Math 215: Introduction to Advanced Mathematics
 Problem Set 10

Due Wednesday November 22

1) A standard deck of cards has 4 suits and each suit has 13 cards $2,3, \ldots, 10$, J, Q, K, A. In draw poker your are dealt 5 cards.
a) How many 5 card poker hands are there? [Note: The order you are dealt the cards doesn't matter. If you are dealt the $\mathrm{A} \bigcirc, 5 \diamond, \mathrm{~A} \boldsymbol{\uparrow}, \mathrm{~K} \boldsymbol{\oplus}$, and then the 3\&, you have the same hand as if you were dealt $5 \diamond, \mathrm{~K} \boldsymbol{\uparrow}, 3 \boldsymbol{\&}, \mathrm{~A} \odot$, and then the $\mathrm{A} \boldsymbol{\phi}$.]
b) A flush is when all 5 cards are from the same suit. How many ways are there to be dealt a flush.

To calculate the probablity of being dealt a flush, divide your answer to b) by your answer to a).
2) Let X be a finite set with $|X|=n$ and let $0 \leq r \leq n$.

Let $F: \mathcal{P}_{r}(X) \rightarrow P_{n-r}(X)$ be the function $F(A)=X-A$. Prove that X is a bijection and conclude that

$$
\binom{n}{r}=\binom{n}{n-r}
$$

3) a) Suppose X and Y are disjoint sets. Let
$\mathcal{A}=\bigcup_{i=0}^{k} \mathcal{P}_{i}(x) \times \mathcal{P}_{k-i}(Y)=\left(\mathcal{P}_{0}(X) \times \mathcal{P}_{k}(Y)\right) \cup\left(\mathcal{P}_{1}(X) \times \mathcal{P}_{k-1}(Y)\right) \cup \ldots \cup\left(\mathcal{P}_{k}(X) \times \mathcal{P}_{0}(Y)\right)$.
Let $F: \mathcal{A} \rightarrow \mathcal{P}_{k}(X \cup Y)$ be the function

$$
F(A \times B)=A \cup B
$$

Prove that F is a bijection.
b) Use a) to conclude that

$$
\binom{m+n}{k}=\sum_{i=0}^{r}\binom{m}{i}\binom{n}{r-i}
$$

4) (5pt Bonus) Let X, Y, Z be nonempty sets. Suppose $f: X \times Y \rightarrow Z$ and $y \in Y$, let $f_{y}: X \rightarrow Z$ be the function

$$
f_{y}(x)=f(x, y)
$$

Define $\Phi: \mathcal{F}(X \times Y, Z) \rightarrow \mathcal{F}(Y, \mathcal{F}(X, Z))$ as follows: For $f: X \times Y \rightarrow Z$, let $\Phi(f): Y \rightarrow \mathcal{F}(X, Z)$ be the function $y \mapsto f_{y}$. Prove that Φ is a bijection.

For finite sets X, Y, Z, this shows

$$
|Z|^{|X||Y|}=\left(|Z|^{|X|}\right)^{|Y|}
$$

