HOMEWORK 2

You may work on the problem set in groups; however, the final write-up must be yours and reflect your own understanding. In all these exercises assume that k is an algebraically closed field and R is a commutative ring with unit.

Problem 0.1. Consider the following five closed affine sets in \mathbb{A}^{2}. Give a thorough discussion of which among them are isomorphic.
(1) $X_{1}=\left\{(x, y) \in \mathbb{A}^{2} \mid x=y\right\}$
(2) $X_{2}=\left\{(x, y) \in \mathbb{A}^{2} \mid x=y^{17}\right\}$
(3) $X_{3}=\left\{(x, y) \in \mathbb{A}^{2} \mid x^{2}=y^{2}\right\}$
(4) $X_{4}=\left\{(x, y) \in \mathbb{A}^{2} \mid x^{2}=y^{3}\right\}$

Problem 0.2. Prove the following statements:
(1) If X is an affine variety, then any non-empty Zariski open subset U of X is dense in X.
(2) If X is an affine variety, then any non-empty Zariski open subset U of X is irreducible.
(3) Let $f: X \rightarrow Y$ be a regular, surjective map of closed affine sets. If X is irreducible, then Y is irreducible.

Problem 0.3. Show that any two ordered sets of $n+2$ points in general position in \mathbb{P}^{n} are projectively equivalent. Show that two sets of four points in \mathbb{P}^{1} are projectively equivalent if and only if their crossratios are equal. Harder: Characterize when $n+3$ points in general linear position in \mathbb{P}^{n} are projectively equivalent.

Problem 0.4. Let Γ be a set of points in \mathbb{P}^{n} of cardinality d. Show that Γ can be expressed as the zero locus of polynomials of degree at most d. Show that if all the points in Γ do not lie on a line, then in fact Γ can be expressed as the zero locus of polynomials of degree $d-1$ or less.

Problem 0.5. (1) Show that the Segre image of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ is a quadric hypersurface in \mathbb{P}^{3}.
(2) Let L, M and N be three pairwise skew lines in \mathbb{P}^{3}. Show that union of all the lines in \mathbb{P}^{3} intersecting L, M and N is isomorphic to the Segre image of $\mathbb{P}^{1} \times \mathbb{P}^{1}$.
(3) How many lines in \mathbb{P}^{3} intersect the four lines $L_{1}=\left(z_{1}=z_{2}=0\right), L_{2}=\left(z_{3}=z_{4}=0\right)$, $L_{3}=\left(z_{1}=z_{2}, z_{3}=z_{4}\right)$ and $L_{4}=\left(z_{1}+2 z_{2}=z_{3}+z_{4}, z_{1}+2 z_{4}=z_{2}+z_{3}\right)$?
Problem 0.6. Recall that the twisted cubic curve C is the image of the map $\nu: \mathbb{P}^{1} \rightarrow \mathbb{P}^{3}$ given by $\left(x_{0}: x_{1}\right) \mapsto\left(x_{0}^{3}: x_{0}^{2} x_{1}: x_{0} x_{1}^{2}: x_{1}^{3}\right)$
(1) Show that the homogeneous ideal is generated by $Q_{1}: z_{0} z_{2}=z_{1}^{2}, Q_{2}: z_{1} z_{3}=z_{2}^{2}, Q_{3}: z_{0} z_{3}=z_{1} z_{2}$.
(2) Show that an alternative way to describe the twisted cubic is as the rank one locus of the matrix $\left(\begin{array}{lll}z_{0} & z_{1} & z_{2} \\ z_{1} & z_{2} & z_{3}\end{array}\right)$
(3) Show that $Q_{i} \cap Q_{j}$ for $i \neq j$ is C union a line.

