HOMEWORK 7

This problem set is due Friday November 6. You may work on the problem set in groups; however, the final write-up must be yours and reflect your own understanding. In this problem set assume that all the varieties are defined over the complex numbers.

Problem 0.1. Show that the projective tangent space to the Veronese variety $v_d(\mathbb{P}^n)$ in $\mathbb{P}^{\binom{n+d}{d}-1}$ at a point L^d may be described as the set of polynomials of degree d divisible by L^{d-1} . Conclude that the Veronese varieties are smooth.

Problem 0.2. Let X be a smooth curve in \mathbb{P}^2 . A line l is called a flex line to X if it has contact of order three at a point $x \in X$. Find the flex lines to the curve $x^3 + y^3 + z^3 = 0$ (hint: there are nine of them). How many of these flex lines are defined over the real numbers? Challenge: Show that a smooth, irreducible curve over the complex numbers has finitely many flex lines.

Problem 0.3. Let $X = v_2(\mathbb{P}^2) \subset \mathbb{P}^5$ be the Veronese surface in \mathbb{P}^5 given by

 $(x_0, x_1, x_2) \mapsto (x_0^2, x_1^2, x_2^2, x_0 x_1, x_0 x_2, x_1 x_2).$

Consider the projection of X from the point (0,0,0,0,0,1) to \mathbb{P}^5 given by

 $(x_0, x_1, x_2) \mapsto (x_0^2, x_1^2, x_2^2, x_0 x_1, x_0 x_2).$

Is the image of this projection normal? (Remark: Zariski's Main Theorem asserts that if $f: X \to Y$ is a regular and birational map between projective varieties and Y is normal, then the fibers $f^{-1}(y)$ of f are connected. What is the relevance to this exercise?)

Problem 0.4. Prove that if $n \ge 3$, then the quadric cone $x_1^2 + \cdots + x_n^2$ in \mathbb{A}^n is normal.

Problem 0.5. A projective variety $X \subset \mathbb{P}^n$ is called projectively normal if its homogeneous coordinate ring S(Y) is integrally closed. Show that if Y is projectively normal, then Y is normal. Show that the converse does not in general hold by considering the quartic curve C given as the image of

$$(t,u) \mapsto (t^4, t^3u, tu^3, u^4)$$

in \mathbb{P}^3 . Show that C is normal, but not projectively normal.