c, d), e) as de-

sired.

Definition 3.2. Let U have conditions of the form (0, 0, q, f) ∈ Q0 with the ordering
inherited from Q0.

Proposition 3.3. P0 is µ-cc.

Proposition 3.4. U is µ-canonically directed closed and λ0-cc (Knaster).

Proof. The major difference between our new factor and the one originally the given in [3]
is the leftmost coordinate. Since our definition of U fixes the leftmost coordinate, we then
notice that we may give exactly the same argument as the original paper (Lemmas 3.9 and
3.8 respectively). We present the directed closed argument from [3] for completeness.

Fix a directed set of conditions {(0, 0, qη, fη) : η < θ} for a cardinal θ < µ. We define a
lower bound (0, 0, r, g) as follows. Define A1 =

⋃
η<θ dom(qη). Notice that |A1| < µ. Define

a function q with domain A1. For α ∈ A1 consider {qη(α) : η < θ}. If η, ζ < θ then for some
γ < θ we have that (0, 0, qγ , fγ) ≤ (0, 0, qη, fη), (0, 0, qζ , fζ), and so 
 qγ(α) ≤ qη(α), qζ(α).
Then, there’s a P0,α-name for the directed set {qη(α) : η < θ} ⊆ Add(µ, 1)V P0,α and so we
may let r(α) be a name forced to be the greatest lower bound to this directed set.
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Next, define A2 =
⋃
η<θ dom(fη) and notice |A2| < µ. Observe that we may define a

function g by induction on α with domain A2 such that (0, 0, r, g) � α 
 g(α) ≤ fη(α) for
any α and η. The induction step is similar to the previous paragraph, where we say that
g(α) is a name for the greatest lower bound of {fη(α) : η < θ} if that set is directed, and
the trivial condition otherwise.

It’s not hard to see that (0, 0, r, g) is in fact the greatest lower bound.

Lemma 3.1. The following results are standard and proofs are similar to that in [3]:

• P0 × U projects onto Q0.

• P0 × U is λ0-cc and all < µ-sequences of ordinals in V P0×U are in V P0 .

• Assume G is Q0-generic over V and g is the P0-generic induced from G. If X ∈ V [G]
is a set of ordinals of size < µ, then X ∈ V [g].

• Q0 collapses every cardinal between µ and λ0 to µ.

• Q0 preserves µ and forces 2κ = λ0 = µ+.

• There’s a projection from Q0 to Q0 � α for α ≤ λ0.

Definition 3.3. Given α < λ0 and a V -generic Gα for Q0 � α, define R∗ = Q0/Gα and
U∗ = {(0, 0, q, f) ∈ Q0 : (0, 0, q, f) ∈ R∗}.

Like Q0, we have that R∗ may be factored as the product of a “Prikry” poset and a
µ-closed poset. Proofs are similar to those in [1] and [3].

Proposition 3.5. There’s a projection of P0/P0,α×U∗ onto R∗, given by ((f, ṗ), (0, 0, r, g)) 7→
(f, ṗ, r, g)

Proposition 3.6. In V [Gα], U∗ is forcing equivalent to a µ-closed forcing.

4 The forcing Rω

We define the Cummings-Foreman (CF) variant Rω as follows:

Definition 4.1. We proceed in the same manner as [3]:

1. Let R1 = Q0.

2. Let Ḟ1 be a Q0-name for a function on λ1 such that 
Q0
Ḟ1(α) = F1(α) when F1(α) is

a Q0-name and 
Q0
Ḟ1(α) = 0 otherwise. Then define Q̇1 to be the canonical name for

R(µ, λ1, V, V [Q0], F ∗1 ) where F ∗1 is the interpretation of Ḟ1 in V [Q0]. Let R2 = Q0∗Q̇1.

3. Similarly, for n ≥ 2, let Rn = Q0∗ . . .∗Q̇n−1 and let Ḟn be a Rn-name for a function on
λn such that 
Rn Ḟn(α) = Fn(α) when Fn(α) is a Rn-name and 
Rn Ḟn(α) = 0 oth-
erwise. Then define Q̇n to be the canonical name for R(λn−2, λn, V [Rn−1], V [Rn], F ∗n)
where F ∗n is the interpretation of Ḟn in V [Rn].

4. Finally, let Rω be the inverse limit of (Rn : n < ω).

For Definition 4.1 to actually make sense, we have to show that after forcing with Q0 we
satisfy the hypotheses of Definition 2.6 to make R(µ, λ1, V, V [Q0], F ∗1 ) valid.
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Lemma 4.1. Let G be Q0-generic over V and g be the P0-generic induced by G. In V [G]
we have that

1. µ is regular and λ1 is inaccessible,

2. Add(µ, λ1)V is µ+-cc and < µ-distributive.

Proof. Since |Q0| = λ0 < λ1, it follows that λ1 is still inaccessible in V [G]. To see that µ
is regular in V [G], assume otherwise and fix an unbounded sequence f : τ → µ with τ < µ
such that f ∈ V [G]. Since U is µ-closed, it follows that f ∈ V [g]. This contradicts Lemma
2.15 because µ is regular in V [g].

The second part of this follows from Lemma 2.18(1), where τ = µ, κ = λ0, Q = Q0,
and U as in the previous section. In particular we have that Add(µ, λ1)V is λ0-Knaster and
< µ-distributive in V [G]. Since V [G] |= λ0 = 2κ = µ+, the result follows.

It follows that the definition of R2 makes sense. Since the terms Q̇n for n ≥ 1 are simply
names for the factors in the original Cummings-Foreman paper, it follows in turn that we
satisfy the following properties:

Lemma 4.2 (Lemma 4.3 in [3]). Let n ≥ 1. Let Rn = Q0 ∗ . . . Q̇n−1, let P1 = Add(µ, λ1)V ,
and let Pn = Add(λn−2, λn)V [Rn−1] for n ≥ 2. Further, let U1 = U(µ, λ1, V, V [Q0], F ∗1 ) and

U̇n = Un(λn−2, λn, V [Rn−1], V [Rn], F ∗n) for n ≥ 2, where Un is the poset U corresponding
to Qn defined in preliminary subsection 2.4 on the Cummings-Foreman Model. We abuse
notation and will occasionally denote κ = λ−2 and µ = λ−1.

