HOMEWORK 6

You may work on the problem set in groups; however, the final write-up must be yours and reflect your own understanding. In all these exercises assume that k is an algebraically closed field and R is a commutative ring with unit.

Problem 0.1. Calculate the Hilbert polynomial of a linear space of dimension k in \mathbb{P}^{n}.
Problem 0.2. Calculate the Hilbert function of the rational normal curve of degree d given by

$$
\left[x_{0}, x_{1}\right] \rightarrow\left[x_{0}^{d}, x_{0}^{d-1} x_{1}, \ldots, x_{1}^{d}\right]
$$

by noting that the homogeneous polynomials of degree m in the coordinates of \mathbb{P}^{d} pull-back to give all homogeneous polynomials of degree $m d$ in two variables. More generally, using the same observation show that the Hilbert function of the d-th Veronese image of \mathbb{P}^{n} is given by

$$
h(m)=p(m)=\binom{m d+n}{n} .
$$

Problem 0.3. Calculate the Hilbert polynomial of a hypersurface of degree d in \mathbb{P}^{n}.
Problem 0.4. Calculate the Hilbert polynomial of a pair of skew lines in \mathbb{P}^{3}. Calculate the Hilbert polynomial of a pair of intersecting lines in \mathbb{P}^{3}.

Problem 0.5. Calculate the Hilbert polynomial of three concurrent lines in \mathbb{P}^{3} that do not lie in a plane. Calculate the Hilbert polynomial of three concurrent lines in \mathbb{P}^{3} that do lie in a plane. Are these closed algebraic sets isomorphic?

