Math 435 Number Theory I Problem Set 4

Due: Friday September 23:

1) We showed that (x, y) is a rational solution to $X^2 + Y^2 = 1$ if and only if (x, y) = (-1, 0)

or there is $\lambda \in \mathbb{Q}$ such that

$$(x,y) = \left(\frac{1-\lambda^2}{1+\lambda^2}, \frac{2\lambda}{1+\lambda^2}\right).$$

a) Suppose $\lambda = \frac{m}{n}$, where $m, n \in \mathbb{N}$. Show that $(n^2 - m^2, 2mn, n^2 + m^2)$ is an integral solution to

 $X^2 + \overset{\odot}{Y}{}^2 = Z^2.$

b) Under what conditions on m and n is $(n^2-m^2,2mn,n^2+m^2)$ a primitive solution in $\mathbb N$

[Recall that it is enough to have $gcd(n^2 - m^2, 2mn) = 1$.]

2) Find a formula as in 1) for all rational points on the hyperbola $X^2 - Y^2 = 1$.

3) Solve the following congruences. Give the general solution.

a) $616x \equiv 144 \pmod{780}$

b) $x \equiv 3 \pmod{5}$ and $x \equiv 4 \pmod{8}$ and $x \equiv 2 \pmod{3}$.