1. In V [Rn], we have 2λi−2 = λi for i < n and the λi’s are still inaccessible for i ≥ n.

2. V [Rn] |= Qn is < λn−2-distributive, λn-Knaster, and |Qn| = λn. If n ≥ 2, then Qn is
also λn−3-closed in V [Rn].

3. All < λn−2-sequences of ordinals from V [Rn ∗ Q̇n] are in V [Rn−1 ∗ Ṗn−1].

4. All cardinals up to λn−2 are preserved in V [Rn ∗ Q̇n].

5. V [Rn] |= “Qn is a projection of Pn × Un,” and we also have that V [Rn ∗ Ṗn] ⊆
V [Rn ∗ Q̇n] ⊆ V [Rn ∗ (Ṗn × U̇n)].

6. All λn−2-sequences of ordinals from V [Rn ∗ Q̇n] are in V [Rn ∗ Ṗn].

7. λn−1 is preserved in V [Rn ∗ Q̇n]. In V [Rn ∗ Q̇n], we have 2λi−2 = λi for i ≤ n.

8. Add(λn−2, η)V [Rn−1] is λn−1-Knaster in V [Rn ∗ Q̇n] for any ordinal η.

9. V [Rn ∗ Q̇n] |= “Add(λn−1, η)V [Rn] is < λn−1-distributive and λn-Knaster” for any
ordinal η.

To show that the cardinal arithmetic works out after forcing with Rω, we use the following
lemma.

Lemma 4.3 (Lemma 4.4 in [3]). Let Gω be Rω-generic and X ∈ V [Gω] is a λn-sequence
of ordinals. Then X ∈ V [G0][· · · ][Gn][Gn+1][gn+2], where G0 ∗ · · · ∗ Gn ∗ Gn+1 ∗ gn+2 is
the initial segment of Gω which is V -generic for Q0 ∗ · · · ∗ Q̇n+1 ∗ Ṗn+2. In the case where
X ∈ V [Gω] is a µ-sequence of ordinals, it follows that X ∈ V [G0][g1].
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Proof. For clarity, we show the case when n = 0. Since Rω/R4 is λ1-closed, it follows that
X ∈ V [G0][G1][G2][G3]. Since Q3 is < λ1-distributive, it follows X ∈ V [G0][G1][G2]. We
therefore have that X ∈ V [G0][G1][g2] since all λ0-sequences of ordinals in V [G0][G1][G2]
are in V [G0][G1][g2].

From the previous results we have the following:

Lemma 4.4. After forcing with Rω we have the following cardinal structure:

1. cf(κ) = ω,

2. µ = κ+,

3. λn = κ+n+2 for all n,

4. 2κ = λ0,

5. 2µ = λ1,

6. 2λn = λn+2 for all n.

5 Tree property at κ++

In this section we modify the Cummings-Foreman argument that the tree property holds
in V Rω to account for the presence of Q0. If T is a λ0-tree, it follows by Lemma 4.3 that
T ∈ V [G0][G1][g2]. It is therefore enough to show that there is no λ0-Aronszajn tree in
V [G0][G1][g2].

5.1 First we lift...

Recall that λ = supλn. Fix an elementary embedding j : V → M with crit(j) = λ0 > λ,
λM ⊆M , and where j(F0)(λ0) is the canonical Q0 name for P2×U1. Observe that j(F0)(λ0)
is a Q0-name for a λ0 directed closed forcing in V [Q0].

We start with a set of claims which will let us do some heavy lifting to turn j : V → M
into j : V [G0][G1][g2]→M [H0][H1][h2]. This argument is essentially the Six Stages listed in
Section 4 of [3], but is fleshed out for completeness, for clarity, and to emphasize the parts
where we are using the new factor Q0.

Claim 5.1. There’s a V [G0][g2]-generic filter g1 × u1 for P1 × U1 such that g1 × u1 × g2 is
generic for P1 × U1 × P2 over V [G0].

Proof. Since G0 ∗G1 ∗g2 is V -generic for Q0 ∗Q1 ∗P2, it follows that G1 and g2 are mutually
generic over V [G0]. So, in V [G0][g2][G1], we may consider the quotient forcing S of P1×U1

and Q1. If g1× u1 is generic for S over V [G0][g2][G1], then it’s also generic for P1×U1 over
V [G0][g2]. The product lemma implies that g2 and g1×u1 are mutually generic over V [G0],
and so g1 × u1 × g2 is generic for P1 × U1 × P2 over V [G0].

Claim 5.2. There’s a H0 such that H0 is V [g1]-generic for j(Q0) with H0 � λ0 + 1 = G0 ∗
(g2×u1) and H0 collapses λ0 and λ1 to cardinality µ. Further, we may lift to j to j : V [G0]→
M [H0].
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Proof. In M , observe that j(Q0) � λ0 = Q0 and that elementarity implies j(Q0) projects
onto Q0 ∗ j(F0)(λ0) = Q0 ∗ (U1 × P2). Now, our choice of j implies P2 and U1 are really
the forcings defined in V [G0] (also using V as a parameter for U1). However, the chain
condition of Q0 and the closure of M imply P2 and U1 are the same in V [G0] as in M [G0]
(using M instead of V in the definition for U1).

Anyways, the projection given by elementarity is in V [G0][g1 × u1 × g2], so let H0 be
V [G0][g1 × u1 × g2]-generic for j(Q0)/(G0 ∗ (g2 × u1)). Facts about projections tell us that
H0 is V [g1]-generic for j(Q0) and is generated from G0 ∗ (g2 × u1). Also, we get that
H0 � λ0 + 1 = G0 ∗ (g2 × u1).

