Math 435 Number Theory I

Problem Set 6

Due: Friday October 14:

1) Suppose p is primes.
a) Suppose $\operatorname{gcd}(d, p-1)=1$. Prove that [1] is the unique congruence class solving $X^{d} \equiv 1(\bmod p)$ in \mathbb{Z}_{p}. [Hint: Use the Bezout Property.]
b) Suppose $d \mid(p-1)$. Prove that $X^{d} \equiv 1(\bmod p)$ has d incongruent solutions in \mathbb{Z}_{p}. [Hint: $\left(X^{d}-1\right)$ divides $\left(X^{p-1}-1\right)$.]
c) Conclude that if p and q are primes, then $X^{q} \equiv 1(\bmod p)$ has a unique solution in \mathbb{Z}_{p} unless $p \equiv 1(\bmod q)$ in which case there are q solutions in \mathbb{Z}_{p}.
2) Using the methods of $\S 4.3$ solve

$$
X^{5}+X^{3}+1 \equiv 0(\bmod 27)
$$

3) Using the methods from $\S 4.3$ and the Chinese Remainder Theorem find all solutions to

$$
X^{2}+5 X+24 \equiv 0(\bmod 36)
$$

