Math 435 Number Theory I

Problem Set 4

Due: Friday September 23:

1) We showed that (x, y) is a rational solution to $X^{2}+Y^{2}=1$ if and only if $(x, y)=(-1,0)$
or there is $\lambda \in \mathbb{Q}$ such that

$$
(x, y)=\left(\frac{1-\lambda^{2}}{1+\lambda^{2}}, \frac{2 \lambda}{1+\lambda^{2}}\right) .
$$

a) Suppose $\lambda=\frac{m}{n}$, where $m, n \in \mathbb{N}$. Show that $\left(n^{2}-m^{2}, 2 m n, n^{2}+m^{2}\right)$ is an integral solution to
$X^{2}+Y^{2}=Z^{2}$.
b) Under what conditions on m and n is $\left(n^{2}-m^{2}, 2 m n, n^{2}+m^{2}\right)$ a primitive solution in \mathbb{N}
[Recall that it is enough to have $\operatorname{gcd}\left(n^{2}-m^{2}, 2 m n\right)=1$.]
2) Find a formula as in 1) for all rational points on the hyperbola $X^{2}-Y^{2}=1$.
3) Solve the following congruences. Give the general solution.
a) $616 x \equiv 144(\bmod 780)$
b) $x \equiv 3(\bmod 5)$ and $x \equiv 4(\bmod 8)$ and $x \equiv 2(\bmod 3)$.