Further, we have that H0 � λ0 = G0. Since the elements in Q0 have size less than the
critical point of j, it follows that we may lift to j : V [G0] → M [H0]. j(Q0) collapses all
ordinals between j(µ) = µ and j(λ0) to µ, and since λ0, λ1 < j(λ0), we have that H0

collapses λ0 and λ1 to µ.

Claim 5.3. There’s a generic object h1 for j(P1) over V [G0][H0] so that j”g1 ⊆ h1. This
allows us to lift to j : V [G0][g1]→M [H0][h1].

Proof. Observe that elementarity and sufficient closure ofM implies that j(P1) = Add(µ, j(λ1))V .
Observe also that there’s a projection of j(P1) onto P1. So, we may take an h1 generic for
j(P1)/g1 over V [G0][H0][g1]. This will satisfy j”g1 ⊆ h1 and let us lift the embedding j.

Claim 5.4. There’s a generic object x1 for j(U1) over V [G0][H0][h1] such that j”u1 ⊆ x1.
Further, x1 and h1 are mutually generic over M [H0] by Easton’s Lemma, so h1×x1 generates
a filter H1 generic for j(Q1) over M [H0]. We also have that j”G1 ⊆ H1, allowing us to lift
to j : V [G0][G1]→M [H0][H1].

Proof. Observe that in M [G0][g2 × u1], |u1| ≤ |U1| = λ1 < λ. Since M is closed under λ
sequences and the Q0, P2, and U1 have chain conditions smaller than λ (simply by cardinality
considerations), it follows in V [G0][g2 × u1] that λM [G0][g2 × u1] ⊆M [G0][g2 × u1]. This
implies that in j”u1 ∈M [H0] by choice of H0.

Now, elementarity implies that, in M [H0], j(U1) is j(µ+)-directed closed, where j(µ+) =
(µ+)M [H0] (note that µ is less than the critical point of j). We observed in Claim 5.2 that
λ1 is collapsed to µ in M [H0], and so it follows that there’s a lower bound t in j(U1) for
j”u1.

This let’s us fix a V [G0][H0][h0]-generic filter x1 for j(U1) with j”u1 ⊆ x1. The choice of
x1 and the product lemma implies that x1 × h1 is generic over M [H0]. By elementarity, we
have that j(P1)× j(U1) projects onto j(Q1), and so it follows x1×h1 induces a filter H1 on
j(Q1) over M [H0]. The argument for why j”G1 ⊆ H1 is exactly the same as “4.2.5 Stage
Five” in [3], and so we may lift to j : V [G0][G1]→M [H0][H1].

Claim 5.5. There’s a V [G0][H0][h1][x1]-generic h2 for j(P2) such that j”g2 ⊆ h2. This lets
us lift to j : V [G0][G1][g2]→M [H0][H1][h2].

Proof. This is “4.2.6 Stage Six” in [3].

5.2 ... then we go fishing.

Let T be a λ0-tree in V [G0][G1][g2]. The standard argument shows that T has a branch
b in M [H0][H1][h2]. Since M is closed under λ sequences and the Q0, Q1, and P2 have
chain conditions smaller than λ (by cardinality considerations), we have in V [G0][G1][g2]
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that λM [G0][G1][g2] ⊆M [G0][G1][g2]. It follows then that T ∈ M [G0][G1][g2]. We start
pulling back the branch with a lot of claims and some facts.

Fact 5.1 (Structural Fact). M [H0][h1] = M [G0][g2×u1][H∗0 ][g1×h∗1], where H∗0 is a generic
object for j(Q0)/(G0 ∗ (g2 × u1)) and h∗1 is a generic object for j(P1)/P1.

Fact 5.2 (Structural Fact). M [G0][g2 × u1][h1] = M [G0][g1 × u1 × g2][h∗1]

Fact 5.3 (Structural Fact). M [H0][h1] ⊆M [G0][h1×u1×g2][h∗0×u∗0], where h∗0 is a generic
object for j(P0)/g0 and u∗0 is a generic object for U∗

Proof of Structural Facts. By our choice of generics H0 and h1 we may decompose them in
this way, and h1 and H0 are mutually generic over M [G0] by Claim 5.3. Also, j(P0)/P0×U∗
projects onto j(Q0)/(G0 ∗ (g2 × u1)).

Fact 5.4. In M [G0][G1][g2], the quotient forcing S = (P1 × U1)/Q1 is µ-closed.

Proof. By Lemma 3.20 in [3], we have that S is µ-closed in M [G0][G1]. Next, P2 is < λ0-
distributive in M [G0][G1] by Lemma 4.3(9) in [3], and so by an Easton’s lemma variant we
have that S is still µ-closed in M [G0][G1][g2].

Fact 5.5. All κ-sequences of ordinals from M [G0][h1 × u1 × g2] are in M [G0].

Proof. Found on the bottom of page 18 and top of page 19 in [3].

Fact 5.6. j(P1)/P1 is λ0-Knaster and < µ-distributive in M [G0][g1 × u1 × g2].

Proof. Found on the bottom of page 18 in [3].

Claim 5.6. b ∈M [H0][h1]

Proof. We know that b ∈ M [H0][H1][h2]. Lemma 4.3(9) in [3] implies that P2 is < λ0-
distributive in V [G0][G1] and so j(P2) is < j(λ0)-distributive in M [H0][H1]. Since b has
length λ0 it follows that b ∈M [H0][H1]. By Claim 5.4 we have that b ∈M [H0][h1×x1]. By
Lemma 3.11(2) in [3], we know U1 is ≤ µ-distributive in V [G0][g1]. Elementarity implies
that j(U1) is ≤ µ-distributive in M [H0][h1]. By elementarity we have that λ0 is collapsed
to µ in M [H0][h1] and so it follows that b ∈M [H0][h1].

