Math 435 Number Theory I Problem Set 6

Due: Friday October 14:

1) Suppose p is primes.

a) Suppose gcd(d, p - 1) = 1. Prove that [1] is the unique congruence class solving $X^d \equiv 1 \pmod{p}$ in \mathbb{Z}_p . [Hint: Use the Bezout Property.]

b) Suppose d|(p-1). Prove that $X^d \equiv 1 \pmod{p}$ has d incongruent solutions in \mathbb{Z}_p . [Hint: $(X^d - 1)$ divides $(X^{p-1} - 1)$.]

c) Conclude that if p and q are primes, then $X^q \equiv 1 \pmod{p}$ has a unique solution in \mathbb{Z}_p unless $p \equiv 1 \pmod{q}$ in which case there are q solutions in \mathbb{Z}_p .

2) Using the methods of $\S4.3$ solve

$$X^5 + X^3 + 1 \equiv 0 \pmod{27}$$

3) Using the methods from $\S4.3$ and the Chinese Remainder Theorem find all solutions to

$$X^2 + 5X + 24 \equiv 0 \pmod{36}$$