Public Key Cryptography

We will look at some basic number theoretic algorithms leeding to the RSA Public Key Cipher.

1 Raising to Large Powers by Squaring

How do we compute $a^{m}(\bmod n)$ when m is large? We could multiply a by itself $m-1$ times (doing the calculation $\bmod n$ so that we don't have to deal with huge numbers). But there is a much more efficient way.

Algorithm to Compute $a^{m}(\bmod n)$

1) Write m in base 2 ,

$$
m=\sum_{i=0^{r}} u_{i} 2^{i},
$$

where $r=\left\lfloor\log _{2}(m)\right\rfloor$ and $u_{i}=0$ or 1 for each i.
2) By succesive squaring calculate $N_{i}=a^{2^{i}}(\bmod n)$ for $i=0, \ldots, r$.
3) Calcuate $a^{m}=N_{0}^{u_{0}} N_{1}^{u_{1}} \ldots N_{r}^{u_{r}}(\bmod n)$.

Why does this work?

$$
a^{m}=a^{\sum_{i=0}^{r} u_{i} 2^{i}}=\prod_{i=0}^{r} a^{u_{i} 2^{i}}=\prod_{i=0}^{r}\left(a^{2^{i}}\right)^{u_{i}} \equiv \prod_{i=0}^{r} N_{i}^{u_{i}}(\bmod n) .
$$

Note that step 2) takes r multiplications and step 3) takes at most r mulitplications. Thus we are only doing at most $2 \log _{2}(m)$ multiplications, as opposed to $m-1$ multiplications.

For example we compute $5^{337}(\bmod 2349)$.
$5^{2} \equiv 25(\bmod 2349)$
$5^{4} \equiv 625(\bmod 2349)$
$5^{8} \equiv 691(\bmod 2349)$
$5^{16} \equiv 634(\bmod 2349)$
$5^{32} \equiv 277(\bmod 2349)$
$5^{64} \equiv 1561(\bmod 2349)$
$5^{128} \equiv 808(\bmod 2349)$
$5^{256} \equiv 2196(\bmod 2349)$

Next write 351 in base 2 .

$$
337=256+64+16+1
$$

Thus

$$
5^{337}=5^{256} \cdot 5^{64} \cdot 5^{16} \cdot 5 \equiv(2196)(1561)(634)(5) \equiv 1049(\bmod (2349)
$$

We could also use the following recursive algorithm

$$
a^{m} \equiv \begin{cases}1 & \text { if } m=0 \\ a\left(a^{m-1}\right) & \text { if } m \text { is odd } \quad(\bmod n) \\ \left(a^{m / 2}\right)^{2} & \text { if } m \text { is even }\end{cases}
$$

2 Computing k th roots

Suppose we want to solve $x^{k} \equiv b(\bmod n)$ where
i) We know $\phi(n)$;
ii) $\operatorname{gcd}(k, \phi(n))=1$
iii) $\operatorname{gcd}(b, n)=1$ or $n=p q$ where p and q are distinct primes.

Theorem 2.1 For k, n, b as above the congruence $X^{k} \equiv b$ has a solution in \mathbb{Z}_{n}.

Algortithm to solve $x^{k} \equiv b(\bmod n)$

1) Find $s, t \geq 0$ solving

$$
k s-\phi(n) t=1
$$

2) Compute $x=b^{s}(\bmod n)$ using the algorithm from $\S 1$.

Why does this work?
First note that since $\operatorname{gcd}(k, \phi(n))=1$ we can always find s, t as in 2). If $\operatorname{gcd}(b, n)=1$, then by Euler's Theorem $b^{\phi(n)} \equiv 1(\bmod n)$. Thus

$$
x^{k} \equiv\left(b^{k}\right)^{s} \equiv b^{k s} \equiv b^{1+\phi(n) t} \equiv b\left(b^{\phi(n)}\right)^{t} \equiv b(\bmod n) .
$$

If $\operatorname{gcd}(b, n)>1$ and $n=p q$ for distinct primes p, q, we need the following lemma.
Lemma 2.2 If $n=p q$ where p, q are distinct primes, then for all $r \geq 1$ and all b

$$
b^{r \phi(n)+1} \equiv b(\bmod n) .
$$

Proof If $\operatorname{gcd}(b, n)=1$, this follows from Euler's Theroem. If $\operatorname{gcd}(b, n)=n$, then $b^{r \phi(n)+1} \equiv b \equiv 0(\bmod n)$. So the only interesting case is when b is divisible by one, but not both of p and q. Suppose $b=m p^{l}$ where $\operatorname{gcd}(m, n)=1$. Since $m^{r \phi(n)+1} \equiv m(\bmod n)$ it is enough to consider the case where $b=p^{l}$.

