Math 215: Introduction to Advanced Mathematics
 Problem Set 12

Due: Friday December 8

1) Suppose I is a countable set and that for each $i \in I$ we have a countable set A_{i}. Let $f_{i}: \mathbb{N} \rightarrow A_{i}$ be a surjection. Let

$$
A=\bigcup_{i \in I} A_{i}=\left\{x: x \in A_{i} \text { for some } i \in I\right\} .
$$

Let $F: I \times \mathbb{N} \rightarrow A$ be the function $F(i, n)=f_{i}(n)$.
a) Prove that F is a surjection.
b) Prove that A is countable.

This excersise shows that a countable union of countable sets is countable.
2) a) Prove that the interval $(0,1)$ is equipotnet with the interval (a, b). [Note: the interval $(c, d)=\{x \in \mathbb{R}: c<x<d\}$.]
b) Prove that the interval $(0,1)$ is equipotent with the interval $(0,+\infty)$.
c) Prove that the interval $(0,+\infty)$ is equipotent with \mathbb{R}. Conclude that $(0,1)$ is equipotent with \mathbb{R}.
3) If A is any set we define $A^{2}=A \times A$ and

$$
A^{n}=\underbrace{A \times \ldots \times A}_{n-\text { times }} .
$$

We also think of $A^{n}=\left\{\left(a_{1}, \ldots, a_{n}\right): n \in A\right\}$. Let $S(A)=\bigcup_{n \in \mathbb{N}} A^{n}$. Then $S(A)$ is the set of all finite sequences from A.
a) Prove that if A is countable, then A^{n} is countable for all n. [Hint: This should be an easy induction.]
b) Prove that if A is countable, then $S(A)$ is countable.
c) Let $\mathbb{Q}[X]$ be the set of all polynomials with rational coefficients. Prove that $\mathbb{Q}[X]$ is countable. [Hint: Show there is a bijection to $S(\mathbb{Q})$.
d) We say that $\alpha \in \mathbb{R}$ is an algebraic number if there is a nonzero polynomial $p(X) \in \mathbb{Q}[X]$ such that $p(\alpha)=0$. For example $\sqrt{2}$ is algebraic since
if we take $p(X)=X^{2}-2$, then $p(\alpha)=0$. If α is not an algebraic number we say that α is transcendental.

Prove that the set of algebraic numbers is countable. [Hint: For $p \in \mathbb{Q}[X]$ nonzero, let $A_{p}=\{x \in \mathbb{R}: p(x)=0\}$. For example if $p(X)=X^{2}-2$, then $A_{p}=\{\sqrt{2},-\sqrt{2}\}$. You may use the fact that each A_{p} is finite-in fact $\left|A_{p}\right|$ is at most the degree of p. Note that the set of algebraic number is $\bigcup_{p \in \mathbb{Q}[X]-\{0\}} A_{p}$.]
e) Prove that there is a transcendental real number.
4) (Bonus 5pt) [Cantor-Schröder-Bernstein Theorem] Suppose $f: X \rightarrow Y$ and $g: Y \rightarrow X$ are injections. Prove that there is a bijection $h: X \rightarrow Y$. [Hint: Let $X_{0}=X, Y_{0}=Y, X_{n+1}=\vec{g}\left(Y_{n}\right)$ and $Y_{n+1}=\vec{f}\left(X_{n}\right)$. Let $X_{\infty}=\bigcap_{n=0}^{\infty} X_{n}$ and $Y_{\infty}=\bigcap_{n=0}^{\infty} Y_{n}$. Let

$$
h(x)= \begin{cases}f(x) & \text { if } x \in A_{\infty} \cup \bigcup_{n=1^{\infty}} A_{2 n}-A_{2 n+1} \\ g^{-1}(x) & \text { otherwise }\end{cases}
$$

Prove that h is a bijection.]