Claim 5.7. b ∈M [G0][h1 × u1 × g2][u∗0]

Proof. For the remainder of this claim, let T = j(P0)/g0. By Fact 5.3 and Claim 5.6, we know
b ∈M [G0][h1 × u1 × g2][u∗0 × h∗0]. Forcing with U∗ in M [G0][h1 × u1 × g2] collapses λ0 to µ,
and so by Lemma 2.4 in [16], it’s enough to argue that M [G0][h1×u1×g2][u∗0] |= T2 is µ-cc.
We will work backwards and reduce this hypothesis to a case solved by Unger in [16]. First
observe that U∗ is µ-closed in M [G0][h1 × u1 × g2] because all κ-sequences of elements of
M [G0][h1 × u1 × g2] are in M [G0]. It follows by Easton’s lemma that it’s enough to show
M [G0][h1 × u1 × g2] |= T2 is µ− cc.

Next, because U1 × P2 is λ0-directed closed in M [G0] and j(P1) is λ0-Knaster in M [G0]
(Lemma 4.2 in [3]), it follows by Easton’s Lemma that u1× g2 is generic for a µ-distributive
forcing over M [G0][h1]. It’s therefore enough to show that M [G0][h1] |= T2 is µ− cc because
an antichain in M [G0][h1× u1× g2] of T2 with size µ will be in M [G0][h1] by distributivity.

Observe that h1 andG0 are mutually generic, and so we have thatM [G0][h1] = M [h1][G0].
It’s enough then to show that M [h1][g0 × u0] |= T2 is µ-cc because P0×U projects onto Q0.
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Towards this end, observe that Lemma 5.3 in [16] implies that 
MP0
T2 is µ-cc. This implies

that M |= P0 ∗ T2 is µ-cc. j(P1) is µ-closed in M , and so M [h1] |= P0 ∗ T2 is µ-cc. Finally,
U is µ-closed in M [h1], so Easton’s lemma implies that M [h1][u0] |= P0 ∗ T2 is µ-cc. So,
M [h1][u0 × g0] |= T2 is µ-cc, completing the claim.

Claim 5.8. b ∈M [G0][h1 × u1 × g2]

Proof. Notice that forcing with U∗ is µ-closed in M [G0][h1 × u1 × g2] by Fact 5.5 and that
2κ = λ0 in M [G0][h1 × u1 × g2]. It follows by Silver’s branch lemma that b ∈ M [G0][h1 ×
u1 × g2].

Claim 5.9. b ∈M [G0][g1 × u1 × g2]

Proof. j(P1)/g1 is λ0-Knaster in M [G0][g1 × u1 × g2] by Fact 5.6, and T is a tree of height
λ0 in this model. It follows that forcing with T won’t add any new branches, and so
b ∈M [G0][g1 × u1 × g2].

Claim 5.10. b ∈M [G0][G1][g2]

Proof. By Fact 5.4 and since 2κ = λ0 in M [G0][G1][g2], we have by Silver’s branch lemma
that forcing with S to getM [G0][g1×u1×g2] doesn’t add any branches. So b ∈M [G0][G1][g2].

6 Tree property at κ+n for n ≥ 3

The argument when n ≥ 3 is almost exactly the same as the argument in the Cummings-
Foreman paper [3]. Following their notation for this section, we let Vn := V [G0][G1] · · · [Gn]
and Mn := M [G0][G1] · · · [Gn]. The main difference between our forcing and the forcing
in Cummings-Foreman paper is the first factor Q0, and the main difference between our
argument from the previous section and their argument was Claim 5.7. When n ≥ 3,
though, we may immediately lift our embedding to j : Vn−3 → Mn−3 because crit(j) = λn
and |Rn| = λn−1. This avoids the need for Claim 5.7 because we no longer have pull a
branch from M [· · ·H0 · · · ] back to M [· · ·G0 · · · ], and so we no longer have to deal with the
generic objects h∗0 and u∗0.

7 Generalization of Sinapova’s Forcing

In this section and the following section we use the framework developed in [12] to argue
that the tree property holds at κ+. Much of the argument is the same, so we aim to
describe the relevant forcing, prove some relevant structural properties about that forcing,
and summarize how the argument in [12] is done in this particular circumstance. Recall
that A = Add(κ, λ0) and P0 = A ∗ İ. Consider the µ-closed forcing Q = U × P1, where
P1 = Add(µ, λ1)V and U are the conditions of the form (0, 0, q, f) ∈ Q0 with the induced
suborder from Q0. One of the main differences between [12] and our situation is that the
poset Q in [12] doesn’t include the poset P1.

Definition 7.1. Let ṗ be a name for a condition in İ. Define Rṗ to have underlying set
Q0 × P1 with the following (modified) ordering:

Declare that (f1, ṗ1, r1, g1, a1) ≤ṗ (f2, ṗ2, r2, g2, a2) exactly when
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1. a1 ≤P1 a2

2. (f1, ṗ1) ≤P0 (f2, ṗ2)

3. dom(r1) ⊇ dom(r2) and for every α ∈ dom(r2), we have that
(f1, ṗ) � α 
P0,α r1(α) ≤ r2(α)

4. dom(g1) ⊇ dom(g2) and for every α ∈ dom(g2), we have that
(f1, ṗ, r1, g1) � α 
Q0�α g1(α) ≤ g2(α).

Lemma 7.1. P0 ×Q projects to Rṗ, witnessed by the identity.

Proof. It is straightforward to see that the identity map is order preserving. To show the
other requirement, suppose that (f1, ṗ1, r1, g1, a1) ≤ṗ (f2, ṗ2, r2, g2, a2). We define r by
setting dom(r) = dom(r1) and define r(α) by mixing names so that


P0,α
r(α) ≤ r2(α) and (f1, ṗ) � α 
P0,α

r(α) = r1(α).

