Math 435 Number Theory I Problem Set 8

Due: Friday October 28:

1) We call n a Carmichael Number if n is not prime but $a^n \equiv a \pmod{n}$ for all a. Prove that 1105 is a Carmichael Number.

2) We say that a function f is multiplicative if f(nm) = f(n)f(m) for all n, m with gcd(n, m) = 1.

a) Let $\lambda(n) = (-1)^{k_1 + \dots + k_s}$ where $n = p_1^{k_1} \cdots p_m^{k_s}$ with p_1, \dots, p_s distinct primes. Prove that λ is multiplicative.

b) Suppose f is multiplicative. Define $F(n) = \sum_{d|n} f(d)$. Prove that F is multiplicative. [Hint: First show that if Let gcd(m, n) = 1, then $(a, b) \mapsto ab$ is a one-to-one onto map between $\{(a, b) : a|n, b|m\}$ and $\{d : d|mn\}$.]

3) Solve $x^{25} \equiv 2 \pmod{437}$

4) (5pt Bonus) We say that $n \in \mathbb{N}$ is square free if there is no prime p such that $p^2|m$. Prove that if n is square free and gcd(k, n) = 1, then $x \mapsto x^k \pmod{n}$ is a one-to-one onto map from \mathbb{Z}_n to \mathbb{Z}_n .