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Abstract. In this paper, we introduce new, combinatorially defined subvarieties of isotropic Grassmannians called

symplectic restriction varieties. We study their geometric properties and compute their cohomology classes. In
particular, we give a positive, combinatorial, geometric branching rule for computing the map in cohomology

induced by the inclusion i : SG(k, n)→ G(k, n). This rule has many applications in algebraic geometry, symplectic
geometry, combinatorics, and representation theory. In the final section of the paper, we discuss the rigidity of

Schubert classes in the cohomology of SG(k, n). Symplectic restriction varieties, in certain instances, give explicit

deformations of Schubert varieties, thereby showing that the corresponding classes are not rigid.
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1. Introduction

Specialization has been a fruitful technique since the beginning of enumerative geometry. Enumerative
geometry studies the problem of determining the number of geometric objects (such as curves or linear
spaces) satisfying constraints (such as being incident to general linear spaces). Determining these invari-
ants is often very hard. However, if the constraints are in a special position, the problem may become
easier. The specialization technique consists of finding a special configuration of constraints for which
the answer to the enumerative problem becomes evident and then relating the original problem to this
simpler problem.

In the last three decades, Joe Harris has been a master at using specialization to answer long standing
problems of algebraic geometry. For example, Griffiths and Harris in their celebrated paper [GH1],
using an ingenious specialization, proved the Brill-Noether Theorem by showing that Schubert cycles,
which parameterize linear spaces that intersect general secant lines of a rational normal curve, intersect
dimensionally properly. Later, Eisenbud and Harris, by specializing to a g-cuspidal rational curve, gave a
simple proof of the Gieseker-Petri Theorem [EH1], [EH2]. More importantly, they developed the theory
of limit linear series to systematically study limits of linear systems under certain specializations [EH3].
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The theory led to rapid advances in Brill-Noether theory and our understanding of the moduli space of
curves [EH4]. In a parallel development, Griffiths and Harris used specializations to give a new proof
of the Noether-Lefschetz Theorem independent of Hodge theory [GH2]. Harris also effectively used
specialization to study the geometry of the Severi varieties of nodal plane curves of degree d and genus
g. He proved their irreducibility [H] and, in joint work with Caporaso, computed their degrees [CH].

Inspired by Griffiths and Harris’ proof of the Brill-Noether Theorem, in the last decade, Vakil and
the author have used similar specializations to systematically compute the structure constants of the
cohomology of Grassmannians and flag varieties [V], [C3], [C5], [CV]. Specializations have also been
successfully applied to study the cohomology of other homogeneous varieties. For example, the author
has computed the restriction coefficients and proved geometric branching rules for Type B and D flag
varieties [C2]. Given the prominent role that the specialization technique has played in the work of
Joe Harris and his students, it seems fitting to include a paper calculating enumerative invariants by
specialization in a volume celebrating Joe Harris and his work.

The purpose of this paper is to compute the restriction coefficients and prove geometric branching rules
for Type C Grassmannians using specializations. The extension to Type C flag varieties is straightforward,
but in order to keep the exposition in this paper short, we postpone the discussion to the companion
paper [C4].

Let V be an n-dimensional vector space over the complex numbers C. Let Q be a non-degenerate
skew-symmetric form on V . Since Q is non-degenerate, n must be even, say n = 2m. A linear space
W ⊂ V is called isotropic with respect to Q if for every w1, w2 ∈ W , wT1 Qw2 = 0. The symplectic
isotropic Grassmannian SG(k, n) parameterizes k-dimensional subspaces of V that are isotropic with
respect to Q.

The isotropic Grassmannian SG(k, n) naturally includes in the Grassmannian G(k, n). This inclusion
i induces a map on cohomology

i∗ : H∗(G(k, n),Z)→ H∗(SG(k, n),Z).

The cohomology groups of both G(k, n) and SG(k, n) have integral bases given by Schubert classes.
Given a Schubert class σκ in H∗(G(k, n),Z), i∗σκ can be expressed as a non-negative linear combination

i∗σκ =
∑
λ,µ

cκλ;µσλ;µ

of the Schubert classes σλ;µ in H∗(SG(k, n),Z). The coefficients cκλ;µ are called symplectic restriction or
branching coefficients. These coefficients carry a lot of geometric, combinatorial and representation theo-
retic information. For example, they are closely related to computing moment polytopes and restrictions
of representations of SL(n) to Sp(n) (see [BS], [C2], [GS], [He], and [P]). The main technical theorem of
this paper gives a positive, geometric rule for computing restriction coefficients.

Theorem 1.1. Algorithm 3.29 gives a positive, geometric rule for computing the symplectic restriction
coefficients.

More importantly, we will introduce a new set of varieties called symplectic restriction varieties. These
varieties parameterize isotropic subspaces that satisfy rank conditions with respect to a not-necessarily
isotropic flag. In Section 4, we will specify the conditions that these flags need to satisfy and carefully
define these varieties. The reader may informally think of these varieties as varieties that interpolate
between the restrictions of general Schubert varieties in G(k, n) to SG(k, n) and Schubert varieties in
SG(k, n).

The proof of Theorem 1.1 will proceed by a specialization. We will specialize the flag defining a Schubert
variety in G(k, n) successively until we arrive at an isotropic flag. We will show that at each stage of
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the specialization, the corresponding restriction varieties break into a union of restriction varieties, each
occurring with multiplicity one. In Section 3, we will develop combinatorial objects called symplectic
diagrams to record the result of these specializations.

In earlier work, Pragacz gave a positive rule for computing restriction coefficients for Lagrangian
Grassmannians [Pr1], [Pr2]. It is also possible to compute restriction coefficients (in a non-positive way)
by first computing the pullbacks of the tautological bundles from G(k, n) to SG(k, n) and then using
localization or the theory of Schubert polynomials to express the Chern classes of these bundles in terms
of Schubert classes. To the best of the author’s knowledge, Algorithm 3.29 is the first positive, geometric
rule for computing the restriction coefficients for all isotropic Grassmannians SG(k, n).

While the combinatorics of symplectic restriction coefficients can be very complicated, the beauty of
the approach is that the computation depends on four very simple geometric principles. We now explain
these principles. Let Qrd denote a d-dimensional vector space such that the restriction of Q has corank
r. Let Ker(Qrd) denote the kernel of the restriction of Q to Qrd. Let Lj denote an isotropic subspace of
dimension j with respect to Q. Let L⊥j denote the set of w ∈ V such that wTQv = 0 for all v ∈ Lj .
Evenness of rank. The rank of a non-degenerate skew-symmetric form is even. Hence, d − r is even
for Qrd. Furthermore, if d = r, then Qrd is isotropic.

The corank bound. Let Qr1d1 ⊂ Qr2d2 and let r′2 = dim(Ker(Qr2d2) ∩ Qr1d1). Then r1 − r′2 ≤ d2 − d1. In
particular, d+ r ≤ n for Qrd.

The linear space bound. The dimension of an isotropic subspace of Qrd is bounded above by bd+r
2 c.

Furthermore, an m-dimensional linear space L satisfies dim(L ∩Ker(Qrd)) ≥ m− b
d−r

2 c.
The kernel bound. Let L be an (s+ 1)-dimensional isotropic space such that dim(L ∩Ker(Qrd)) = s.
If an isotropic linear subspace M of Qrd intersects L−Ker(Qrd), then M is contained in L⊥.

These four principles dictate the order of the specialization and determine the limits that occur.
Given a flag, we will specialize the smallest dimensional non-isotropic subspace Qrd, whose corank can be
increased subject to the corank bound, keeping all other flag elements unchanged. We will replace Qrd
with Q̃r+2

d . The branching rule simply says that under this specialization, the limit L′ of a linear space
L satisfying rank conditions with respect to the original flag satisfies the same rank conditions with the
unchanged flag elements and either dim(L′ ∩Ker(Q̃r+2

d )) = dim(L∩Ker(Qrd)) or dim(L′ ∩Ker(Q̃r+2
d )) =

dim(L ∩ Ker(Qrd)) + 1. Furthermore, both of these cases occur with multiplicity one unless the latter
leads to a smaller dimensional variety or the former violates the linear space bound. See Sections 3 and
5 for an explicit statement of the rule and for examples.

The organization of this paper is as follows. In Section 2, we will recall basic facts concerning the
geometry of isotropic Grassmannians. In Section 3, we will introduce the algorithm in combinatorial
terms without reference to geometry. In Section 4, we will define symplectic restriction varieties and
explain the combinatorics in geometric terms. In Section 5, we will describe the specialization and prove
that the combinatorial game introduced in Section 3 computes the restriction coefficients. In the last
section, we will give an application of symplectic restriction varieties to questions of rigidity.

Acknowledgements: The germs of the ideas in this paper date back to my conversations with Joe
Harris while I was in graduate school. I would like to thank him for his guidance and unfailing support.

2. Preliminaries

In this section, we recall basic facts concerning the geometry of isotropic Grassmannians.

Let n = 2m be a positive, even integer. Let V be an n-dimensional vector space over C. Let Q be a
non-degenerate, skew-symmetric form on V . By Darboux’s Theorem, we can choose a basis for V such
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that in this basis Q is expressed as
∑m

i=1 xi ∧ yi. A subspace W of V is called isotropic if wTQv = 0 for
any two vectors v, w ∈ W . The dimension of an isotropic subspace of V is at most m. Given a vector
space W , the orthogonal complement W⊥ of W is defined as the set of v ∈ V such that vTQw = 0 for
every w ∈W . If the dimension of W is k, then the dimension of W⊥ is n− k and the restriction of Q to
W⊥ has rank n− 2k (or, equivalently, corank k).

The Grassmannian SG(k, n) parameterizing k-dimensional isotropic subspaces of V is a homogeneous
variety for the symplectic group Sp(n). The Grassmannian SG(m,n) parameterizing maximal isotropic
subspaces has dimension

dim(SG(m,n)) =
m(m+ 1)

2
.

This can be seen inductively. The dimension of SG(1, 2) ∼= P1 is one since every vector is isotropic with
respect to Q. Consider the incidence correspondence

I = {(w,W ) | w ∈ P(W ) and [W ] ∈ SG(m,n)}

parameterizing a pair of a maximal isotropic subspace W and a point w of P(W ). The first projection
of the incidence correspondence I maps to P(V ) with fibers isomorphic to SG(m − 1, n − 2). The
second projection maps the incidence correspondence to SG(m,n) with fibers isomorphic to P(W ). By
the Theorem on the Dimension of Fibers [S, I.6.7] and induction, we conclude that the dimension of
SG(m,n) is m(m+1)

2 .

The dimension of the isotropic Grassmannian SG(k, n) is

dimSG(k, n) =
m(m+ 1)

2
+

(m− k)(3k −m− 1)
2

= nk − 3k2 − k
2

.

To see this, consider the incidence correspondence

I = {(W1,W2) | W1 ∈ SG(k, n),W2 ∈ SG(m,n),W1 ⊂W2}

parameterizing two-step flags consisting of a k-dimensional isotropic space contained in a maximal
isotropic space. Since every k-dimensional isotropic space can be completed to a maximal isotropic
space, the first projection is onto SG(k, n). The fibers of the first projection are isomorphic to the
isotropic Grassmannian SG(m− k, n− 2k). The second projection is onto SG(m,n) with fibers isomor-
phic to G(k,m). The Theorem on the Dimension of Fibers [S, I.6.7] and the previous paragraph imply
the claim.

More generally, we will need to study spaces parameterizing k-dimensional linear spaces isotropic with
respect to a degenerate skew form Qrn of corank r on an n-dimensional vector space. Naturally, n−r needs
to be even. Since the restriction of Qrn to a linear space complementary to its kernel is non-degenerate,
we conclude that the largest dimensional isotropic subspace has dimension r + n−r

2 . Set h = n−r
2 . Then

the space of (r + h)-dimensional isotropic linear spaces with respect to Qrn is isomorphic to SG(h, 2h)
and has dimension h(h+1)

2 . Considering the incidence correspondence

I = {(W1,W2) | W1 ⊂W2 isotropic with respect to Qrn, dim(W1) = k,dim(W2) = h+ r},

we see that the space of k-dimensional isotropic subspaces of Qrn has dimension h(h+1)
2 + k(h+ r − k) if

k ≥ h and h(h+1)
2 + k(h+ r − k)− (h−k)(h−k+1)

2 if k < h.

By Ehresmann’s Theorem [E] (see [Bo, IV.14.12]), the cohomology of SG(k, n) is generated by the
classes of Schubert varieties. Let 0 ≤ s ≤ k be a non-negative integer. Let λ• : 0 < λ1 < λ2 < · · · < λs ≤
m be a sequence of increasing positive integers. Let µ• : m > µs+1 > µs+2 > · · · > µk ≥ 0 be a sequence
of decreasing non-negative integers such that λi 6= µj + 1 for any 1 ≤ i ≤ s and s < j ≤ k. Then the
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Schubert varieties in SG(k, n) may be indexed by pairs of admissible sequences (λ•;µ•). Fix an isotropic
flag

F• = F1 ⊂ F2 ⊂ · · ·Fm ⊂ F⊥m−1 ⊂ · · ·F⊥1 ⊂ V.
The Schubert variety Σλ•;µ•(F•) is defined as the Zariski closure of the set of linear spaces

{W ∈ SG(k, n) | dim(W ∩ Fλi) = i for 1 ≤ i ≤ s, dim(W ∩ F⊥µj ) = j for s < j ≤ k}.

In the literature, it is customary to denote Schubert classes in the cohomology of SG(m,n) by strictly
decreasing partitions m ≥ a1 > a2 > · · · > as > 0 of length s ≤ m. In our notation, the sequence a•
translates to the sequence λ• by setting ai = m + 1 − λi. Note that when n = 2m, the sequence λ•
determines the sequence µ• by the requirement that λi 6= µj + 1 for any 1 ≤ i ≤ s and s < j ≤ m.
Therefore, it is common to omit the sequence µ• from the notation. We will not follow this convention.
In Schubert calculus, many authors prefer to record Schubert classes so that the codimension will be
easily accessible. Our notation has the advantage that it is preserved under natural maps between
Grassmannians arising from linear embeddings between ambient vector spaces.