More specifically, we may let

r(α) = {〈σ, b〉 : b ≤ 〈f1, ṗ〉 � α and b 
P0,α σ ∈ r1(α)} ∪
{〈σ, b〉 : b ⊥〈f1, ṗ〉 � α and b 
P0,α σ ∈ r2(α)}.

Next, by induction, we define g(α) by induction so that

(0, 0, r, g) � α 
Q0�α g(α) ≤ g2(α) and (f1, ṗ, r, g) � α 
Q0�α g(α) = g1(α).

The construction during the induction step is the similar to the construction of r(α)
above. But then, by definition, we have as desired that

1. (f1, ṗ1, r, g, a1) ≤P0×Q (f2, ṗ2, r2, g2, a2) and

2. (f1, ṗ1, r, g, a1) ≤ṗ (f1, ṗ1, r1, g1, a1).

Lemma 7.2. Let s∗ = (0, ṗ, 0, 0, 0) ∈ Q0 × P1. Then Rṗ/s∗ = {s ∈ Rṗ| s ≤ṗ s∗} projects
to (Q0 × P1)/s∗ = {s ∈ Q0 × P1| s ≤Q0×P1

s∗} witnessed by the identity.

Proof. The proof is similar to the previous lemma. Since the last three coordinates of s∗ are
trivial, notice that s ≤ṗ s∗ iff s ≤Q0×P1

s∗. The identity is order preserving, so it’s enough
to check the nontrivial condition for projections:

Suppose (f1, ṗ1, r1, g1, a1) ≤Q0×P1
(f2, ṗ2, r2, g2, a2). Define r(α) and g(α) similar to the

previous lemma so that the following hold:

• 
P0,α
r(α) ≤ r2(α),

• (f1, ṗ1) � α 
P0,α r(α) = r1(α),

• (0, 0, r, g) � α 
Q0�α g(α) ≤ g2(α), and

• (f1, ṗ1, r, g) � α 
Q0�α g(α) = g1(α).

It follows as desired that
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1. (f1, ṗ1, r, g, a1) ≤ṗ (f2, ṗ2, r2, g2, a2) and

2. (f1, ṗ1, r, g, a1) ≤Q0×P1
(f1, ṗ1, r1, g1, a1).

Definition 7.2. Let A be A-generic over V . Let p = ṗA. Define Qp to have underlying set
Q with the ordering (0, 0, q1, f1, p1) ≤Qp (0, 0, q2, f2, p2) exactly when

1. p1 ≤P1
p2

2. dom(q1) ⊇ dom(q2) and dom(f1) ⊇ dom(f2)

3. there’s an a ∈ A such that for every α ∈ dom(q2) and for every α ∈ dom(f2), we have
that

(a) (a, ṗ) � α 
P0,α
q1(α) ≤ q2(α)

(b) (a, ṗ, q1, f1) � α 
Q0�α f1(α) ≤ f2(α)

Lemma 7.3. Qp is κ-closed

Proof. Assume that {(0, 0, qi, fi, pi) : i < θ} is decreasing for θ < κ. For each i < θ there’s
an ai ∈ A such that (3) holds in the above definition. Since A is κ-directed closed, it follows
that a =

⋃
i<θ ai ∈ A. Since P1 is µ-closed, we may let p be a lower bound of the pi’s. Next,

observe that for each α and each i < j < θ, we have (a, ṗ) � α 
P0,α
qj(α) ≤ qi(α). Since

the qi(α)’s are forced to be in a µ-closed forcing, it follows that there’s a name q(α) such
that (a, ṗ) � α 
P0,α

q(α) ≤ qi(α) for each i < θ. Finally, define f(α) by induction on α so

that (a, ṗ, q, f) � α 
Q0�α f(α) ≤ fi(α). This is possible since the fi(α)’s are forced to be
in a µ-closed forcing as well. Then, (0, 0, q, f , p) is a lower bound for the initial decreasing
sequence, as desired.

Lemma 7.4. Rp is isomorphic to A ∗ (İ× Q̇p)

Proof. In V [A], we argue that π : Rp/A → I×Qp defined by (f1, ṗ1, r1, g1, a1) 7→ (ṗA1 , r1, g1, a1)
is a dense embedding. Since π is onto, it is enough to show that π is order preserving and
that s⊥Rp/As

′ implies π(s)⊥I×Qpπ(s′).
Assume that (f1, ṗ1, r1, g1, a1) ≤Rp/A (f2, ṗ2, r2, g2, a2). Since (f1, ṗ1) ≤P0 (f2, ṗ2) and

f1 ∈ A, it follows that ṗA1 ≤I ṗ
A
2 . It follows in turn that (0, 0, r1, g1, a1) ≤Qp (0, 0, r2, g2, a2).

Next, assume that π(f1, ṗ1, r1, g1, a1) and π(f2, ṗ2, r2, g2, a2) were compatible in I × Qp.
Since π is onto, we may let π(f, q̇, r, g, a) witness this. Let a1 ∈ A witness that (0, 0, r, g, a) ≤Qp
(0, 0, r1, g1, a1) and a2 ∈ A witness that (0, 0, r, g, a) ≤Qp (0, 0, r2, g2, a2). Let a ∈ A be such
that a ≤ a1, a2. By further extending a, we may assume that a 
A q̇ ≤ ṗ1, ṗ2. Finally, Let
f ∈ A extend a, f1, and f2. It follows that (f, q̇, r, g, a) witnesses that (f1, ṗ1, r1, g1, a1) and
(f2, ṗ2, r2, g2, a2) are compatible in Rp/A. Therefore, π is a dense embedding.

7.1 h-splittings and †h
One of the main technical tasks in [12] is proving Proposition 3.4, which is crucial in defining
the branch in the forcing extension by the Mitchell poset. In this section we give the relevant
definitions and summarize the results necessary to prove this result.

