Math 215: Introduction to Advanced Mathematics Problem Set 10

Due Wednesday November 22

1) A standard deck of cards has 4 suits and each suit has 13 cards 2, 3, ..., 10, J, Q, K, A. In draw poker your are dealt 5 cards.

a) How many 5 card poker hands are there? [Note: The order you are dealt the cards doesn't matter. If you are dealt the $A\heartsuit$, $5\diamondsuit$, $A\clubsuit$, $K\clubsuit$, and then the $3\clubsuit$, you have the same hand as if you were dealt $5\diamondsuit$, $K\clubsuit$, $3\clubsuit$, $A\heartsuit$, and then the he A\clubsuit.]

b) A flush is when all 5 cards are from the same suit. How many ways are there to be dealt a flush.

To calculate the probability of being dealt a flush, divide your answer to b) by your answer to a).

2) Let X be a finite set with |X| = n and let $0 \le r \le n$.

Let $F : \mathcal{P}_r(X) \to \mathcal{P}_{n-r}(X)$ be the function F(A) = X - A. Prove that X is a bijection and conclude that

$$\binom{n}{r} = \binom{n}{n-r}$$

3) a) Suppose X and Y are disjoint sets. Let

$$\mathcal{A} = \bigcup_{i=0}^{k} \mathcal{P}_{i}(x) \times \mathcal{P}_{k-i}(Y) = (\mathcal{P}_{0}(X) \times \mathcal{P}_{k}(Y)) \cup (\mathcal{P}_{1}(X) \times \mathcal{P}_{k-1}(Y)) \cup \ldots \cup (\mathcal{P}_{k}(X) \times \mathcal{P}_{0}(Y))$$

Let $F : \mathcal{A} \to \mathcal{P}_k(X \cup Y)$ be the function

$$F(A \times B) = A \cup B.$$

Prove that F is a bijection.

b) Use a) to conclude that

$$\binom{m+n}{k} = \sum_{i=0}^{r} \binom{m}{i} \binom{n}{r-i}.$$

4) (5pt Bonus) Let X, Y, Z be nonempty sets. Suppose $f : X \times Y \to Z$ and $y \in Y$, let $f_y : X \to Z$ be the function

$$f_y(x) = f(x, y).$$

Define $\Phi : \mathcal{F}(X \times Y, Z) \to \mathcal{F}(Y, \mathcal{F}(X, Z))$ as follows: For $f : X \times Y \to Z$, let $\Phi(f) : Y \to \mathcal{F}(X, Z)$ be the function $y \mapsto f_y$. Prove that Φ is a bijection.

For finite sets X, Y, Z, this shows

$$|Z|^{|X||Y|} = \left(|Z|^{|X|}\right)^{|Y|}.$$