We will index Schubert classes in the cohomology of the Grassmannian G(k, n) by increasing sequences
of non-negative integers a• : 0 < a1 < a2 < · · · < ak ≤ n. The Schubert variety Σa•(F•) with respect to
a flag F• parameterizes k-dimensional subspaces W of V that satisfy dim(W ∩ Fai) ≥ i for 1 ≤ i ≤ k.

3. A combinatorial game

In this section, we will introduce a combinatorial game that computes the symplectic restriction coeffi-
cients. The purpose of this section is to explain the mechanics of the rule without reference to geometry.
In the next two sections, we will interpret the game in geometric terms and prove that it computes the
symplectic restriction coefficients. The geometrically minded reader may wish to look ahead at the next
two sections.

Notation 3.1. Let 0 ≤ s ≤ k be an integer. A sequence of n natural numbers of type s for SG(k, n) is
a sequence of n natural numbers such that every number is less than or equal to k − s. We write the
sequence from left to right with a small gap to the right of each number in the sequence. We refer to
the gap after the i-th number in the sequence as the i-th position. For example, 1 1 2 0 0 0 0 0 and
3 0 0 2 0 1 0 0 are two sequences of 8 natural numbers of types 1 and 0, respectively, for SG(3, 8).

Definition 3.2. Let 0 ≤ s ≤ k be an integer. A sequence of brackets and braces of type s for SG(k, n)
consists of a sequence of n natural numbers of type s, s brackets ] ordered from left to right and k − s
braces } ordered from right to left such that:

(1) Every bracket or brace occupies a position and each position is occupied by at most one bracket
or brace.

(2) Every bracket is to the left of every brace.
(3) Every positive integer greater than or equal to i is to the left of the i-th brace.
(4) The total number of integers equal to zero or greater than i to the left of the i-th brace is even.

Example 3.3. 11]200}0}00 and 300}20}10}0 are typical examples of sequences of brackets and braces for
SG(3, 8) that have the two examples from Notation 3.1 as their sequences of natural numbers. When
writing a sequence of brackets and braces, we often omit the gaps not occupied by a bracket or a brace.

Example 3.4. Let us give several non-examples to clarify Definition 3.2. The first condition disallows
diagrams such as ]0000} (the first bracket is not in a position), 0]]000, 000}}0, 00]}00 (two brackets, two
braces, or a bracket and a brace occupy the same position, respectively). The second condition disallows
diagrams such as 00}0]000 (a brace cannot be to the left of a bracket). The third condition disallows
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diagrams such as 100}30}20}0 (3 is to the right of the third brace and 2 is to the right of the second
brace). The fourth condition disallows diagrams such as 1]2000}0}00 (the number of zeros to the left of
the second brace, and the number of zeros and twos to the left of the first brace are odd).

Notation 3.5. By convention, the brackets are indexed from left to right and the braces are indexed from
right to left. We write ]i and }i to denote the i-th bracket and i-th brace, respectively. Their positions
are denoted by p(]i) and p(}i). The position of a bracket or a brace is equal to the number of integers to
its left. For notational convenience, we declare that, in a sequence of brackets and braces of type s for
SG(k, n), the brace }k−s+1 denotes ]s and an integer in the sequence equal to k− s+ 1 should be read as
0. Let l(i) denote the number of integers in the sequence that are equal to i. Let ri be the total number
of positive integers less than or equal to i that are to the left of }i. For 0 < j < i, let ρ(i, j) = p(}j)−p(}i)
and let ρ(i, 0) = n − p(}i). Equivalently, ρ(i, 0) (respectively, ρ(i, j)) denotes the number of integers to
the right of the i-th brace (respectively, to the right of the i-th brace and to the left of the j-th brace).

Example 3.6. For the sequence of brackets and braces 300}20}10}0 for SG(3, 8), the positions are p(}3) =
3, p(}2) = 5, p(}1) = 7. We have ri = l(i) = 1, for 1 ≤ i ≤ 3, ρ(i, i− 1) = 2, for 2 ≤ i ≤ 3, and ρ(1, 0) = 1.

Example 3.7. For the sequence of brackets and braces 1]22]00}00}0 for SG(4, 8), the positions are p(]1) =
1, p(]2) = 3, p(}2) = 5, p(}1) = 7. We have r1 = l(1) = 1, l(2) = 2, and r2 = 3. Moreover, ρ(2, 1) = 2 and
ρ(1, 0) = 1.

Definition 3.8. Two sequences of brackets and braces are equivalent if the lengths of their sequence of
numbers are equal, the brackets and braces occur at the same positions, and the collection of digits that
occur between any consecutive brackets and/or braces are the same up to reordering.

Example 3.9. The sequences 1221]00200}000}00, 1122]20000}000}00 and 003}02}01}0, 300}20}10}0 are
equivalent pairs of sequences. We can depict an equivalence class of sequences by the representative where
the digits are listed so that between any two consecutive brackets and/or braces the positive integers
precede the zeros and are listed in non-decreasing order. We will always use this canonical representative
and often blur the distinction between the equivalence class and this representative.

Definition 3.10. A sequence of brackets and braces is in order if the sequence of numbers consists of a
sequence of non-decreasing positive integers followed by zeros except possibly for one i immediately to
the right of }i+1 for 1 ≤ i < k− s. Otherwise, we say that the sequence is not in order. A sequence is in
perfect order if the sequence of numbers consists of non-decreasing positive integers followed by zeros.

Example 3.11. The sequences 300}20}10}000, 11]22]00}00}00, 1]33]0000}200}0}0 are in order. Further-
more, 11]22]00}00}00 is in perfect order. The sequences 11]00]100}000, 1]20000}1}0}00, 122]100}00}00
are not in order.

Definition 3.12. A sequence of brackets and braces is saturated if l(i) = ρ(i, i− 1) for 1 ≤ i ≤ k − s.

Example 3.13. The sequences 11]22]00}00}00 and 1]22]100}00}00 are saturated, whereas, 22]00}00}00
and 1]0000}00}000 are not.

The next definition is a technical definition that plays a role in the proof and is a consequence of the
order in which the game is played. The reader can define a symplectic diagram as a sequence of brackets
and braces that occurs in the game and refer to the conditions only when necessary.

Definition 3.14. A symplectic diagram for SG(k, n) is a sequence of brackets and braces of type s for
SG(k, n) for some 0 ≤ s ≤ k such that:

(S1) l(i) ≤ ρ(i, i− 1) for 1 ≤ i ≤ k − s.
6



(S2) Let τi be the sum of p(]s) and the number of positive integers between ]s and }i. Then

2τi ≤ p(}i) + ri.

(S3) Either the sequence is in order or there exists at most one integer 1 ≤ η ≤ k − s such that the
sequence of integers is non-decreasing followed by a sequence of zeros except for at most one
occurrence of η between ]s and }η+1 and at most one occurrence of i < η after }i+1.

(S4) Let ξj denote the number of positive integers between }j and }j−1. If an integer i occurs to
the left of all the zeros, then either i = 1 and there is a bracket in the position following it,
or there exists at most one index j0 such that ρ(j, j − 1) = l(j) for j0 6= j > min(i, η) and
ρ(j0, j0 − 1) ≤ l(j0) + 2− ξj0 . Moreover, any integer η violating order occurs to the right of }j0 .

Remark 3.15. Conditions (S1) and (S2) are necessary to guarantee that symplectic diagrams represent
geometrically meaningful objects. Conditions (S3) and (S4) are consequences of the order the game is
played and describe the most complicated possible diagrams that can occur. The reader can ignore these
conditions. They are necessary to carry out the dimension counts and to prove that the algorithm is
defined at each step. They are not needed in order to run the algorithm.

Example 3.16. Let us give some examples to clarify Definition 3.14. Condition (S1) allows for dia-
grams such as 11]22]2]00}000}00 but disallows 22]3300}2}00}000 (there are two 3’s and three 2’s in
the sequence but ρ(2, 3) = 1 and ρ(1, 2) = 2). Condition (S2) disallows diagrams such as 000]10}0
(r1 = 1, τ1 = 4, but 2 · 4 > 5 + 1). Condition (S3) allows for 2344]300}00}00}10}0 (a non-decreasing
sequence of positive integers 2344 followed by a sequence consisting of one 3, one 1 and zeros), but
disallows 22]110000}2200}0000}00 (there are two 1s and two 2s following the non-decreasing sequence
22) or 22]133]00}00}00}0 (there are two 3s following the non-decreasing sequence 22). Condition (S4)
allows for diagrams such as 11]3300}00}1}000, 1]1]33]00}00}00}00, however, it disallows diagrams such
as 144]00}00}00}00}0 (1 occurs in the initial non-decreasing part of the sequence, but 2 and 3 do not
occur. 1 is not followed by a bracket and l(3) = 0 6= ρ(3, 2) = 2, l(2) = 0 6= ρ(2, 1) = 2).

The next definition is crucial for the game and the reader should remember these conditions.

Definition 3.17. A symplectic diagram is called admissible if it satisfies the following additional conditions.

(A1) The two integers to the left of a bracket are equal. If there is only one integer to the left of a
bracket and s < k, then the integer is one.

(A2) Let xi be the number of brackets ]h such that every integer to the left of ]h is positive and less
than or equal to i. Then

xi ≥ k − i+ 1− p(}i)− ri
2

.

Example 3.18. Condition (A1) disallows diagrams such as 11]23]00}00}00}00 (the digits preceding the
second bracket are not equal), 2]200}00}00 (there is a bracket in position 1, but the first digit is not 1).
Condition (A2) is hard to visualize without resorting to counting. Let p be the position of the rightmost
bracket such that every digit to the left of p is positive and less than or equal to i. In words, condition
(A2) says that the total number of zeros and integers greater than i in the sequence is at least twice the
number of brackets and braces in positions p+ 1 through p(}i). The following diagrams violate condition
(A2): 22}00}00 (x2 = 0, p(}2) = r2 = 2, but 0 < 1), 200}2}00} (the number of braces up to p(}2) = 4 is
2; the number of zeros is 2, but 2 < 2 · 2), 11]33]00}00}1}000 (the total number of brackets and braces
between positions 3 and 9 = p(}1) is 4. The number of zeros and integers greater than 1 is 6, but 2·4 > 6).

Remark 3.19. The admissible symplectic diagrams are the main combinatorial objects in this paper.
They represent symplectic restriction varieties, which are the main geometric objects of the paper and
will be defined in the next section. The symplectic diagram records a non-necessarily isotropic flag.
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The corresponding symplectic restriction variety parameterizes isotropic spaces that satisfy certain rank
conditions with respect to this flag. The definition of an admissible symplectic diagram reflects the basic
facts about isotropic subspaces discussed in the introduction, as we will see in the next section.

Definition 3.20. The symplectic diagram D(σλ;µ) associated to the Schubert class σλ;µ in SG(k, n) is the
saturated symplectic diagram in perfect order, where the brackets occur at positions λ1, . . . , λs and the
braces occur at positions n− µs+1, · · · , n− µk.

Example 3.21. The symplectic diagram associated to σ2,4;4,2 in SG(4, 10) is 11]22]00}00}00.

Lemma 3.22. The diagram D(σλ;µ) is an admissible symplectic diagram.

Proof. Let n = 2m. Since 0 < λ1 < · · · < λs ≤ m < n − µs+1 < · · · < n − µk, the brackets and braces
occur in different positions and the brackets are to the left of the braces. Since the sequence is saturated
and in perfect order, the number of integers in the sequence equal to i is µk−i+1 − µk−i+2 ≤ µs+1 < m
(with the convention that µk+1 = 0), for 1 ≤ i ≤ k− s and occur to the left of }k−s. Finally, the number
of integers equal to zero or greater than or equal to i to the left of }i is n − 2µk−i+1 = 2(m − µk−i+1).
Therefore, D(σλ;µ) satisfies all 4 conditions in Definition 3.2.

By definition, D(σλ;µ) is saturated, so l(i) = ρ(i, i − 1) and conditions (S1) and (S4) hold. Since the
diagram is in perfect order, (S3) holds and τi = max(λs, µs+1) ≤ m. On the other hand, p(}i) + ri =
n− µk−i+1 + µk−i+1 = n = 2m ≥ 2τi. Therefore, D(σλ;µ) satisfies all the conditions in Definition 3.14.

Finally, since λj 6= µi+1 for any i, j, the two integers preceding a bracket must be equal. Furthermore,
if λ1 = 1, µ1 ≥ 1. Hence, condition (A1) holds. For 1 ≤ i ≤ k − s, k − i + 1 − (p(}i) − ri)/2 =
k− i+ 1 +µk−i+1−m. From the sequence 0, 1, . . . ,m−1, remove the integers λ1−1, λ2−1, . . . , λs−1 to
obtain a sequence αm < αm−1 < · · · < αs+1. By assumption µk−i+1 = αj for some j ≥ k − i+ 1. Hence,
k − i + 1 + µk−i+1 −m ≤ αj − (m − j) = xi. To see the last equality, observe that xi is the number of
integers λh that are less than or equal to µk−i+1 = αj . This number is equal to the number of integers
(αj − (m − j)) between 0 and αj that do not occur in the sequence αm, . . . , αj . Hence, condition (A2)
holds. We conclude that D(σλ;µ) is an admissible symplectic diagram. �

The game is defined on admissible symplectic diagrams. We will see in the next section that saturated
admissible diagrams in perfect order represent Schubert varieties in SG(k, n). The goal of the algorithm
is to transform every admissible symplectic diagram to a collection of saturated admissible diagrams in
perfect order. Given an admissible symplectic diagram D, we will associate to it one or two sequences
Da and/or Db of brackets and braces. Initially, neither Da nor Db has to be admissible. We will shortly
describe an algorithm that modifies Da and Db so that they become admissible. The game records a
degeneration of the flag elements represented by D.

Definition 3.23. Let D be an admissible symplectic diagram of type s for SG(k, n). For the purposes of
this definition, read any mention of k − s+ 1 as 0 and any mention of }k−s+1 as ]s.
(1) If D is not in order, let η be the integer in condition (S3) violating the order.