Let G×g1 be Q0×P1-generic, A be A-generic induced from G×g1, and I be the I generic
induced over V [A] induced by G × g1. Further, let G∗ be (P0 × Q)/(G × g1)-generic. For
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every q ∈ I, let Gq be Rq̇/(G×g1)-generic induced by G∗. Also, let Q be Q generic induced
by G∗ and for p ∈ I, let Qp be Qp-generic over V [A] induced by G∗.

Let τ ∈ V [A] be an R/A-name for the tree, forced by the empty condition. Let Ṫ ∈
V [A][Q] be an I name for the tree, obtained from τ . This means that q 
I u <Ṫ v iff there’s
a ∈ A and r ∈ Qp such that (a, q̇, r) 
R/A u <τ v.

Let ḃ ∈ V [A] be a (P0 ×Q)/A-name for the branch given by Itay [11], where we assume
that

1 
V [A]
I×Q ḃ is a cofinal branch through τ.

The following are Definitions 3.3 and 3.4 in [12].

Definition 7.3. Let h be a stem. Say there’s an h-splitting at a node u if there is a p ∈ I
with stem(p) = h and r ∈ Q such that (p, r) 
V [A]

I×Q u ∈ ḃ and nodes u1, u2 of higher levels
and conditions r1, r2 such that for k = 1 or 2,

1. rk ≤Q r, rk ∈ Qp,

2. (p, rk) 
V [A]
I×Q uk ∈ ḃ, and

3. p 
V [A][Q]
I u1⊥Ṫu2

Definition 7.4. Let h be a stem. Say that †h holds, if in V [A][Q] there are unbounded
J ⊆ µ, ξ < κ, and (pα|α ∈ J), where each pα ∈ I is a condition with stem h, and setting
uα = (α, ξ) we have:

1. for all α < β from J , pα ∧ pβ 
I uα <Ṫ uβ ;

2. for all α ∈ J , pα 
I uα ∈ ḃ.

The key property involving †h is Propostion 3.4 in [12]:

Proposition 7.1. Let h be a stem such that †h holds; then αh < µ.

The proof of this key property amounts to proving the splitting lemma stated below. The
proof of this splitting lemma is exactly the same as in [12].

Lemma 7.5 (Splitting Lemma). Let h be a stem such that †h holds. Let r ≤Q r be such
that r ∈ Qq for some q with stem h. Then there are nodes (vi|i < κω) and conditions
((pi, ri)|i < κω) in I×Q such that:

1. for every i, stem(pi) = h, pi ≤ q, ri ≤Q r, ri ∈ Qpi

2. for every i, (pi, ri) 
I×Q vi ∈ ḃ and

3. for every i < j, pi ∧ pj 
I vi ⊥Ṫ vj .
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8 Tree property at κ+

In this section we finish Theorem 1.1 by proving the following:

Theorem 8.1. In V [Gω], the tree property holds at κ+.

Proof. Assume that T is a µ-tree in V [Gω]. Working in V R3 , the forcing Rω/R3 is λ0-closed
and so T ∈ V [G0][G1][G2]. Q2 is < λ0-distributive in V [G0][G1], and so T ∈ V [G0][G1]. It
follows that T ∈ V [G0][g1], where g1 is P1-generic over V [G1]. So, it is enough to show that
there’s no µ-Aronszajn tree in V [G0][g1]. Assume for the sake of contradiction that T is a
µ-Aronszajn tree in V [G0][g1].

By construction of Q0, we have that Q0 is the projection of P0×U, where U is µ-directed
closed in V . Since P1 is µ-directed closed in V , we also have that the product Q is µ-closed.
It follows by indestructibility of each κn that in V Q, P0 is Neeman’s forcing from [11]. Then,
if we let A×Q be P0×Q-generic, we have by [11] that µ has the tree property in V [A×Q].

We follow the final section of [12] to define a branch for T in V [G0][g1]. In particular, by
Proposition 7.1 we may define α = sup{αh| †h holds} < µ. Further, let u ∈ Tα and s∗ ∈ G∗
be such that s∗ 
(P0×Q)/A u ∈ ḃ. In V [G0][g1], define

d = {v| u <T v and there’s a s ∈ G0 × g1 such that s ≤P0×Q s
∗ and s 
(P0×Q)/A v ∈ ḃ}.

The same argument as [12] shows that d induces a branch through T in V [G0][g1]. This
contradicts that T is an Aronszajn tree and yields the result.

9 Adding collapses

The method for proving Theorem 1.1 in the previous sections involved modifying the
Cummings-Foreman forcing with a Prikry part in the first factor. Let V |= ZFC be the
ground model. To add collapses, we will use a slightly different method by first preparing
the ground model and then forcing with (roughly) the original Cummings-Foreman forcing
Rω. After forcing with this we will force with the Prikry poset. In particular, we force with
an iteration C of Levy collapses in V , so that for each n:

1. κn = κ+n and κn is generically supercompact, and

2. after forcing with Rω, we have normal measures Un on Pκ(κn), and “guiding generics”
Kn for Coll(κ+ω+3, < jUn(κ)) in the ultrapower of Rω by Un.

Note, the final model in this section is V [C∗Rω ∗(Prikry)]. For the remainder of this section,
V = V [C].

9.1 The forcing notion

We define the forcing Rω, but first we must modify (again) the first factor. Notice that the
difference between our new first factor and the forcing Q0 defined earlier in this paper is
that the first coordinate is now just the ordinary Cohen Forcing.

Definition 9.1. Working in V , let P = Add(κ, λ1) and let P � β = Add(κ, β) for β < λ1.
Define R1 by recursion on β ≤ λ1 and set R1 = R1 � λ1. Let R1 � 0 is the trivial forcing.
Otherwise, (p, q, f) is a condition in R1 � β when the following hold:
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1. p ∈ P � β,

2. q is a partial function on β and |dom(q)| < µ, and if α ∈ dom(q), then

(a) α is a successor ordinal,

(b) q(α) ∈ V P�α, and

(c) 
P�α q(α) ∈ Add(µ, 1)V P�α ,

3. f is a partial function on β and |dom(f)| < µ, and if α ∈ dom(f), then

(a) 
R1�α F0(α) is a canonically µ-directed closed forcing,

(b) α is a limit ordinal,

(c) f(α) ∈ V R�α, and

(d) 
R1�α f(α) ∈ F (α).