Let $x=b^{r \phi(n)+1}$. To show that $x \equiv b(\bmod n)$, it is enough to show

$$
x \equiv b(\bmod p) \text { and } x \equiv b(\bmod q) .
$$

This is obviously true mod p , since $b \equiv 0(\bmod p)$. Since $\phi(n)=(p-1)(q-1)$

$$
x=\left(p^{l}\right)^{r \phi(n)+1}=\left(\left(p^{l}\right)^{q-1}\right)^{r(p-1)}\left(p^{l}\right) \equiv p^{l}(\bmod q)
$$

by Euler's Theorem.
For example let's solve $x^{113}=341(\bmod 1105)$.
We can factor $1105=5(13)(17)$. Thus $\phi(1105)=4(12)(16)=768$.

$$
\begin{aligned}
& 768=6(113)+90 \\
& 113=90+23 \\
& 90=3(23)+21 \\
& 23=21+2 \\
& 21=10(2)+1 \\
&= \\
&= 21-10(2) \\
&= 11(90-3(23)-10(23))-10(23) \\
&= 11(90)-43(23) \\
&= 11(90)-43(113-90) \\
&= 54(90)-43(113) \\
&= 54(768-6(113))-43(113) \\
&= 54(768)-367(113)
\end{aligned}
$$

Thus 113(-367) $-768(-54)=1$. The general solutions are $s=-367+768 n$, $t=-54+113 n$ Letting $n=1$ we get the nonnegative solution $s=401, t=59$. Thus 341^{401} is a solution $\bmod 1105$.

Calculate $341^{2} \equiv 256(\bmod 1105)$
$341^{4} \equiv 341(\bmod 1105)$
$341^{8} \equiv 256(\bmod 1105)$
$341^{16} \equiv 341(\bmod 1105)$
$341^{32} \equiv 256(\bmod 1105)$
$341^{64} \equiv 341(\bmod 1105)$
$341^{128} \equiv 256(\bmod 1105)$
$341^{256} \equiv 341(\bmod 1105)$
Since $401=256+125+16+4$,

$$
341^{401} \equiv(341)(256)(341)(341) \equiv 256(\bmod 1105)
$$

Thus 256 is the desired solution.

Warning-COMPUTING $\phi(n)$ IS HARD

Although this seems like an easy algorithm, there is one serious difficulty. We need to compute $\phi(n)$. If we can factorize n, then this is easy. But if n is very large, factorizing n might be very hard and computing $\phi(n)$ might be just as hard.

Suppose p and q are primes and $n=p q$. We claim that if we know n and $\phi(n)$ then we can easily computer p and q. Note that that

$$
\phi(n)=\phi(p q)=(p-1)(q-1)=n-p-q+1 .
$$

Thus we can compute

$$
p+q=n+1-\phi(n) .
$$

Next note that p and q are the roots of the quadratic equation

$$
X^{2}+(p+q) X-n=0
$$

We can solve this using the quadratic formula

$$
p, q=\frac{-(p+q) \pm \sqrt{(p+q)^{2}-4 n}}{2}
$$

Thus if we know n and $\phi(n)$ we can factor n.

3 Public Key Cryptography

We describe the RSA public key cipher. ${ }^{1}$
Let p and q be large primes and let $n=p q$. Choose m such that $\operatorname{gcd}(m, \phi(n))=$ 1. We publish m and n.

Suppose Alice wants to send us a message. We assume the message is a sequence of numbers a_{1}, \ldots, a_{k} where each a_{k} is an integer less than n. She calculates b_{1}, \ldots, b_{k} where $b_{i} \equiv a_{i}^{m}$ and send us b_{1}, \ldots, b_{k}.

When we receive b_{1}, \ldots, b_{k}. We use the method of $\S 2$ to solve the equations $x_{1}^{m} \equiv b_{i}(\bmod n), \ldots x_{k}^{m} \equiv b_{i}(\bmod n)$. In otherwords, we calcluate $s, t \geq 1$ such that $k s-\phi(n) t=1$ and take $x_{i}=b_{i}^{s}$.

We claim that we must have $x_{i} \equiv a_{i}(\bmod n)$. By Theorem 2.1 the function $x \mapsto x^{m}(\bmod n)$ is an onto map from \mathbb{Z}_{n} to \mathbb{Z}_{n}. It follows that it is also onto (if $x \neq y$ and $x^{m}=y^{m}$ we would have to miss something else in the image. Thus we have found a_{i}.

What if someone intercepted Alice's message. Without knowing $\phi(n)$, they would have no idea how to find the s that we use to decode the message. As we argued above, fining $\phi(n)$ from n is equivalent to being able to factor n, and there is no known efficient way to do this.

Example 1 Suppose we take each of the 26 letters of the alphabet and represent them as a two digit string. We could take $\mathrm{A}=01, \mathrm{~B}=02, \ldots, \mathrm{Z}=26$. So DOG becomes the string 041507.

[^0]Let $p=5$ and $q=11$ then $n=55$ and $\phi(n)=40$. Since $\operatorname{gcd}(3,40)=1$ we could take $k=3$. We could take the message $a_{1}=4, a_{2}=15, a_{3}=7$. And code it as $b_{1}=9, b_{2}=20, b_{3}=13$.

To decode the message we need to know how to solve the equation $3 s-40 t=$ 1. One solution is $(27,2)$. Thus we can decode the message by $a_{i}=b_{i}^{27}$ (mod55). We get back $4,15,7$.

In practice we will have p and q large (over 100 digits), so we can code a block of letters as each a_{i}. Here is another exampe

Example 2 Take $p=757$ and $q=541$. Then $n=409537$ and $\phi(n)=408240$ Let $k=1327$. Then $\operatorname{gcd}(k, \phi(n))=1$. We can send our message DOG with a single $a=4157$. Then

$$
b \equiv(4157)^{1327} \equiv 275196(\bmod 409537)
$$

To decode messages we need to solve $1327 s-(408240) t=1$. We can do this using the Euclidean Algorithm. One solution is $s=28303, t=92$.

Thus we can decode our message by taking $a=b^{28303}$.

[^0]: ${ }^{1}$ This is also described in $\S 5.3$ of Jones \& Jones.