(i) If every integer η < i ≤ k − s occurs to the left of η, let ν be the leftmost integer equal to
η + 1 in the sequence of D. Let Da be the canonical representative of the diagram obtained by
interchanging η and ν.

(ii) If an integer η < i ≤ k − s does not occur to the left of η, let ν be the leftmost integer equal to
i + 1. Let Da be the canonical representative of the diagram obtained by swapping η with the
leftmost 0 to the right of }i+1 not equal to ν and changing ν to i.

(2) If D is in order but is not a saturated admissible diagram in perfect order, let κ be the largest index
for which l(i) < ρ(i, i− 1).
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(i) If l(κ) < ρ(κ, κ − 1) − 1, let ν be the leftmost digit equal to κ + 1. Let Da be the canonical
representative of the diagram obtained by changing ν and the leftmost 0 to the right of }k+1 not
equal to ν to κ.

(ii) If l(κ) = ρ(κ, κ− 1)− 1, let η be the integer equal to κ− 1 immediately to the right of }κ.
(a) If κ occurs to the left of η, let ν be the leftmost integer equal to κ in the sequence of D. Let

Da be the canonical representative of the diagram obtained by changing ν to κ− 1 and η to
zero.

(b) If κ does not occur to the left of η, let ν be the leftmost integer equal to κ + 1. Let Da be
the canonical representative of the diagram obtained by swapping η with the leftmost 0 to
the right of }κ+1 not equal to ν and changing ν to κ.

Let p be the position in D immediately to the right of ν. If there exists a bracket at a position p′ > p
in Da, let q > p be the minimal position occupied by a bracket in Da. Let Db be the diagram obtained
from Da by moving the bracket at position q to position p. Otherwise, Db is not defined.

Example 3.24. Let D = 2300}10}0}0, then η = 1 violates the order and ν = 2 and 3 occur to the left of
it. Hence, we are in case (1)(i) and Da = 1300}20}0}0 is obtained by swapping 1 and 2. Similarly, let
D = 200]200}00}, then the second 2 violates the order and Da = 220]000}00}, Db = 22]0000}00}.

Let D = 124400}00}1}0}00, the 1 in the ninth place violates the order and 3 does not occur to its left,
so we are in case (1)(ii) and Da = 123400}10}0}0}00.

Let D = 22]00}00}00, then D is in order and κ = 1. Since l(1) = 0 < ρ(1, 0)− 1, we are in case (2)(i)
and Da = 12]00}10}00 and Db = 1]200}10}00.

Let D = 3300}200}0}, then D is in order and κ = 3. Since l(3) = 2 = ρ(3, 2) − 1, we are in case
(2)(ii)(a) and Da = 2300}000}0}.

Finally, let D = 330000}00}1}0, then D is in order and κ = 2. Since l(2) = 0 = ρ(2, 1)− 1 and 2 does
not occur in the sequence, we are in case (2)(ii)(b) and Da = 230000}10}0}0.

We will soon check that both Da and Db are symplectic diagrams; however, they do not have to be
admissible. We now describe algorithms for turning them into admissible diagrams.

Algorithm 3.25. If Da is not an admissible symplectic diagram, perform the following steps to turn it
into an admissible diagram.

Step 1. If Da does not satisfy condition (A2), let i be the maximal index for which condition (A2) fails.
Define a new diagram Dc as follows. Let the two rightmost integers equal to i in Da be in the places
π1 < π2. Delete }i and move the i in place π2 to place π1 + 1. Slide the integers in places π1 < π < π2

and brackets and braces in positions π1 < p < π2 one to the right. Add a bracket at position π1 + 1.
Subtract one from the integers i < h ≤ k − s; and if i = k − s, change the integers equal to k − s to 0.
Let Dc be the resulting diagram and replace Da with Dc. If Da satisfies condition (A2), proceed to the
next step.

Step 2. If Da fails condition (A1), let ]j be the smallest index bracket for which it fails and let i be the
integer preceding ]j . Change this i to i− 1 and move }i−1 one position to the left. Repeat this procedure
until the sequence of brackets and braces satisfies condition (A1). Let the resulting sequence be Dc. In
both steps, we refer to Dc as a quadric diagram derived from Da.

Algorithm 3.26. If Db does not satisfy condition (A1), run Step 2 of Algorithm 3.25 on Db. Explicitly,
let ]j be the minimal index bracket for which (A1) fails. Let i be the integer immediately to the left of ]j .
Replace i with i − 1 and move }i−1 one position to the left. As long as the resulting sequence does not
satisfy condition (A1), repeat this process either until the resulting sequence is an admissible symplectic
diagram (in which case, this is the symplectic diagram derived from Db) or two braces occupy the same
position. In the latter case, no admissible symplectic diagrams are derived from Db.
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Example 3.27 (Examples of Algorithm 3.25). Let D = 22]33]00}00}00}00. Then the diagram Da =
12]33]00}00}10}00 fails condition (A2) since x1 = 0 < 1 = 5− (10− 2)/2. Hence, according to Step 1 of
Algorithm 3.25, we replace Da with 11]1]22]00}00}000 (delete }1, move the 1 in position 9 to position 2
and slide everything in positions 2-8 one position to the right, add a bracket in position 2, and subtract
1 from the integers greater than 1). The latter is an admissible diagram.

Let D = 00}00}00. Then Da = 22}00}00 fails condition (A2) since x2 = 0 < 1 − (2 − 2)/2. Hence,
Step 1 of Algorithm 3.25 replaces Da with 00]00}00 (delete }2 and add a bracket in position 2), which is
admissible.

Similarly, if D = 11]33]00}00}00}00, then the diagram Da = 11]23]00}20}00}00 fails condition (A2)
since x2 = 1 < 2. Hence, according to Step 1 of Algorithm 3.25, we replace Da with 11]22]2]00}000}00,
which is admissible.

If D = 22]2]200}0000}00, then the diagram Da = 12]2]200}1000}00 is not admissible since it fails
condition (A1) for ]1. Step 2 of Algorithm 3.25 replaces Da first with 11]2]200}100}000 (change the 2
preceding ]1 to 1 and move }1 one position to the right). Note that this diagram fails condition (A1)
for ]2. Hence, Step 2 replaces it with 11]1]200}10}0000 (change the 2 preceding ]2 to 1 and move }1 one
position to the left). This diagram is admissible, hence it is the diagram derived from Da.

Example 3.28 (Examples of Algorithm 3.26). Let D = 11]33]00}00}00}00, then Db = 11]2]300}20}00}00
fails condition (A1). Algorithm 3.26 replaces it with 11]1]300}20}0}000, which is admissible.

Let D = 00]0000}00}00}, then Db = 3]30000}00}00} does not satisfy condition (A1) since the digit to
the left of ]1 has to be 1. Algorithm 3.26 replaces Db first with 2]30000}0}000}, which still fails condition
(A1). Hence, Algorithm 3.26 replaces this diagram with 1]30000}0}00}0, which is admissible.

If D = 00]0000}2}0}, then Da = 30]2000}0}0} and Db = 3]20000}0}0}. They both fail condition (A1).
When we run Algorithm 3.26 on Db, we turn the 3 into 2 and slide }2 one position to the left. In that
case, we obtain 1]30000}}00}. Since two braces occupy the same position, no diagrams are derived from
Db in this case. When we run Algorithm 3.25 on Da, we obtain the admissible diagram 33]200}00}0}.

Let D be an admissible symplectic diagram and let ν be as in Definition 3.23. Let π(ν) denote the
place of ν in the sequence of integers. If p(]s) > π(ν), then ]xν−1+1 is the first bracket to the right of
ν. If the integer to the immediate left of ]xν−1+1 is positive, let yxν−1+1 be this integer. Otherwise, let
yxν−1+1 = k−s+1. The condition p(]xν−1+1)−π(ν)−1 = yxν−1+1−ν plays an important role. In words,
this condition says that the number of values larger than ν or equal to zero that the integers to the left of
]xν−1+1 attain is one more than the cardinality of the set of integers consisting of zero and integers larger
than ν occurring to the left of ]xν−1+1. In view of conditions (S3), (S4) and (A1), a sequence satisfying
this equality looks like

· · · ν ν + 1 · · · ν + l − 1 ν + l ν + l] · · · or · · · ν ν + 1 · · · ν + l 00] · · · ,
where we have drawn the part of the sequence starting with the left most ν and ending with ]xν−1+1. We
are now ready to state the algorithm.

Algorithm 3.29. Let D be an admissible symplectic diagram of type s for SG(k, n). If D is saturated and
in perfect order, return D and stop. Otherwise, let Da and Db be defined as in Definition 3.23.

(1) If p(]s) ≤ π(ν) or p(]xν−1+1)− π(ν)− 1 > yxν−1+1− ν in D, then return the admissible symplectic
diagrams that are derived from Da.

(2) Otherwise, return the admissible symplectic diagrams that are derived from both Da and Db.

We run the algorithm on two symplectic diagrams.
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Example 3.30.
00}00}00→ 00]00}00→ 00]0]000

↓
1]100}00

In this example, first Da = 22}00}00 is not admissible since the diagram fails condition (A2). Therefore,
we replace it by 00]00}00. Next, Da = 10]10}00 and Db = 1]100}00. Da is not admissible since it does
not satisfy condition (A2). Hence, we replace it by the admissible diagram 00]0]000. Db is admissible.
Note that the last two diagrams are saturated and in perfect order, so the algorithm terminates. We will
soon see that this calculation shows i∗σ2,4 = σ2,3; + σ1;2 in SG(2, 6).

Finally, we give a larger example in SG(3, 10) that illustrates the inductive structure of the game.

Example 3.31.

300}20}10}000→ 200}00}10}000→ 200]00}10}000→ 1]0000}00}000

↓ ↓
100]00}00}000 1]2200}00}000
↙ ↘ ↓

100]0]000}000 11]200}0}0000 1]1200}10}000
↙ ↘ ↓ ↓

000]0]0]00000 11]00]100}000 11]11]00}0000 1]1100}00}000
↙ ↘ ↓

11]1]0000}000 11]11]00}0000 1]1100]00}000

We will see that this calculation shows i∗σ3,5,7 = σ3,4,5; + σ2,3;3 + 2σ2,4;4 + σ1,5;3 in H∗(SG(3, 10),Z).

Definition 3.32. A degeneration path is a sequence of admissible symplectic diagrams

D1 → D2 → · · · → Dr

such that Di+1 is one of the outcomes of running Algorithm 3.29 on Di for 1 ≤ i < r.

The main theorem of this paper is the following.

Theorem 3.33. Let D be an admissible symplectic diagram for SG(k, n). Let V (D) be the symplectic
restriction variety associated to D. Then, in terms of the Schubert basis of SG(k, n), the cohomology
class [V (D)] can be expressed as

[V (D)] =
∑

cλ;µσλ;µ,

where cλ;µ is the number of degeneration paths starting with D and ending with the symplectic diagram
D(σλ;µ).

Theorem 1.1 stated in the introduction is a corollary of Theorem 3.33.

Definition 3.34. Let σa• be a Schubert class in G(k, n). If aj < 2j− 1 for some 1 ≤ j ≤ k, then i∗σa• = 0
and we do not associate a symplectic diagram to σa• . Suppose that aj ≥ 2j − 1 for 1 ≤ j ≤ k. Let u be
the number of i such that ai = 2i− 1. For j such that aj 6= 2j− 1, let uj be the number of integers i < j
such that ai = 2i − 1. Let vj be the number of integers i > j such that ai = 2i − 1. Then the diagram
D(a•) associated to i∗σa• is a diagram consisting of u brackets at positions 1, 2 · · · , u and a brace for each
aj > 2j − 1 at position aj − uj + vj . The sequence of integers consists of u integers equal to 1 followed
by zeros except for one integer equal to k− j − vj + 1 immediately following the first bracket or brace to
the right of }k−j−vj+1 (or in the first position if j + vj = 1) for each odd aj > 2j − 1.
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Example 3.35. The diagram D(σ3,5,7) in SG(3, 8) is 300}20}10}0. The diagram D(σ1,3,6,7,10) in SG(5, 10)
is 1]1]1]00}00}000. The diagram D(σ1,3,7,8,9,12) in SG(6, 14) is 1]1]1]300}0}00}00000

Remark 3.36. The reader will notice that D(σa•) is the diagram obtained by running Algorithm 3.25 on
the diagram that has a brace at positions aj and whose sequence consists of zeros except for one k− j+1
immediately to the right of }k−j+2 when aj is odd.

Lemma 3.37. If aj ≥ 2j − 1 for 1 ≤ j ≤ k, then D(a•) is an admissible symplectic diagram.

Proof. The brackets occur at positions 1, . . . , u. Let aj and aj+l be two consecutive integers in the
sequence a• satisfying ai > 2i − 1. Then the positions of the corresponding braces are aj − uj + vj and
aj+l − uj+l + vj+l. Since uj+l = uj + l− 1 and vj+l = vj − l+ 1, the positions of the two braces differ by
the quantity β = aj+l−aj−2l+2. If l = 1, β > 0. If l > 1, then aj < aj+1 = 2j+1. Since aj+l ≥ 2j+2l,
β is also positive. The first brace corresponds to the smallest index j0 such that aj0 > 2j0− 1 and occurs
at position aj0 − (j0 − 1) + (u− j0 + 1) = u+ aj0 − 2j0 + 2 ≥ u+ 2. The number of positive integers less
than or equal to k− j− vj + 1 to the left of }k−j−vj+1 is u (respectively, u+ 1) if aj is even (respectively,
odd). Hence, the number aj − uj + vj − u(−1) = aj − 2uj(−1) (where −1 occurs if aj is odd) of integers
equal to zero or greater k − j − vj + 1 to the left of }k−j−vj+1 is even. Therefore, conditions (1)-(4) of
Definition 3.2 hold.