We also define the ordering (p1, q1, f2) ≤ (p2, q2, f2) when the following hold:

1. p1 ≤P�α p2,

2. dom(q2) ⊆ dom(q1) and if α ∈ dom(q2), then p1 � α 
P�α q1(α) ≤ q2(α),

3. dom(f2) ⊆ dom(f1) and if α ∈ dom(f2), then (p1, q1, f1) � α 
R1�α f1(α) ≤ f2(α).

Definition 9.2. We proceed in the same manner as [3].

1. Let R1 = Q0.

2. Let Ḟ1 be a Q0-name for a function on λ1 such that 
Q0
Ḟ1(α) = F1(α) when F1(α) is

a Q0-name and 
Q0
Ḟ1(α) = 0 otherwise. Then define Q̇1 to be the canonical name for

R(µ, λ1, V, V [Q0], F ∗1 ) where F ∗1 is the interpretation of Ḟ1 in V [Q0]. Let R2 = Q0∗Q̇1.

3. Similarly, for n ≥ 2, let Rn = Q0∗ . . .∗Q̇n−1 and let Ḟn be a Rn-name for a function on
λn such that 
Rn Ḟn(α) = Fn(α) when Fn(α) is a Rn-name and 
Rn Ḟn(α) = 0 oth-
erwise. Then define Q̇n to be the canonical name for R(λn−2, λn, V [Rn−1], V [Rn], F ∗n)
where F ∗n is the interpretation of Ḟn in V [Rn].

4. Finally, let Rω be the inverse limit of (Rn : n < ω).

By arguments similar to previous sections of this paper and in [3], we have the following:

Lemma 9.1. After forcing with Rω, the following is true:

1. λ1 = λ+0 = 2κ,

2. 2µ = λ1,

3. for each n, κn is preserved,

4. for each n, λn+2 = λ+n+1 = 2λn , and

5. for each n, λn has the tree property.

Lemma 9.2. Let C be C-generic and G be Rω-generic. There is a λ0-supercompactness
embedding j : V [C ∗G]→M with crit(j) = κ so that, for each α < j(κ), there is a function
f : κ→ κ such that j(f)(κ) = α.
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Proof. C∗G is generic for a κ-directed closed forcing, so κ is still indescructibly supercompact
in V [C ∗ G]. Let σ : V [C][G] → M [C∗][G∗] be some λ0-supercompactness embedding. Let
σV be the restriction of σ to V . The plan is to create a new generic object G∗∗ by making a
small number of changes to G∗ and then argue that we can lift σV to the desired elementary
embedding j[C ∗G]→M [C∗][G∗∗].

In V [C ∗G], fix an enumeration (ui : i < λ1 \ λ0) of σV (κ). Define the set G∗∗ to be the
set of all conditions r ∈ σ(Rω) such that if r(0) = (p, q, f), then there is a r′ ∈ G∗ such that

• r(n) = r′(n) for each n > 0,

• r′(0) = (p0, q, f) where

1. dom(p0) = dom(p), and

2. p0 � dom(p0) = p � dom(p) \ (σV “λ1 × {κ})

• for all i < λ1, if (σV (i), κ) ∈ dom(p) then p(σV (i), κ) = ui.

Claim 9.1. G∗∗ is generic over M [C∗].

Proof. Intuitively, all that is happening is that we take each element of G∗ and modify only
the Cohen part of the first coordinates. So, showing that G∗∗ is generic amounts to arguing
that the modified Cohen part of the first coordinate is still generic. This follows because
the changes that we are making are sufficiently small. A similar argument is found either
Lemma 2.1 in [11] or in Section 4.1 of [4].

Finally, observe that if r ∈ G and r(0) = (p, q, f), then dom(σV (p)) ⊆ σV “λ1 × κ. It
follows that σV “G ⊆ G∗∗, so we may lift σV to the embedding j : V [C ∗ G] → M . By
construction, if fα is the α-th subset added by the Cohen part of G, then j(fα)(κ) = uα.
This yields the final part of the lemma.

Fix j obtained from the previous lemma. Working in V [G] we define the following for
n < ω:

1. Un is the supercompactness embedding on Pκ(κ+n) derived from j,

2. jn : V [G]→ Ult(V [G], Un) ∼= Mn, and

3. kn is the factor map defined by jn(f)(jn“κ+n)) 7→ j(f)(j“κ) so that j = kn ◦ jn.

The arguments in [6], which are also sketched in [13], give the following:

1. The critical point of kn is greater than j(κ).

Proof. The additional property of j given by Lemma 9.2 implies that j(κ) + 1 ⊆
ran(kn).

2. In V [G], there is a generic K for Coll(κ+ω+3, < j(κ))M [j(G)] over M [j(G)].

Proof. This poset has κ+ω+3 antichains in M [j(G)] and is κ+ω+3 closed.

3. There is a generic Kn for Coll(κ+ω+3, < jn(κ))Mn
over Mn.
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Proof. Let Kn = k−1n [K] ∩ Coll(κ+ω+3, < jn(κ))Mn . Observe that antichain A in
Coll(κ+ω+3, < jn(κ))Mn have size less than jn(κ). This implies that kn(A) = kn“A.

Definition 9.3. Now, we define the diagonal Gitik-Sharon Prikry forcing Pr with inter-
leaved collapses in the same way as [13]. For i < ω, letXi = {x ∈ Pκ(κ+i) : κx is inaccessible, ot(x) =
κ+ix }. Conditions of Pr have the form r = (d, x0, c0, . . . , xn−1, cn−1, An, Cn, . . .) where

1. for i < n, xi ∈ Xi, and for i ≥ n, Ai ∈ Ui, and Ai ⊆ Xi.

