Math 435 Number Theory I

Midterm 2
November 11, 2005

1) Calculate $\phi(4500)$.
$\phi(4500)=\phi(125 * 9 * 4)=\phi(125) \phi(9) \phi(4)=(125-25)(9-3)(4-2)=1200$
2) Calculate $5^{423}(\bmod 33)$
$\phi(33)=\phi(3) \phi(11)=20$. Thus

$$
5^{423} \equiv\left(5^{20}\right)^{21} 5^{3} \equiv 125 \equiv 26(\bmod 33)
$$

3) a) How many primitive roots are there in U_{23} ? $\phi(22)=\phi(2) \phi(11)=10$.
b) 5 is a primitive root in U_{23}. Below is a table of powers of $5 \bmod 23$.

n	1	2	3	4	5	6	7	8	9	10	11
5^{n}	5	2	10	4	20	8	17	16	11	9	22

n	12	13	14	15	16	17	18	19	20	21	22
5^{n}	18	21	13	19	3	15	6	7	12	14	1

Find all solutions to $X^{6} \equiv 6(\bmod 23)$
$6 \equiv 5^{18}$. Thus we want to find k such that $5^{6 i} \equiv 5^{18}(\bmod 23)$. We need to have $6 i \equiv 18(\bmod 22)$. There will be two solutions. Both are solutions to $3 i \equiv 9(\bmod 11)$. The solutions are $i=3,14$ and $x=10,13$.
4) Let $f(X)=X^{3}-2 X+9$. Note that 3,4 are the solutions to $f(X) \equiv$ $0(\bmod 5)$. Use Hensel's Lemma to find all solutions to $f(X) \equiv 0(\bmod 25)$.

First look for solutions $x=3+5 k$.

$$
\begin{aligned}
f(x) & \equiv f(3)+f^{\prime}(3)(5 k)(\bmod 25) \\
& \equiv 30+25(5 k)(\bmod 25)
\end{aligned}
$$

Since 25×30 there are no solutions mod 25 congruent to 3 .

Next look for solutions $x=4+5 k$.

$$
\begin{aligned}
f(x) & \equiv f(4)+f^{\prime}(4)(5 k)(\bmod 25) \\
& \equiv 65+46(5 k)(\bmod 25)
\end{aligned}
$$

Dividing by 5 , we see that we have to solve

$$
13+46 k \equiv 0(\bmod 5)
$$

or $3+k \equiv 0(\bmod 5)$. Thus $k \equiv 2(\bmod 5)$. Thus the unique solution to $f(X) \equiv 0 \in \mathbb{Z}_{25}$ is $4+5(2)=14$.
5) Calculate $\left(\frac{139}{211}\right)$.

$$
\begin{aligned}
\left(\frac{139}{211}\right) & =-\left(\frac{211}{139}\right) \\
& =-\left(\frac{72}{139}\right) \\
& =-\left(\frac{2}{139}\right)^{3}\left(\frac{3}{139}\right)^{3} \\
& =(-1)^{4}(\pm 1)^{2} \\
& =1
\end{aligned}
$$

6) Let p be an odd prime. Sketch a proof that $X^{2} \equiv-1(\bmod p)$ has a solution if and only if $p \equiv 1(\bmod 4)$.

By Euler's criterion

$$
\left(\frac{-1}{p}\right)=(-1)^{\frac{p-1}{2}}
$$

Thus $\left(\frac{-1}{p}\right)=1$ if and only if $\frac{p-1}{2}$ is even, if and only if $p \equiv 1 \bmod 4$.
7) Let $n>2$. Suppose g is a primitive root $\bmod n$.
a) Suppose i is even. Prove that g^{i} is not a primitive root. [Hint: You may use the fact that $\phi(n)$ is even.]

$$
\left(g^{i}\right)^{\frac{\phi(n)}{2}}=\left(g^{\frac{\phi(n)}{2}}\right)^{i} \equiv 1(\bmod n)
$$

Thus g^{i} is not a primitive root.
b) Prove that g and h are primitive roots $\bmod n$, then $g h$ is not a primitive root $\bmod n$.
$h=g^{i}$ for some i. By a) i is odd. But $g h=g^{i+1}$ and $i+1$ is even, thus $g h$ is not a primitive root.