By construction, l(i) ≤ 1 for i > 1 and l(1) = u(+1) depending on whether the largest aj > 2j − 1
is even (or odd). In either case, one easily sees that l(1) ≤ ρ(1, 0). The number of positive integers
to the left of }k−j−vj+1 is equal to u plus the number oj of odd al < aj such that al > 2l − 1. Since
2(uj + oj) ≤ 2j ≤ aj , we have that 2(u+ oj) ≤ aj − uj + vj + u = aj + 2vj and condition (S2) holds. The
sequence is in order and the only integers other than k − u occurring in the initial part of the sequence
are ones, which are followed by brackets. We conclude that all the conditions in Definition 3.14 hold.

Since any bracket is preceded by 1, condition (A1) holds. Finally, for }k−j−vj+1, the quantity j + vj −
aj−uj+vj−u(−1)

2 = j + u− aj(−1)
2 ≤ u (where −1 occurs if aj is odd) since aj > 2j − 1. We conclude that

D(a•) is an admissible symplectic diagram. �

The precise formulation of Theorem 1.1 is given by the following corollary.

Corollary 3.38. Let σa• be a Schubert class in G(k, n). If aj < 2j − 1 for some 1 ≤ j ≤ k, then set
i∗σa• = 0. Otherwise, let D(σa•) be the diagram associated to σa•. Express

i∗σa• =
∑

cλ;µσλ;µ

in terms of the Schubert basis of SG(k, n). Then cλ;µ is the number of degeneration paths starting with
D(σa•) and ending with the symplectic diagram D(σλ;µ).

Proof. In Lemma 4.20, we will prove that the intersection of a general Schubert variety with class σa•
with SG(k, n) is a restriction variety of the form V (D(σa•)). The corollary is immediate from this lemma
and Theorem 3.33. �

We conclude this section by proving that Algorithm 3.29 is well-defined and terminates. The proof of
Theorem 3.33 is geometric and will be taken up in the next two sections.

Proposition 3.39. Algorithm 3.29 replaces an admissible symplectic diagram with one or two admissible
symplectic diagrams.

Proof. If D is a saturated symplectic diagram in perfect order, then the algorithm returns D and there is
nothing further to check. We will first check that Da and Db are (not necessarily admissible) symplectic
diagrams. The diagram Db is obtained from Da by moving a bracket to the left. Conditions (2), (3), (4)
of Definition 3.2 and conditions (S1), (S2), (S3) and (S4) of Definition 3.14 are preserved under moving
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a bracket to the left. Since ν 6= 1 is the leftmost integer in D equal to a given integer, by condition (A1)
for D, there cannot be a bracket at position p in D or Da. Hence, condition (1) is satisfied for Db. We
conclude that if Da is a symplectic diagram, then Db is also a symplectic diagram. We will now check
that Da is a symplectic diagram in each case.

In case (1)(i), by condition (S3) for D, let η be the unique integer that violates the order. Since η is
violating the order, η is to the left of }η+1. Da is obtained by swapping η and ν, the leftmost integer
equal to η + 1. This operation does not change the positions of the brackets and braces and keeps l(i)
fixed for every i. After the swap, every integer i is still to the left of }i for every i since η was to the
left of }η+1. Furthermore, the operation also preserves or decreases τi for every i. We thus conclude that
conditions (1) through (4) of Definition 3.2 and condition (S1), (S2) and (S4) of Definition 3.14 hold
for the diagram Da. After the swap, η is part of the non-decreasing initial sequence in Da. Hence, the
diagram Da is either in order or η + 1 is the only integer violating the order. Condition (S3) holds for
Da. We conclude that Da is a symplectic diagram.

In case (1)(ii), let η be the unique integer that violates the order. Assume that η < i ≤ k − s does
not occur to the left of η. Then i does not occur anywhere in the sequence and, in condition (S4) for D,
i = j0. We claim that the i-th and (i−1)-st braces in D must look like · · · }iη}i−1 · · · . By conditions (S3)
and (S4) for D, η is to the right of }i and to the left of }η+1. If η is between }i+h and }i+h−1 for h 6= −1,
then since ρ(i+h, i+h−1) = l(i+h) by condition (S4), the parity in condition (4) is violated for }i+h−1.
We conclude that η is between }i and }i−1. Furthermore, 1 ≤ ρ(i, i− 1) ≤ l(i) + 2− ξi = 1 by condition
(S4). The formation of Da does not affect conditions (1) through (3) in Definition 3.2. Condition (4)
holds for Da since the formation of Da changes the number of integers that are equal to zero or greater
than j to the right of }j only when j = i and for }i it changes the number by two. Since the formation
of Da only increases l(i) by one and decreases or preserves l(j) for j 6= i, Da satisfies (S1). Similarly, τi
increases by one and all other τj remain fixed or decrease. On the other hand, ri increases by two, hence
Da satisfies condition (S2). There is one exception. If i = k − s and every integer to the left of ]s is
positive, τk−s increases by two. Then, τk−s = rk−s, hence 2τk−s ≤ p(}k−s) + rk−s and Da satisfies (S2).
The diagram Da is either in order or η is still the only integer violating the order, hence Da satisfies (S3).
Finally, the formation of Da changes l(i) = 1 and decreases l(i+ 1) by one. Hence, l(i) = ρ(i, i− 1) for
Da. By condition (S4) for D, we have that ρ(j, j − 1) = l(j) in Da for any j for which the equality held
for D except for j = i+ 1. Furthermore, ξi+1 = 1 in Da, so ρ(i+ 1, i) = l(i+ 1) + 1 = l(i+ 1) + 2− ξi+1

in Da. Hence (S4) holds for Da. We conclude that Da is a symplectic diagram.

From now on assume that D is in order. Then there cannot be i ≥ κ such that i is immediately
to the right of }i+1. Suppose there exists such an i. The number χ(i) and χ(i + 1) of zeros and
integers greater than i, respectively i + 1, to the left of }i, respectively }i+1, has to be even. However,
χ(i) = χ(i + 1) + l(i + 1) + ρ(i + 1, i) − 1. Since by assumption ρ(i + 1, i) = l(i + 1), we conclude that
either χ(i) or χ(i+ 1) cannot be even leading to a contradiction.

In case (2)(i), changing ν to κ and the first zero to the right of }κ+1 does not change the positions of
brackets and braces, it decreases l(κ + 1) by one and increases l(κ) by two. Furthermore, the sequence
Da is still in order, unless κ = k − s and there are zeros to the left of ]s. In the latter case, the κ to
the right of ]s is the unique integer violating order. Since by assumption l(κ) < ρ(κ, κ − 1) − 1 in D,
l(κ) ≤ ρ(κ, κ− 1) in Da. The parity of the integers equal to zero or greater than i also remains constant
for all 1 ≤ i ≤ k − s. We conclude that conditions (1) through (4) in Definition 3.2 and conditions (S1)
and (S3) in Definition 3.14 hold for Da. The quantity τi remains constant for i > κ and increases by
one for i ≤ κ unless κ = k − s, l(k − s) ≥ p(]s) and τk−s increases by two. In the latter case, τk−s is
less than or equal to both rk−s and p(}k−s) and (S2) holds. In the former case, rκ increases by two,
hence (S2) holds for the index κ. Since ρ(κ, κ − 1) < l(κ) − 1, (S2) also holds for indices i < κ. If
there exists an index i < κ in D such that i is not a 1 followed by a bracket, then in condition (S4) for
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D, we have that j0 = κ. Furthermore, ρ(κ, κ − 1) = l(κ) + 2. Hence, the formation of Da preserves
the equalities in condition (S4) except for j = κ or κ + 1. In Da, we have that ρ(κ, κ − 1) = l(κ) and
ρ(κ+ 1, κ) = l(κ+ 1) + 1 = l(κ+ 1) + 2− ξκ+1. We conclude that condition (S4) holds for Da. Therefore,
Da is a symplectic diagram.

Finally, the argument showing that Da is a symplectic diagram in case (2)(ii)(a) is identical to the
argument in case (1)(i) and the argument in case (2)(ii)(b) is identical to the case (1)(ii), so we leave
them for the reader. We conclude that both Da and Db are symplectic diagrams. However, they need
not be admissible. We now check that Algorithms 3.25 and 3.26 preserve the fact that the resulting
sequences are symplectic diagrams and output admissible symplectic diagrams.

Da may fail to be admissible either because it fails condition (A1) or (A2) in Definition 3.17. The
formation of Da from D does not change the quantities xh, p(}h). In cases (1)(i) and (2)(ii)(a) the
quantity rh either remains the same or decreases. Hence, in these cases Da satisfies condition (A2). In
case (1)(ii), rh remains the same or decreases except for ri, which increases by two. Hence, the inequality
in condition (A2) can only be violated for the index i by one. If it is violated, we conclude that in D, we
have xi = k− i+ 1− p(}i)−ri

2 . Recall that in this case D looks like · · · }iη}i−1 · · · . Since i does not appear
in D, xi = xi−1. Writing the inequality in (A2) for D and the index i− 1 and noting that ri−1 = ri + 1
and p(}i−1) = p(}i) + 1, we see that xi = xi−1 ≥ k − i + 2 − p(}i)−ri

2 = xi + 1. Since D satisfies (A2),
this is a contradiction. We conclude that Da satisfies (A2) also in the case (1)(ii). By similar reasoning,
in cases (2)(i) and (2)(ii)(b), Da can violate the inequality in (A2) only for the index κ by one. After
Step 1 of Algorithm 3.25, all the inequalities in condition (A2) remain unchanged or improve and }κ is
eliminated. We conclude that after Step 1, the resulting diagram satisfies (A2). When the inequality in
(A2) is violated for Da, it is violated for the index κ by at most 1. When we form Db in cases (2)(i) and
(2)(ii)(b), xκ also increases by one. Hence, Db, when it exists, always satisfies (A2).

Observe that the operation in Step 1 of Algorithm 3.25 preserves the fact that Da is a symplectic
diagram. By construction, conditions (1)-(4) and (S1) and (S2) hold. The diagram resulting after Step 1
is in order, hence (S3) holds. The operation renames l(i) as l(i−1) for i > κ+1 and ρ(i+1, i) as ρ(i, i−1)
for i > κ+ 1. The operation does not change the quantities l(i) and ρ(i, i− 1) when i < κ and replaces
l(κ) and l(κ + 1) with their sum under the name l(κ). The quantities ρ(κ, κ − 1) and ρ(κ + 1, κ) are
replaced by ρ(κ, κ− 1) + ρ(κ+ 1, κ)− 1 and renamed ρ(κ, κ− 1). Hence, the equalities in condition (S4)
are preserved. Since (A1) also holds for the resulting diagram Dc, we conclude that if Da fails condition
(A2), then Step 1 of Algorithm 3.25 produces an admissible symplectic diagram.

Observe that changing a digit to the left of a bracket and moving a brace one unit to the left, increases
xi and ri by one and decreases p(}i) by one. Hence, it preserves the inequality in condition (A2). It also
preserves the conditions (1) through (4) and (S1) through (S4), with the possible exception of (1) in case
p(}i+1) = p(}i) − 1. Condition (A1) is violated for Da when there is a bracket in position p(ν) + 1 and
it is violated only for that bracket. After l applications of Step 2 of Algorithm 3.25, Condition (A1) is
still violated if there exists brackets at positions p(ν) + 1, p(ν) + 2, · · · , p(ν) + l. Since there are a finite
number of brackets, this process stops and the resulting diagram satisfies condition (A1). In this case,
the only brace that moves is }ν−1. Since l(ν) ≤ ρ(ν, ν − 1) in D, the intermediate sequences and the
resulting sequence all satisfy condition (1). If Db does not satisfy condition (A1), then the only bracket
that can violate it is the one in position p(ν). In this case, Algorithm 3.26 successively decreases the
integer to the right of the bracket in p(ν) by one until it either becomes equal to the integer to its right or
to one in case there isn’t an integer to its right. Hence, this algorithm terminates in finitely many steps.
A diagram might violate condition (1) in the process, but in that case the diagram is discarded. Hence,
after finitely many steps either the diagram is discarded or results in an admissible symplectic diagram.
We conclude that Algorithm 3.29, replaces D with one or two admissible symplectic diagrams. �
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Proposition 3.40. After finitely many applications of Algorithm 3.29, every admissible symplectic dia-
gram is transformed to a collection of admissible symplectic diagrams in perfect order.

Proof. If the diagram D is not in order, after one application of the algorithm either the diagram is in
order or the integer violating the order increases or the position of the integer violating the order in the
sequence decreases. Since these steps cannot go on indefinitely, after finitely many steps, the diagram is
in order. Furthermore, during the process either the number of braces decreases or the number of positive
integers less than or equal to i, for 1 ≤ i ≤ k − s in the initial part of the sequence remains constant
or increases. If the diagram is in order, then at each application of the algorithm either the number of
braces decreases or the number of positive integers less than or equal to i, for 1 ≤ i ≤ k − s, in the
initial part of the sequence increases. Since these cannot go on indefinitely, we conclude that repeated
applications of the algorithm transform an admissible symplectic diagram into a collection of admissible
symplectic diagrams in perfect order. Hence, the algorithm terminates in finitely many steps. �

4. Symplectic restriction varieties

In this section, we interpret admissible symplectic diagrams geometrically. We introduce symplectic
restriction varieties and discuss their basic geometric properties.

Recall that Q denotes a non-degenerate skew-symmetric form on an n-dimensional vector space V .
Let Lnj denote an isotropic subspace of Q of dimension nj . Let Qridi denote a linear space of dimension
di such that the restriction of Q to it has corank ri. Let Ki denote the kernel of the restriction of Q to
Qridi .

Definition 4.1. A sequence (L•, Q•) is a partial flag of linear spaces Ln1 ( · · · ( Lns ( Q
rk−s
dk−s

( · · · ( Qr1d1
such that

• dim(Ki ∩Kh) ≥ ri − 1 for h > i.
• dim(Lnj ∩Ki) ≥ min(nj , dim(Ki ∩Q

rk−s
dk−s

)− 1) for every 1 ≤ j ≤ s and 1 ≤ i ≤ k − s.

The main geometric objects of this paper will be sequences satisfying further properties.