2. for i < n− 1, xi ≺ xi+1 and ci ∈ Coll(κ+ω+3
xi , < κxi+1) and cn−1 ∈ Coll(κ+ω+3

xi , < κ).

3. if n > 0, then d ∈ Coll(ω, κ+ωx0
), otherwise d ∈ Coll(ω, κ).

4. for i ≥ n, [Cn]Un ∈ Kn.

The ordering of Pr is the usual one.

Theorem 9.1. The usual arguments give the following:

1. Forcing with Pr makes (κ+n)V [G] have cofinality ω for each n.

2. Pr has the κ+ω+1-chain condition.

3. Pr has the Prikry property.

4. If P is Pr-generic, then in V [G ∗ P ], we have the following cardinal structure:

(a) κ = ℵω2

(b) (κ+ω+1)V [G∗P ] = ℵω2+1

(c) (κ+ω+n)V [G∗P ] = ℵω2+n = λn−2 for each n ≥ 2,

(d) 2ℵω2 = ℵω2+3.

Lemma 9.3. Rω is projected onto by a forcing P×Q which is (κ+-Knaster)×(µ-closed).

Proof. Observe that Rω is the projection of the product forcing Q0×T (Q̇1 ∗Q̇2 ∗· · · ), where
T (−) is the term forcing. The forcing Q0 is projected onto by a forcing P × C which is
(κ+-Knaster)×(µ-closed). Since the forcing C× T (Q̇1 ∗ Q̇2 ∗ · · · ) is µ-closed, we obtain our
result.

Lemma 9.4. For each n, let Rn = Q0∗Q1∗· · ·Qn−1. Then, in V Rn , Rω/Rn is the projection
of a forcing P×Q which is (λn−1-Knaster)×(λn−1-closed).

Proof. Observe that Rω may be factored as Rn ∗ Q̇n ∗ (Q̇n+1 ∗ · · · ). Working in V Rn , we
have that Rω/Rn which is the projection of the product forcing Qn × T (Q̇n+1 ∗ · · · ), where
T (−) is the term forcing. The forcing Qn is the projection of a forcing P×C which is (λn−1-
Knaster)×(λn−1-closed). Since the forcing C× T (Q̇n+1 ∗ · · · ) is λn−1-closed, we obtain our
result. 3

Our final goal is to prove that the tree property holds at µ and at each λn. We start with
the tree property at µ, as it is more concrete.

3Here we use the notation that µ = λ−1.
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Theorem 9.2. In V [G][P ], we have that the tree property holds at µ.

Proof. The argument follows Section 3 in [13]. The main points are the following: we take a
Pr-name Ṫ ∈ V [G] ⊆ V [Knaster×Closed] for a µ-tree and as in [11] we find a branch for T
in V [Knaster×Closed][P ]. Then we use the Splitting Branch Lemmas in Section 3 of [13] to
pull this branch back to V [G][P ]. The main apparent difference between [13] and this paper
is that here we are using Rω instead of the Mitchell forcing. The argument still goes through
because in both cases they are the projection of forcings which are Knaster× Closed.

To get the tree property at each λn, we use the following abstract formulation of an
argument from [5].

Theorem 9.3. Let V ′ |= ZFC. Assume κ = κ0 is supercompact in V ′, (κn : n < ω) is an
increasing sequence of regular cardinals with µ = (supκn)+ < λ, where λ = λn for some
n. Let R be a forcing, and G′ be R-generic over V ′. Let j : V ′ → N be an elementary
embedding with crit(j) = λ, and assume j ⊆ j : V ′[G′] → N∗ in V ′[G′][K × A] where K is
λn−1-Knaster and A is λn−1-closed. In V ′[G′] suppose that Pr is the diagonal Gitik-Sharon
Prikry forcing with collapses, with respect to κ and the κn’s. Then, V ′[G′][Pr] |= TPλ.

Proof. This is the same argument as Theorem 3.1 in [5], as these are the structural properties
needed in order to carry out the argument in that paper.

Theorem 9.4. Let G∗Ṗ be generic for Rω ∗Ṗ r over V . Then, in V [G][P ], the tree property
holds at λn for each n ≥ 0.

Proof. We will use the preceding two theorems. It’s enough to argue that we satisfy the hy-
pothesis of Theorem 9.3, which amounts to arguing that we can lift elementary embeddings
in certain ways. Assume that n ≥ 0 and assume j : V → M is an elementary embedding
with crit(j) = λn. Let Gω be Rω-generic, Gn be Rn-generic, and P be Pr-generic in V [G].
Since |Rn| = λn−1, we may lift this embedding to j : V [Gn] → M [Gn]. Elementarity im-
plies that j(Rω)/Rn is a projection of a forcing which is (λn−1-Knaster)×(λn−1-closed).
Since j(Rω)/Rn projects onto Rω/Rn, we may lift the embedding j : V [Gn] → M [Gn] to
j : V [G] → M [j(G)] in V [G][A × K] where K is the λn−1-closed and A is λn−1-Knaster.
This is exactly what we wanted.

We close with some open problems. This paper makes progress towards the broader goal
of getting the tree property everywhere. A natural (and ambitious) extension of this paper
is to combine the above with the tree property at all regulars below the singular strong limit
κ. Going in the other direction, is it possible to have a singular strong limit κ with the tree
property holding simultaneously at an ω1 sequence above κ? Is it also natural to ask if we
can add collapses to get these two results with κ = ℵω2 . To summarize:

1. Is it consistent modulo large cardinals to have a singular strong limit κ where the tree
property holds at all regular cardinals below κ and at κ+n for each n ≥ 1? Is this
possible when κ = ℵω2?

2. Is it consistent modulo large cardinals to have a singular strong limit κ with the
tree property holds simultaneously at an ω1 sequence above κ? Is this possible when
κ = ℵω2?
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