Definition 4.2. A sequence is in order if
• Ki ∩Kh = Ki ∩Ki+1, for all h > i and 1 ≤ i ≤ k − s, and
• dim(Lnj ∩Ki) = min(nj , dim(Ki ∩Q

rk−s
dk−s

)), for 1 ≤ j ≤ s and 1 ≤ i < k − s.
A sequence (L•, Q•) is in perfect order if

• Ki ⊆ Ki+1, for 1 ≤ i < k − s, and
• dim(Lnj ∩Ki) = min(nj , ri) for all i and j.

Definition 4.3. A sequence (L•, Q•) is called saturated if di + ri = n, for 1 ≤ i ≤ k − s.

The next definition is the analogue of Definition 3.14 and is a consequence of the order of specialization.

Definition 4.4. A sequence (L•, Q•) is called a symplectic sequence if it satisfies the following properties.
(GS1) The sequence (L•, Q•) is either in order or there exists at most one integer 1 ≤ η ≤ k − s such

that

Ki ⊆ Kh for h > i > η and Ki ∩Kh = Ki ∩Ki+1 for i < η and h > i.

Furthermore, if Kη ⊆ Kk−s, then

dim(Lnj ∩Ki) = min(nj , dim(Ki ∩Q
rk−s
dk−s

)) for i < η and

dim(Lnj ∩Ki) = min(nj , dim(Ki ∩Q
rk−s
dk−s

)− 1) for i ≥ η.
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If Kη 6⊆ Kk−s, then

dim(Lnj ∩Ki) = min(nj , dim(Ki ∩Q
rk−s
dk−s

)) for all i.

(GS2) If α = dim(Ki ∩ Q
rk−s
dk−s

) > 0, then either i = 1 and nα = α or there exists at most one j0 such
that, for j0 6= j > min(i, η), rj − rj−1 = dj−1 − dj . Furthermore,

dj0−1 − dj0 ≤ rj0 − rj0−1 + 2− dim(Kj0−1) + dim(Kj0−1 ∩Q
rj0
dj0

)

and Kη 6⊂ Q
rj0
dj0

.

Remark 4.5. Given a sequence (L•, Q•), the basic principles about skew-symmetric forms imply inequal-
ities among the invariants of a sequence. The evenness of rank implies that di − ri is even for every
1 ≤ i ≤ k− s. The corank bound implies that ri − dim(Qridi ∩Ki−1) ≤ di−1 − di. The linear space bound
implies that 2(ns + ri − dim(Ki ∩ Lns)) ≤ ri + di for every 1 ≤ i ≤ k − s. These inequalities are implicit
in the sequence (L•, Q•).

Remark 4.6. For a symplectic sequence (L•, Q•), the invariants nj , ri, di together with the dimensions
dim(Lnj ,Ki) and dim(Qrhdh ∩ Ki) determine the sequence (L•, Q•) up to the action of the symplectic
group. This will become obvious when we construct these sequences by choosing bases.

Definition 4.7. A symplectic sequence (L•, Q•) is admissible if it satisfies the following additional condi-
tions:
(GA1) nj 6= dim(Lnj ∩Ki) + 1 for any 1 ≤ j ≤ s and 1 ≤ i ≤ k − s.
(GA2) Let xi denote the number of isotropic subspaces Lnj that are contained in Ki. Then

xi ≥ k − i+ 1− di − ri
2

.

The translation between sequences and symplectic diagrams. Symplectic sequences can be
represented by symplectic diagrams introduced in §3. An isotropic linear space Lnj is represented by a
bracket ] in position nj . A linear space Qridi is represented by a brace } in position di such that there are
exactly ri positive integers less than or equal to i to the left of the i-th brace. Finally, dim(Lnj ∩Ki) and
dim(Qrhdh ∩Ki), h > i, are recorded by the number of positive integers less than or equal to i to the left
of ]j and }h, respectively.

Example 4.8. 11]200}0}00 records a sequence L2 ⊂ Q3
5 ⊂ Q2

6, where L2 ⊂ Ker(Q2
6). In the diagram, there

is one bracket that occurs in position 2. There are two braces that occur in positions 5 and 6. We thus
conclude that the sequence contains one isotropic subspace of dimension 2 (L2) and two non-isotropic
subspaces of dimensions 5 (Q5) and 6 (Q6). There are two integers equal to 1 and one integer equal to
2 in the sequence. Hence, the corank of the restriction of Q to the six (respectively, five) dimensional
subspace Q2

6 (Q3
5) is two (three). Finally, since every integer to the left of the bracket is equal to one, we

conclude that L2 ⊂ Ker(Q2
6).

More explicitly, given a symplectic sequence (L•, Q•), the corresponding symplectic diagram D(L•, Q•)
is determined as follows: The sequence of integers begins with dim(Ln1 ∩K1) integers equal to 1, followed
by dim(Ln1 ∩Ki)−dim(Ln1 ∩Ki−1) integers equal to i, for 2 ≤ i ≤ k−s, in increasing order, followed by
n1−dim(Ln1 ∩Kk−s) integers equal to 0. The sequence then continues with dim(Lnj ∩K1)−dim(Lnj−1 ∩
K1) integers equal to 1, followed by dim(Lnj ∩ Ki) − max(dim(Lnj−1 ∩ Ki), dim(Lnj ∩ Ki−1)) integers
equal to i in increasing order, followed by nj − max(nj−1,dim(Lnj ∩ Kk−s)) zeros for j = 2, . . . , s in
increasing order. The sequence then continues with dim(Qrk−sdk−s

∩K1)− dim(Lns ∩K1) integers equal to
1, followed by dim(Qrk−sdk−s

∩Ki)−max(dim(Qrk−sdk−s
∩Ki−1),dim(Lns ∩Ki)) integers equal to i in increasing
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order, followed by zeros until position dk−s. Between positions di and di−1 (i > k − s), the sequence
has dim(Qri−1

di−1
∩K1)− dim(Qridi ∩K1) integers equal to 1, followed by dim(Qri−1

di−1
∩Kh)−max(dim(Qridi ∩

Kh),dim(Qri−1

di−1
∩ Kh−1)) integers equal to h in increasing order, for h ≤ i − 1, followed by zeros until

position di−1. Finally, the sequence ends with n− d1 zeros. The brackets occur at positions nj and the
braces occur at positions di.

Proposition 4.9. The diagram D(L•, Q•) is a symplectic diagram of type s for SG(k, n). Furthermore,
if (L•, Q•) is admissible, then D(L•, Q•) is admissible.

Proof. By construction each bracket or brace occupies a position. Since n1 < n2 < · · · < ns < dk−s <
· · · < d1, a position is occupied by at most one bracket or brace. Since nj < di for every 1 ≤ j ≤ s
and 1 ≤ i ≤ k − s, every bracket occurs to the left of every brace. By construction, it is clear that
dim(Lnj ∩Ki) and dim(Qrhdh ∩Ki), for h ≥ i, are recorded by the number of positive integers less than
or equal to i to the left of ]j and }h, respectively. Hence, every integer equal to i occurs to the left of }i.
Finally, the total number of integers equal to zero or greater than i to the left of }i is equal to the rank
of the restriction of Q to Qridi . Since this rank is necessarily even, the total number of integers equal to
zero or greater than i to the left of }i is even. This shows that we have a sequence of brackets and braces
of type s.

The sequence of brackets and braces is a symplectic diagram. The corank bound implies that ri −
dim(Qridi ∩Ki−1) ≤ di−1−di. The left hand side of the inequality is represented by the number of integers
equal to i in the sequence. The right hand side of the inequality is equal to the number of integers
between }i and }i−1. We thus get the inequality l(i) ≤ ρ(i, i−1) required by Condition (S1) in Definition
3.14. By the linear space bound, the largest dimensional linear space contained in Qridi has dimension
bounded by (di + ri)/2. The invariant ri is equal to both the number of positive integers less than or
equal to i contained to the left of }i and dim(Ki). The span of Lns and the kernels Kh for h ≥ i is an
isotropic subspace of Qridi . The dimension of this subspace is denoted by τi and is equal to the sum of
p(]s) and the number of positive integers between ]s and }i. Hence, 2τi ≤ p(}i) + ri and condition (S2)
of Definition 3.14 holds.

If the sequence is in (perfect) order, then the corresponding sequence of brackets and braces is in
(perfect) order. Assume the sequence is not in order. The definition of a sequence implies that, for
i < k − s, there can be at most one i which is not to the left of }k−s. Suppose the sequence satisfies
Condition (GS1). Then, there exists an integer η such that for i > η those integers that are not to the
left of }k−s are to the immediate left of }i+1. Furthermore, condition (GS1) implies that the positive
numbers up to η are in non-decreasing order and η is the only integer violating the order. Thus condition
(S3) is satisfied. Finally, condition (GS2) directly translates to condition (S4). We conclude that the
sequence of brackets and braces is a symplectic diagram.

If the sequence (L•, Q•) is admissible, then the corresponding symplectic diagram is also admissible.
Let i be the minimal index such that Lnj ⊂ Ki. If there isn’t such an index, let i = k − s+ 1. If i > 1,
then condition (GA1) implies that dim(Lnj ∩Ki−1) ≤ nj − 2. Hence, the two integers preceding ]j are
equal to i (or 0 if i = k − s+ 1). If i = 1, then all the integers preceding ]j are equal to 1. Furthermore,
if nj = 1, condition (GA1) implies that Lnj ⊂ Ki for all 1 ≤ i ≤ k − s. We conclude that condition
(A1) holds. The invariant xi is equal to both the number of isotropic subspaces Lnj contained in Ki

and the number of brackets such that every integer to the left of it is positive and less than or equal to
i. Since di = p(}i), conditions (A2) and (GA2) are exactly the same. This concludes the proof of the
proposition. �

Remark 4.10. Proposition 4.9 also explains the definition of a symplectic diagram in geometric terms.
Condition (4) of Definition 3.2 is implied by the evenness of rank and simply states that di− ri has to be
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even. As discussed in the proof of Proposition 4.9, condition (S1) is a translation of the corank bound
and condition (S2) is implied by the linear space bound.

Conversely, we can associate an admissible sequence to every admissible symplectic diagram. By
Darboux’s Theorem, we can take the skew-symmetric form to be defined by

∑m
i=1 xi ∧ yi. Let the dual

basis for xi, yi be ei, fi such that xi(ej) = δji , yi(fj) = δji and xi(fj) = yi(ej) = 0. Given an admissible
symplectic diagram, we associate e1, . . . , ep(]s) to the integers to the left of ]s in order. We then associate
ep(]s)+1, . . . , er′ to the positive integers to the right of ]s and left of }k−s in order. Let ei1 , . . . , eil be
vectors that have so far been associated to zeros. Then associate fi1 , . . . , fil to the remaining zeros to the
left of }k−s in order. If there are any zeros to the left of }k−s that have not been assigned a basis vector,
assign them er′+1, fr′+1, . . . , er′′ , fr′′ in pairs in order. Continuing this way, if there is a positive integer
between }i+1 and }i associate to it the smallest index basis element eα that has not yet been assigned.
Assume that the integers equal to i + 1 have been assigned the vectors ej1 , . . . , ejl . Assign to the zeros
between }i+1 and }i, the vectors fj1 , . . . , fjl . If there are any zeros between }i+1 and }i that have not
been assigned a vector, assign them eα+1, fα+1, . . . , eβ, fβ in pairs until the zeros are exhausted. Let Lnj
be the span of the basis elements associated to the integers to the left of ]j . Let Qridi be the span of the
basis elements associated to the integers to the left of }i. We thus obtain a sequence (L•, Q•) whose
associated symplectic diagram is D.

Example 4.11. To 11]233]0000}00}0}00 we associate the sequence of vectors

e1, e2, e3, e4, e5, e6, f6, e7, f7, f4, f5, f3, f1, f2.

Then L2 is the span of e1, e2, L5 is the span of e1 through e5, Q5
9 is the span of e1 through e7 and f6, f7,

Q3
11 is the span of e1 through e7 and f4 through f7. Finally, Q2

12 is the span of Q3
11 and f3.

To 22]33]0000}00}100}0 we associate the sequence of vectors

e1, e2, e3, e4, e5, f5, e6, f6, f3, f4, e7, f1, f2, f7.

L2 is the span of e1, e2, L4 is the span of e1 through e4, Q4
8 is the span of e1 through e6 and f5, f6, Q2

10

is the span of Q4
8 and f3, f4 and Q1

13 is the span of Q2
10 and e7, f1, f2.

Finally, to 22]300]300}00}100}0 we associate the sequence of vectors

e1, e2, e3, e4, e5, e6, f4, f5, f3, f6, e7, f1, f2, f7.

Then L2 is the span of e1 and e2, L5 is the span of e1 through e5, Q4
8 is the span of e1 through e5 and

f4, f5, Q2
10 is the span of Q4

8 and f3, f6. Finally, Q1
13 is the span of all the vectors but f7.

Remark 4.12. Notice that equivalent symplectic diagrams correspond to permutations of the basis ele-
ments that do not change the vector spaces in (L•, Q•).

Remark 4.13. The construction of a symplectic sequence (L•, Q•) from a symplectic diagram D is well-
defined. By condition (S2), the number of zeros to the left of ]s is less than or equal to the number
of zeros between ]s and }k−s. Hence, we can choose vectors fi1 , . . . , fil corresponding to the vectors
ei1 , . . . , eil . Similarly, if there does not exist a positive integer between }i+1 and }i, then by condition
(S1), l(i+ 1) ≤ ρ(i+ 1, i). We can, therefore, associate vectors fj1 , . . . , fjl to the zeros between }i+1 and
}i. If there exists a positive integer between }i+1 and }i, then there is only one positive integer between
them by condition (S3). If l(i+ 1) = ρ(i+ 1, i), then condition (4) is violated. Hence, l(i+ 1) < ρ(i+ 1, i)
and we can associate vectors fj1 , . . . , fjl to the zeros between }i+1 and }i. Thus the construction of the
sequence makes sense. It is now straightforward to check that the sequence associated to an admissible
symplectic diagram is an admissible sequence. Furthermore, the two constructions are inverses of each
other.

We are now ready to define symplectic restriction varieties.
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Definition 4.14. Let (L•, Q•) be an admissible sequence for SG(k, n). Then the symplectic restriction
variety V (L•, Q•) is the Zariski closure of the locus in SG(k, n) parameterizing

{W ∈ SG(k, n) | dim(W ∩ Lnj ) = j for 1 ≤ j ≤ s, dim(W ∩Qridi) = k − i+ 1 and

dim(W ∩Ki) = xi for 1 ≤ i ≤ k − s}.

Remark 4.15. The geometric reasons for imposing conditions (A1) and (A2) in Definition 3.17 are now
clear. Condition (A1) is an immediate consequence of the kernel bound. If dim(Lnj ∩Ki) = nj − 1 and
a linear space of dimension k − i + 1 intersects nj in dimension j and Ki in dimension j − 1, then the
linear space is contained in L⊥nj . Hence, we need to impose condition (A1).

The inequality

xi ≥ k − i+ 1− di − ri
2

is an immediate consequence of the linear space bound. We require the k-dimensional isotropic subspaces
to intersect Qridi in a subspace of dimension k−i+1 and to intersect the singular locus of Qridi in a subspace
of dimension xi. By the linear space bound, any linear space of dimension k − i+ 1 has to intersect the
singular locus in a subspace of dimension at least k− i+1− di−ri

2 , hence the inequality in condition (A2).

Example 4.16. The two most basic examples of symplectic restriction varieties are:

(1) A Schubert variety Σλ;µ in SG(k, n), which is the restriction variety associated to a symplectic
diagram D(σλ;µ), and

(2) The intersection Σa• ∩ SG(k, n) of a general Schubert variety in G(k, n) with SG(k, n), which is
the restriction variety associated to D(a•).

In general, symplectic restriction varieties interpolate between these two examples.

Lemma 4.17. A symplectic restriction variety corresponding to a saturated and perfectly ordered admis-
sible sequence is a Schubert variety in SG(k, n). Conversely, every Schubert variety in SG(k, n) can be
represented by such a sequence.

Proof. Let F1 ⊂ · · · ⊂ F⊥1 ⊂ V be an isotropic flag. If Σλ,µ is a Schubert variety defined with respect
to this flag, then the symplectic restriction variety defined with respect to the sequence Lnj = Fλj and
Qridi = F⊥µk−i+1

is a saturated and perfectly ordered admissible sequence.
Conversely, suppose that the sequence (L•, Q•) is a saturated and perfectly ordered admissible se-

quence. Since the sequence is saturated, we have that Qridi = K⊥i . Since the sequence is in perfect order,
we have that dim(Lnj ∩Ker(Qridi)) = min(ri, nj). Consequently, the set of linear spaces {Lnj ,Ker(Qridi)}
can be ordered by inclusion, or equivalently, by dimension. Then the resulting partial flag can be ex-
tended to an isotropic flag. By condition (GA1) of the definition of an admissible sequence, we have that
nj 6= ri + 1 for any i, j. Hence, the symplectic restriction variety defined with respect to (L•, Q•) is the
Schubert variety Σλ•;µ• , where λj = nj , for 1 ≤ j ≤ s, and µi = rk−i+1, for s < i ≤ k. �

Remark 4.18. By Lemma 4.17, the saturated symplectic diagrams in perfect order represent Schubert
varieties.

Next, we show that the intersection of a general Schubert variety Σ with the symplectic Grassmannian
SG(k, n) (when non-empty) is a restriction variety.

Lemma 4.19. Let Σ be a general Schubert variety defined with respect to a partial flag Fa1 ⊂ · · · ⊂ Fak .
Then Σ ∩ SG(k, n) 6= ∅ if and only if ai ≥ 2i− 1 for 1 ≤ i ≤ k.

Proof. Suppose ai < 2i − 1 for some i. If [W ] ∈ Σ ∩ SG(k, n), then W ∩ Fai is an isotropic subspace of
Q∩Fai of dimension at least i. Since Fai is general, the corank of Q∩Fai is 0 or 1 and equal to ai modulo

19



2. By the linear space bound, the largest dimensional isotropic subspace of Q ∩ Fai has dimension less
than or equal to i− 1. Therefore, W cannot exist and Σ ∩ SG(k, n) = ∅.

Conversely, let ai = 2i − 1 for every i. Then G1 = F1 is isotropic, G2 = F⊥1 in F3 is the unique
two-dimensional isotropic subspace of Q ∩ F3 containing G1. By induction, we see that Gi = G⊥i−1 is
the unique subspace of dimension i isotropic with respect to Q ∩ F2i−1 that contains Gi−1. Continuing
this way, we construct a unique isotropic subspace W of dimension k contained in Σ ∩ SG(k, n). If
ai ≥ 2i− 1, the vector space W just constructed is still contained in Σ∩SG(k, n), hence this intersection
is non-empty. �

Lemma 4.20. Let Σ be a general Schubert variety defined with respect to a partial flag Fa1 ⊂ · · · ⊂ Fak
such that ai ≥ 2i− 1. Then Σ ∩ SG(k, n) = V (D(a•)).

Proof. Let ai = 2i− 1, then since Fai is general, the restriction of Q to Fai has a one-dimensional kernel
Ki. By the linear space bound, any i-dimensional isotropic subspace W contained in Fai contains Ki.
For each j such that aj > 2j − 1, recall that uj is the number of i < j such that ai = 2i − 1 and vj
is the number of i > j such that ai = 2i − 1. Let K be the span of one-dimensional kernels Ki for
each ai = 2i − 1. Then dim(K) = u and any k-dimensional subspace W contained in Σ ∩ SG(k, n)
contains K. For j such that aj > 2j − 1, let Gj+vj = Span(Faj ,K) ∩ K⊥. The dimension of Gj+vj is
aj − uj + vj . The corank of the restriction of Q to Gj+vj is u + δ(aj), where δ(aj) = 0(1) if aj is even
(odd). Furthermore, any isotropic linear space contained in Σ ∩ SG(k, n) intersects Gj+vj in a subspace
of dimension at least j + vj . From this description and the definition of V (D(a•)), it is now clear that
Σ ∩ SG(k, n) = V (D(a•)). �

Proposition 4.21. Let (L•, Q•) be an admissible sequence. Then V (L•, Q•) is an irreducible subvariety
of SG(k, n) of dimension

(1) dim(V (L•, Q•)) =
s∑
j=1

(nj − j) +
k−s∑
i=1

(di − 1− 2k + 2i+ xi).

Proof. The proof is by induction on k. When k = 1, if the sequence consists of an isotropic linear space
Ln1 , then the corresponding symplectic restriction variety is PLn1 hence it is irreducible of dimension
n1 − 1. If the sequence consists of one non-isotropic subspace Qr1d1 , then the corresponding symplectic
restriction variety is also projective space of dimension d1− 1. In both cases, the varieties are irreducible
of the claimed dimension. This proves the base case of the induction.

If the sequence does not contain any skew-symmetric forms, then the corresponding restriction variety
is isomorphic to a Schubert variety in the ordinary Grassmannian G(k, n). In that case, it is well known
that Schubert varieties are irreducible and have dimension

∑k
j=1(nj − j) [C3].

Observe that omitting Qr1d1 from an admissible sequence (L•, Q•) for SG(k, n) gives rise to an admissible
sequence (L′•, Q

′
•) for SG(k− 1, n). There is a natural surjective morphism f : V 0(L•, Q•)→ V 0(L′•, Q

′
•)

that sends a vector space W to W ∩Qr2d2 (or W ∩Lnk−1
if s = k−1). By induction, V (L′•, Q

′
•) is irreducible

of dimension
∑s

j=1(nj − j) +
∑k−s

i=2 (di − 1 − 2k + 2i + xi). The fibers of the morphism f over a point
W ′ correspond to choices of isotropic k-planes W that contain W ′ and are contained in Qr1d1 . This is a
Zariski dense open subset of projective space of dimension d1−2(k−1)−1 +x1. Hence, by the Theorem
on the Dimension of Fibers [S, I.6.7], V (L•, Q•) is irreducible of the claimed dimension. This concludes
the proof of the proposition. �
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5. The geometric explanation of the combinatorial game

In this section, we will prove the combinatorial rule by interpreting it geometrically. The transformation
from an admissible diagram D to Da records a one-parameter specialization of the restriction variety
V (D). The algorithm describes the flat limit of this specialization.

The specialization. We now explain the specialization. There are several cases depending on whether
D is in order and whether l(κ) < ρ(κ, κ − 1) − 1 or not. In the previous section, given an admissible
quadric diagram D, we associated an admissible sequence by defining each of the vector spaces (L•, Q•)
as a union of basis elements that diagonalize the skew-symmetric form Q. All our specializations will
replace exactly one of the basis elements v = eu or v = fu for some 1 ≤ u ≤ m with a vector v(t) = eu(t)
or v(t) = fu(t) varying in a one-parameter family. For t 6= 0, the resulting set of vectors will be a new
basis for V , but when t = 0 two of the basis elements will become equal. Since each linear space in
(L•, Q•) is a union of basis elements, we get a one-parameter family of vector spaces (L•(t), Q•(t)) by
replacing every occurrence of the vector v with v(t) for t 6= 0. Correspondingly, we have a one-parameter
family of restriction varieties V (L•(t), Q•(t)). Since these varieties are projectively equivalent as long as
t 6= 0, we obtain a flat one-parameter family. Our task is to describe the limit when t = 0.

In case (1)(i), D is not in order, η is the unique integer violating the order, and ν is the leftmost
integer equal to η + 1. Suppose that under the translation between symplectic diagrams and sequences
of vector spaces, eu is the vector associated to η and ev is the vector associated to ν. Then consider the
one-parameter family obtained by changing ev to ev(t) = tev + (1− t)eu and keeping every other vector
fixed. When the set of basis elements spanning a vector space Lnj or Qridi contains ev, Lnj (t) or Qridi(t)
is the span of the same basis elements except that ev is replaced with ev(t). Otherwise, Lnj (t) = Lnj or
Qridi(t) = Qridi .

In case (1)(ii), D is not in order, η is the unique integer violating the order, i > η does not occur in the
sequence to the left of η and ν is the leftmost integer equal to i+ 1. Let eu be the vector associated to η
and let ev be the vector associated to ν. Consider the one-parameter family obtained by changing fv to
fv(t) = tfv + (1− t)eu. When the set of basis elements spanning a vector space Lnj or Qridi contains fv,
Lnj (t) or Qridi(t) is the span of the same basis elements except that fv is replaced with fv(t). Otherwise,
Lnj (t) = Lnj or Qridi(t) = Qridi .

In case (2)(i), D is in order and l(κ) < ρ(κ, κ−1)−1. Suppose that ev is the vector associated to ν, the
leftmost κ+ 1. Let eu and fu be two vectors associated to zeros between }κ and }κ−1. These exist since
l(κ) < ρ(κ, κ−1)−1. Consider the one-parameter specialization replacing fv with fv(t) = tfv+(1− t)eu.
When the set of basis elements spanning a vector space Lnj or Qridi contains fv, Lnj (t) or Qridi(t) is obtained
by replacing fv with fv(t). Otherwise, Lnj (t) = Lnj or Qridi(t) = Qridi .

In case (2)(ii)(a), D is in order and l(κ) = ρ(κ, κ − 1) − 1. Let ν be the leftmost integer equal to κ
and suppose that ev is the vector associated to ν. Let eu be the vector associated to the κ− 1 following
}κ. Then let ev(t) = tev + (1 − t)eu. When the set of basis elements spanning a vector space Lnj or
Qridi contains ev, Lnj (t) or Qridi(t) is obtained by replacing ev with ev(t). Otherwise, Lnj (t) = Lnj or
Qridi(t) = Qridi .

Finally, in case (2)(ii)(b), D is in order, l(κ) = ρ(κ, κ−1)−1 and there does not exist an integer equal
to κ to the left of κ. Let ev be the vector associated to ν, the leftmost integer equal to κ+ 1 and let eu
be the vector associated to κ − 1 to the right of }κ. Then let fv(t) = tfv + (1 − t)eu. When the set of
basis elements spanning a vector space Lnj or Qridi contains fv, Lnj (t) or Qridi(t) is obtained by replacing
fv with fv(t). Otherwise, Lnj (t) = Lnj or Qridi(t) = Qridi .
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The flat limits of the vector spaces are easy to describe. If Lnj or Qridi does not contain the vector v,
then Lnj (t) = Lnj and Qridi(t) = Qridi for all t 6= 0. Hence, the flat limit Lnj (0) = Lnj and Qridi(0) = Qridi .
Similarly, if Lnj or Qridi contains both of the basis elements spanning v(t), then Lnj (t) = Lnj and
Qridi(t) = Qridi for all t 6= 0. Then in the limit Lnj (0) = Lnj and Qridi(0) = Qridi . A vector space changes
under the specialization only when it contains the vector with coefficient t and does not contain the
vector with coefficient (1− t). In this case, in the limit t = 0, the flat limit Lnj (0) or Qridi(0) is obtained
by replacing in Lnj or Qdi the basis element with coefficient t with the basis element with coefficient
(1− t).

Notice that in each of these cases, the set of limiting vector spaces is depicted by the symplectic diagram
Da. In case (1)(i), if η is between }a and }a−1 and ν is between ]b and ]b+1 (respectively, between ]s and
}k−s), the vector spaces Lnj for j ≤ b (respectively, j ≤ s) and Qridi for i < a are unaffected. In all the
other vector spaces, ev is replaced by eu. The effect on symplectic diagrams is to switch η and ν as in
the definition of Da. In case (1)(ii), assume that η is between }i and }i−1. The linear spaces other than
Qridi remain unchanged under the degeneration. In Qridi the vector fv is replaced by eu. Note that this
increases the corank of the restriction of Q to Qridi(0) by two since now both vectors eu and ev in the
kernel. This has the effect of changing ν to i and a zero between }i+1 and }i to η as in the definition
of Da. In case (2)(i), all the vector spaces but Qrκdκ remain unchanged. The degeneration replaces fv
in Qrκdκ by eu. This increases the corank of the restriction of Q to Qrκdκ(0) by two since both eu and ev
are now contained in the kernel of the restriction. The corresponding symplectic diagram is obtained by
changing ν and a zero between }κ+1 and }κ to κ as in the definition of Da. The cases (2)(ii)(a) and (b)
are analogous to the cases (1)(i) and (1)(ii), respectively.

For the rest of the paper, we use the specialization just described.

Example 5.1. For concreteness, consider the restriction variety associated to 200}000}00 in SG(2, 8) pa-
rameterizing isotropic subspaces that intersect A = Span(e1, e2, f2) and are contained in B = Span(ei, fi),
1 ≤ i ≤ 3. The first specialization is given by tf2 + (1− t)e3. In the limit, A1 = A(0) = Span(e1, e2, e3)
and B(0) = B. This changes the diagram to 000]000}00. The corresponding restriction variety param-
eterizes linear spaces that intersect A(0) and are contained in B. The next specialization is given by
tf1 + (1 − t)e4. In the limit, A1(0) = A1 and B1 = B(0) = Span(e1, e2, e3, e4, f2, f3). This changes
the diagram to 100]100}00. The corresponding restriction variety parameterizes linear spaces that in-
tersect A1 and are contained in B1. The final specialization is given by te2 + (1 − t)e4. In the limit,
A2 = A1(0) = Span(e1, e4, e3) and B1(0) = B1. This changes the diagram to 110]000}00. The flat limit
of the restriction varieties has two components. The linear spaces may intersect Span(e1, e4), in which
case we get the restriction variety associated to the diagram 11]0000}00. Otherwise, by the kernel bound,
the linear spaces have to be contained in A⊥2 . In this case, we get the restriction variety associated to
the diagram 111]00}000. The reader should convince themselves that this is precisely the outcome of
Algorithm 3.29.

We are now ready to state and prove the main geometric theorem.

Theorem 5.2. (The Geometric Branching Rule) The flat limit of the specialization of V (D) is supported
along

⋃
V (Di), where V (Di) is a symplectic restriction variety associated to a diagram Di obtained by

running Algorithm 3.29 on D. Furthermore, the flat limit is generically reduced along each V (Di). In
particular, the equality

[V (D)] =
∑

[V (Di)]

holds between the cohomology classes of symplectic restriction varieties.

Proof of Theorem 3.33 assuming Theorem 5.2. By Proposition 3.39, Algorithm 3.29 replaces each admis-
sible symplectic diagram by one or two admissible symplectic diagrams. Hence, the algorithm can be
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repeated. By Proposition 3.40, after finitely many steps, the algorithm terminates leading to a collection
of saturated admissible symplectic diagrams in perfect order. By Lemma 4.17, each of these diagrams
represent a Schubert variety. Therefore, Theorem 3.33 is an immediate corollary of Theorem 5.2. �

Proof of Theorem 5.2. The proof of Theorem 5.2 has two steps. First, we interpret the algorithm as
the specialization described in the beginning of this section. Let V (D) denote the initial symplectic
restriction variety. Let V (D(t)) denote the one-parameter family of restriction varieties described in the
specialization and let V (D(0)) be the flat limit at t = 0. We show that V (D(0)) is supported along the
union of restriction varieties V (Di), where Di are the admissible symplectic diagrams derived from D via
Algorithm 3.29. In the second step, we verify that the support of the flat limit contains each V (Di) and
the flat limit is generically reduced along each V (Di). This suffices to prove the theorem.

We now analyze the specialization to conclude that the support of V (D(0)) is the union of symplectic
restriction varieties V (Di). The proof is by a dimension count. In order to restrict the possible irreducible
components of V (D(0)), we find conditions that the linear spaces parameterized by V (D(0)) have to
satisfy. We then observe that these conditions already cut out the symplectic varieties V (Di) and that
each V (Di) has the same dimension as V (D). The following observation puts strong restrictions on the
support of the flat limit.

Observation 5.3. The linear spaces parameterized by V (D(t)) intersect the linear spaces Lnj (t) (respec-
tively, Qridi(t)) in a subspace of dimension at least j (respectively, k − i + 1). Similarly, they intersect
Ker(Qridi(t)) in a linear space of dimension at least xi. Since intersecting a proper variety in at least a
given dimension is a closed condition, the linear spaces parameterized by V (D(0)) have to intersect the
linear spaces Lnj (0) (respectively, Qridi(0)) in a subspace of dimension at least j (respectively, k − i+ 1).
Furthermore, they intersect Ker(Qridi(0)) in a subspace of dimension at least xi.

Let Y be an irreducible component of V (D(0)). We can construct a sequence of vector spaces Fu1 ⊂
· · · ⊂ Fuk such that the locus Z parameterizing linear spaces with dim(W ∩Fuj ) ≥ j contains Y . We have
already seen that the linear spaces Lnj (0) and Qridi(0) are the linear spaces recorded by the symplectic
diagram Da. Let z1, . . . , zn be the ordered basis of V obtained by listing the basis elements associated
to Da from left to right. Let Fu be the linear space spanned by the basis elements z1, · · · , zu. Let
Fu1 ⊂ · · · ⊂ Fuk be the jumping linear spaces for Y , that is the linear spaces of the form Fu such that
dim(W ∩ Fu) > dim(W ∩ Fu−1) for the general isotropic space W parameterized by Y . Observation 5.3
translates to the inequalities uj ≤ nj for j ≤ s and ui ≤ dk−i+1 for s < i ≤ k. Hence, we can obtain a
sequence depicting the linear spaces Fu1 , . . . , Fuk by moving the braces and brackets in the diagram Da

to the left one at a time. By the proof of Proposition 4.21, Equation (1) gives an upper bound on the
dimension of the locus Z (note that we used the fact that the sequence is admissible in the proof only to
deduce the equality).

We now estimate the dimension of Z. Let (La•, Q
a
•) denote the linear spaces depicted by the diagram

Da. We obtain the sequence defining Z by replacing linear spaces in (La•, Q
a
•) by smaller dimensional

ones.
• If we replace a linear space Lani of dimension ni in (La•, Q

a
•) with a linear space Fui not contained in

(La•, Q
a
•) but containing Lani−1

, then according to Equation (1) the dimension changes as follows.
Let yai be the index of the smallest index linear space Qrldl such that Lani ⊂ Kl. Similarly, let yui be
the smallest l such that Fui ⊂ Kl. The left sum in Equation (1) changes by ui−nai . The quantities
xl increase by one for yui ≤ l < yai . Hence, the sum on the right increases by yai − yui . Hence, the
total change in dimension is ui − nai + yai − yui . By condition (S4) of Definition 3.14 for Da and
condition (A1) for D, in Da, there is at most one missing integer among the positive integers to
the left of the brackets and the two integers preceding all brackets but possibly ]xν−1+1 are equal.
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We conclude that if we move any bracket to the left except for ]xν−1+1, we strictly decrease the
dimension. Furthermore, if we move ]xν−1+1 to the left, we strictly decrease the dimension unless
in D we have the equality p(]xν−1+1)−π(ν)−1 = yxν−1+1−ν, so that the decrease in the position
resulting by shifting the bracket in Da is equal to the increase in the number of linear spaces Qrldl
containing Fui in their kernel.
• If we replace the linear space Qri,adi

of dimension dai in (La•, Q
a
•) with a non-isotropic linear space

Fuk−i+1
of dimension dui containing Q

ri−1,a
di−1

, then, by Equation (1), the dimension changes as
follows. Let xui be the number of linear spaces that are contained in the kernel of the restriction of
Q to Fuk−i+1

. Then the dimension changes by dui −dai −xai +xui . We have that dui −dai −xai +xui ≤ 0
with strict inequality unless the number of linear spaces contained in the kernel of Fuk−i+1

increases
by an amount equal to dai − dui . The latter can only happen if condition (A1) is violated for the
diagram so that increasing the dimension of the kernel by one can increase the number of linear
spaces contained in the kernel.
• Finally, if we replace the linear space Q

rk−s,a
dk−s

of dimension dak−s in (La•, Q
a
•) with an isotropic

linear space Fus+1 containing Lns , then the first sum in Equation (1) changes by us+1 − s − 1.
The second sum changes by −dak−s + yus+1 − xak−s + (2s + 1), where yus+1 denotes the number of
non-isotropic subspaces containing Fus+1 in the kernel of the restriction of Q. Hence, the total
change is

−dak−s + us+1 − xak−s + yus+1 + s.

If xak−s = s − j < s, then yus+1 = 0. Since by the linear space bound us+1 + j + 1 ≤ dk−s, we
conclude that the dimension strictly decreases. If xk−s = s, then the change is strictly negative
unless rk−s = dk−s and dk−s = us+1.

The dimension count shows that V (D) and V (Da) have the same dimension. When p(]xν−1+1)−π(ν)−
1 = yxν−1+1 − ν in D, V (Db) and V (Da) have the same dimension. Furthermore, Step 2 of Algorithm
3.25 and Algorithm 3.26 preserve the dimension of the variety. By Equation (1), Step 1 of Algorithm 3.25
also preserves the dimension. If condition (A2) is violated for Da for the index i, then by Proposition
3.39, we have that 2xi = 2k− 2i− di + ri. On the other hand, the operation in Step 1 of Algorithm 3.25
changes the left sum in Equation (1) by ri + (s − xi) − s − 1 = ri − xi − 1, since it adds a new bracket
of size ri and increases the positions of the brackets with index xi + 1, . . . , s. It changes the left sum by
−di + 1 − xi + 2k − 2(k − s) + 2(k − s − i) since it removes the brace with index i and increases the
positions and xl for the braces with indices l = i+1, . . . , k−s. We conclude that the change in dimension
is ri − 2xi − di + 2k − 2i = 0. We conclude that every variety V (Di) associated to V (D) by Algorithm
3.29 has the same dimension as V (D).

We can now determine the support of the flat limit of the specialization. Since in flat families the dimen-
sion of the fibers are preserved, Y has the same dimension as V (D). Hence, our dimension calculation puts
very strong restrictions on Z. First, suppose that either xν−1 = s or p(}xν−1+1)−π(ν)−1 > yxν−1+1−ν in
D. If Da is admissible, then by our dimension counts, replacing an isotropic or non-isotropic linear space
in (La•, Q

a
•) with a smaller dimensional linear space produces a strictly smaller dimensional locus. We

conclude that the general linear space parameterized by Y satisfies exactly the rank conditions imposed
by (La•, Q

a
•). Hence, Y is contained in V (Da). Since both are irreducible varieties of the same dimension,

we conclude that Y = V (Da). If Da is not admissible, then it either violates condition (A1) or (A2). If
Da fails condition (A2), then xi < k − i+ 1− di−ri

2 for some i. Since the linear spaces parameterized by
Y have to intersect Qridi in a subspace of dimension k− i+ 1, by the linear space bound, we conclude that
these linear spaces have to intersect Ki in a subspace of dimension at least xi + 1. In Da, there is only
one integer i that is not in the beginning non-decreasing part of the sequence of integers. Geometrically,
the linear spaces Lanj or Qrj ,adj

either contain or are contained in Ki or intersect Ki in a codimension one
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linear space. Let Fa1 ⊂ Fa2 ⊂ · · · ⊂ Fal be a partial flag such that Fah intersects M in a codimension one
subspace of M . Let M = Ga0+1 ⊂ Ga1+1 ⊂ · · · ⊂ Gal+1 be the partial flag where Gah+1 is the span of
Fah and M for h ≥ 1. The locus of linear spaces of dimension xi + l+ 1 that intersect Fah in a subspace
of dimension at least xi+h and intersect M in a subspace of dimension at least xi+1 is equivalent to the
locus of linear spaces that intersect the vector spaces Gah+1 in subspaces of dimension at least xi+ 1 +h.
Notice that the diagram Dc formed in Step 1 of the Algorithm 3.25 depicts the linear spaces

Ln1 , . . . , Lnxi ,Ki, Span(Ki, Lnxi+1), · · · , Span(Ki, Q
ri+1

di+1
), Qri−1

di−1
, · · · , Qr1d1 .

Hence, by the linear space bound Y must be contained in V (Dc). By Proposition 3.39, Dc is an admissible
symplectic diagram. Hence, V (Dc) is an irreducible variety that has the same dimension as Y . We
conclude that Y = V (Dc). On the other hand, if Da satisfies condition (A2) but fails condition (A1),
then it fails it for the bracket with index xν−1 + 1 and the index ν. By the kernel bound, any linear
space that intersects Lnxν−1+1 in a subspace away from the kernel of Q restricted to Q

rν−1

dν−1
has to be

contained in L⊥nxν−1+1
. The latter vector space is depicted in a symplectic diagram by changing ν to ν−1

and shifting }ν−1 one unit to the right as in Step 2 of Algorithm 3.25. This argument applies as long as
condition (A1) fails for the resulting sequence. We conclude that Y has to be contained in V (Dc). Since
Y and V (Dc) are irreducible varieties of the same dimension, we conclude that Y = V (Dc).

Now suppose that xν−1 < s and p(}xν−1+1) − π(ν) − 1 = yxν−1+1 − ν in D. Then, by our dimension
count, replacing the linear space Lnxν−1+1 by a linear space Fuxν−1+1 corresponding to a bracket of the
form

· · · a a+1 . . . ν−1 ν ν+2 . . . ν+ l−1 ν+ l ν+ l] · · · → · · · a]a+1 . . . ν−1 ν ν+2 . . . ν+ l−1 ν+ l ν+ l · · ·

produces a locus Z that has the same dimension as Y . Replacing any other linear space results in a smaller
dimensional locus. However, unless Fuxν−1+1 = Ker(Qrνdν ) ∩ Lnxν−1+1 not all linear spaces parameterized
by Z can be in the flat limit. Observe that W⊥(t) intersects Lnxν−1+1 ∩ Ker(Qrada) in a subspace of
dimension at least π(a) + 1 for every W (t) ∈ V (D(t)). By upper semi-continuity, the same has to hold of
the flat limit at t = 0. Hence, unless a = ν, we obtain a smaller dimensional variety. We conclude that
Y ⊂ V (Db). If Db is admissible, then both varieties are irreducible of the same dimension and we conclude
that Y = V (Db). If Db is not admissible, then by Proposition 3.39, Db satisfies condition (A2) but fails
condition (A1). Furthermore, it fails condition (A1) only for the bracket · · · a ν] · · · . By the kernel bound,
the linear spaces parameterized of dimensions k−a, k−a+1, . . . , k−ν+2 contained in Qra+1

da+1
, . . . , Q

rν−1

dν−1
,

respectively, are contained in (Lnxν−1+1 ∩ Ker(Qrada))⊥ in Q
ra+1

da+1
, . . . , Q

rν−1

dν−1
. Algorithm 3.26 replaces the

linear spaces Qra+1

da+1
, . . . , Q

rν−1

dν−1
with (Lnxν−1+1∩Ker(Qrada))⊥ in Qra+1

da+1
, . . . , Q

rν−1

dν−1
, respectively. Hence, Y is

contained in V (Dc). Finally, if during the process two braces occupy the same position, then the resulting
locus Z has strictly smaller dimension by our dimension counts so does not lead to a locus Z containing
Y . Since in all other cases Y and V (Dc) are irreducible varieties of the same dimension, we conclude that
Y = V (Dc). This completes the proof that the support of the flat limit of the specialization is contained
in the union of V (Di), where Di are the admissible symplectic diagrams associated to D by Algorithm
3.29.

Finally, there remains to check that each of the irreducible components occur with multiplicity one.
This is an easy local calculation. The point here is that taking the option Da at each stage of the algorithm
leads to a Schubert variety. Similarly, taking the option Db at all allowed places in the algorithm leads to
a Schubert variety. The classes of these two Schubert varieties occur in the class of V (D) with multiplicity
one. Therefore, by intersecting V (D) with the dual of these Schubert varieties, we can tell the multiplicity
of V (Da) and V (Db).
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First, in each of the five cases we can assume that η = 1. Let U be the Zariski open set of our family
of restriction varieties parameterizing linear spaces W (t) such that dim(W (t) ∩ Qrη(t)

dη
(t)) = k − η + 1.

Let Z be the family of symplectic restriction varieties obtained by applying the specialization to the
admissible sequence (L′•, Q

′
•) (represented by D′) obtained from (L•, Q•) by omitting the linear spaces

Qr1d1 , . . . , Q
rη−1

dη−1
. Then there exists a natural morphism f : U → Z sending W (t) to W (t) ∩ Qrη(t)

dη
(t),

which is smooth at the generic point of each of the irreducible components of the fiber of Z at t = 0.
The fibers f over W ′ ∈ Z is the linear spaces of dimension k that contain W ′ and satisfy the appropriate
rank conditions with respect to the linear spaces Qr1d1 , . . . , Q

rη−1

dη−1
. Notice that running Algorithm 3.29 on

D′ results in the same outcome as running in D and removing the braces with indices i < η. Hence, we
can do the multiplicity calculation for the family Z. We may, therefore, assume that η = 1.

In all the cases, the argument is almost identical with very minor variations. We will give it in the
hardest case, case (2)(i), and leave the minor modifications in the other cases to the reader. In case (2)(i),
by a similar argument, we may further assume that κ = 1, dκ + rκ = n− 2, xκ = 0 and s ≤ 1. The most
interesting case is when s = 1 and 2dk−s ≥ n. Let y1 be the minimal index l such that Ln1 is contained
in Ker(Qrldl). We will check that the multiplicities are one by finding a cycle that intersects V (D) in one
point and exactly one of the limits in one point. If Da is admissible, then consider the Schubert variety
Σ defined with respect to a general isotropic flag with the following invariants

λi = n− di + 2 for κ = 1 ≤ i ≤ l − 1, λi = n− di + 1 for l ≤ i ≤ k − 1, and µk = n− n1 + 1.

If Da satisfies condition (A2) but not (A1), change the definition of λ1 so that λ1 = n − d1 + 2. If Da

fails condition (A2), change the definition of Σ so that

λi = n−di+1+1 for 1 ≤ i ≤ l−2, λi = n−di+1 for l−1 ≤ i ≤ k−2, and µk−1 = n−n1, µk = n−rκ+1.

By Kleiman’s Transversality Theorem [K1], it is immediate that both Σ ∩ V (D) and Σ ∩ V (Da) consist
of a single reduced point, whereas Σ ∩ V (Db) is empty. Since Σ requires the k-plane to be contained in
a linear space of dimension n− n1 + 1 and V (Db) requires the linear space to intersect a linear space of
dimension less than n1, these conditions cannot be simultaneously satisfied for general choices of linear
spaces. Hence, Σ ∩ V (Db) is empty. On the other hand, the intersection Ln1 ∩ F⊥µk consists of a one-
dimensional vector space W1 and Qridi ∩ Fλi consist of one-dimensional linear spaces contained in W⊥1
when l ≤ i ≤ k−1 and two-dimensional linear spaces not contained in W⊥1 when 1 ≤ i ≤ l−1. Since any
linear space contained in V (D)∩Σ or V (Da)∩Σ must intersect all these linear spaces in one-dimensional
subspaces, we conclude that the k-dimensional linear space satisfying conditions imposed by V (D) and
Σ or V (Da) and Σ are uniquely determined. It follows that the multiplicity of V (Da) is one.

Similarly, if p(]1) − π(2) − 1 = y1 − 2, then Db is admissible. Let Ω be the Schubert variety defined
with respect to a general isotropic flag with the following invariants:

λi = n− di + 1 for 1 ≤ i ≤ k − 1, µk = r1.

By Kleiman’s Transversality Theorem [K1], it is immediate that both Ω ∩ V (D) and Ω ∩ V (Db) consist
of a single reduced point, whereas Ω∩ V (Da) is empty. The conditions imposed by Ω and V (Da) cannot
be simultaneously satisfied, hence Ω ∩ V (Da) is empty. On the other hand, Fλi ∩ Q

ri
di

by construction
are one-dimensional subspaces that need to be contained in any W contained in Ω∩V (D) or Ω∩V (Db).
These determine (k−1)-dimensional subspace W ′ of W . Lbn1

∩F⊥µ1
is also a one-dimensinonal subspace Λ

that needs to be contained in W . Since Λ ⊂ (W ′)⊥, this uniquely constructs W ∈ Ω ∩ V (Db). Similarly,
Ln1 ∩ F⊥µ1

is a y1-dimensional linear space. However, the intersection of this linear space with (W ′)⊥ is
one-dimensional and must be contained in W . This uniquely constructs W in V (D) ∩ Ω. We leave the
minor modifications necessary in the other cases to the reader (see [C2] for more details in the orthogonal
case). This concludes the proof of the theorem. �
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6. Rigidity of Schubert classes

In this section, as an application of Algorithm 3.29, we discuss the rigidity of Schubert classes in
SG(k, n). Let G be an algebraic group and let P be a parabolic subgroup. Let X = G/P be the
corresponding homogeneous variety. A Schubert class c in the cohomology of X is called rigid if the only
projective subvarieties of X representing c are Schubert varieties. A Schubert class c in the cohomology
of X is called multi rigid if the only projective subvarieties of X representing kc, for any positive integer
k, are unions of k Schubert varieties. For details about rigidity of Schubert classes we refer the reader to
the papers [B], [Ho1], [RT], [C1] and [C6].

In many cases, symplectic restriction varieties provide explicit deformations of Schubert classes showing
that the corresponding Schubert classes are not rigid. The following example is typical.

Example 6.1. The Grassmannian SG(1, n) is isomorphic to Pn−1. Hence, all the Schubert varieties PLnj
are linear spaces. However, note that not all linear spaces are Schubert varieties. Points and codimension
one linear spaces are always Schubert varieties. The restriction of Q to a codimension one linear space
has a one-dimensional kernel W , hence it is of the form W⊥. We conclude that points and codimension
one linear spaces are rigid. Linear spaces PM with 1 < dim(M) < n − 1 do not have to be isotropic,
hence the corresponding Schubert classes are not rigid since they can be deformed to non-isotropic linear
spaces.

The following theorem generalizes this example.

Theorem 6.2. Let σλ•;µ• be a Schubert class in the cohomology of SG(k, n).

(1) If s = 0 and µj > k − j + 1 for some j, then σλ•;µ• = σµ• is not rigid.
(2) If s ≥ 1 and λs > max(µs+1, λs−1 + 1), then σλ•;µ• is not rigid.

Proof. In both cases, we find a symplectic restriction variety that has the same class as the Schubert
variety but is not a Schubert variety. First, suppose that s = 0. Consider a general Schubert variety
Σa• in G(k, n) with class σa• , where aj = n − µj . Then the cohomology class of the restriction variety
V (Da•) is the Schubert class σµ• . To prove this run Algorithm 3.29 on the diagram D(a•). Since
n − µj ≥ m + j > 2j − 1, the diagram D(a•) does not have any brackets. Furthermore, since the
Schubert variety already satisfies condition (A2), any intermediate diagram satisfies (A2). Hence, there
are no brackets in any of the intermediate diagrams (a position of the bracket cannot be larger than
m). Therefore, the intermediate diagrams automatically satisfy condition (A1). We conclude that the
algorithm only produces Da and at each stage Da is admissible. The formation of Da does not change
the position of the braces. Hence, when Da becomes saturated in perfect order, V (Da) equals a Schubert
variety with class σµ• . If µj > k − j + 1 for some j, then V (Da•) is not a Schubert variety. Let j be the
largest index such that µj > k − j + 1. If j = k, then the span of the linear spaces parameterized by
V (Da) is not isotropic. Hence, V (Da) cannot be a Schubert variety. If j < k, then the linear space Qrjdj
is distinguished and is not isotropic. Hence, V (Da) is not a Schubert variety.

Now assume that s ≥ 1 and λs > max(µs+1, λs−1 + 1). Consider the following partial flag:

Fλ1 ⊂ · · · ⊂ Fλs−1 ⊂ Q
λs−2
λs

⊂ F⊥µs+1
⊂ · · · ⊂ F⊥µk ,

where Fi are isotropic subspaces and Qλs−2
λs

is a non-isotropic space contained in F⊥λs−1
. By our assumption

that λs > max(µs+1, λs−1 + 1) such a sequence exists. Let Y be the Zariski closure of the locus of k-
dimensional isotropic subspaces W that satisfy dim(W ∩ Fλi) = i for 1 ≤ i < s, dim(W ∩ F⊥µj ) = j for
s < j ≤ k and dim(W ∩Qλs−2

λs
) = s. Then the cohomology class of Y is σλ•;µ• , but Y is not a Schubert

variety. To calculate the class of Y , we run Algorithm 3.29 on the partial flag defining Y . If we omit the
linear spaces F⊥µs+1

, . . . , F⊥µk , we obtain an admissible sequence. The sequence is in order, so we are in
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case (2)(i) with κ = k − s+ 1. The Algorithm only produces Da, which does not satisfy condition (A2).
Step 1 of Algorithm 3.25, replaces Qλs−2

λs
with Fλs and the result is a Schubert variety. We conclude

that the class of Y is σλ•,µ• . However, since Qλs−2
λs

is not isotropic, Y is not a Schubert variety. This
concludes the proof. �

Corollary 6.3. (1) If the Schubert class σn−µ1,...,n−µk in the cohomology of G(k, n) can be represented
by a smooth subvariety of G(k, n), then the Schubert class σ;µ1,...,µk can also be represented by a
smooth subvariety of SG(k, n).

(2) If there exists an index i < k such that m − i − 1 > µi > µi+1 + 2 or if there exists an index
1 < i < k such that m − i > µi−1 = µi + 1 > µi+1 + 2, then σ;µ1,...,µk cannot be represented by a
smooth subvariety of SG(k, n).

(3) If the Schubert class σλ1,...,λk in the cohomology of G(k,m) can be represented by a smooth subvari-
ety of G(k,m), then the Schubert class σλ1,...,λk; in the cohomology of SG(k, n) can be represented
by a smooth subvariety of SG(k, n).

(4) If there exists an index i < k such that i < λi < λi+1 + 2 or an index 1 < i < k − 1 such that
i − 1 < λi−1 = λi − 1 < λi+1 − 2, then σλ1,...,λk; cannot be represented by a smooth subvariety of
SG(k, n).

Proof. By Theorem 6.2, the Schubert class σ;µ1,...,µk is the class of the restriction variety D(σn−µ1,...,n−µk).
If σn−µ1,...,n−µk can be represented by a smooth subvariety Y of G(k, n), then, by Kleiman’s Transversality
Theorem [K1], for a general translate of Y , Y ∩SG(k, n) is a smooth subvariety of SG(k, n) representing
the Schubert class σ;µ1,...,µk . This proves (1).

A Schubert variety in SG(k, n) with class σλ1,...,λk; parameterizes k-dimensional subspaces of a maximal
isotropic space W , hence it is also a subvariety of G(k,W ) = G(k,m) with class σλ1,...,λk . If the latter
class can be represented by a smooth subvariety Y of G(k,W ), then Y also represents the class σλ1,...,λk;

in SG(k, n). This proves (3).

The Schubert variety Σ parameterizing k-dimensional isotropic subspaces contained in a fixed maximal
isotropic space W is a smooth subvariety of SG(k, n) isomorphic to G(k,m) that has cohomology class
σm−k+1,...,m;. If Y is a smooth subvariety representing σ;µ1,...,µk , then, by Kleiman’s Transversality The-
orem, the intersection of Σ with a general translate of Y is a smooth subvariety of G(k,m) representing
the class σm−µ1,...,m−µk . Therefore, Theorem 1.6 of [C1] implies (2).

Under the inclusion i : SG(k, n) → G(k, n), a Schubert variety Σ in SG(k, n) with class σλ1,...,λk; is
a Schubert variety of G(k, n) with class σλ1,...,λk . If the former class can be represented by a smooth
subvariety Y of SG(k, n), then i(Y ) is a smooth subvariety that represents the latter class in G(k, n).
Hence, if the latter class cannot be represented by a smooth subvariety of G(k, n), then Y cannot exist.
Therefore, Theorem 1.6 of [C1] implies (4).

�
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