Math 435 Number Theory I

Problem Set 8

Due: Friday October 28:

1) We call n a Carmichael Number if n is not prime but $a^{n} \equiv a(\bmod n)$ for all a. Prove that 1105 is a Carmichael Number.
2) We say that a function f is multiplicative if $f(n m)=f(n) f(m)$ for all n, m with $\operatorname{gcd}(n, m)=1$.
a) Let $\lambda(n)=(-1)^{k_{1}+\ldots+k_{s}}$ where $n=p_{1}^{k_{1}} \cdots p_{m}^{k_{s}}$ with p_{1}, \ldots, p_{s} distinct primes. Prove that λ is multiplicative.
b) Suppose f is multiplicative. Define $F(n)=\sum_{d \mid n} f(d)$. Prove that F is multiplicative. [Hint: First show that if Let $\operatorname{gcd}(m, n)=1$, then $(a, b) \mapsto a b$ is a one-to-one onto map between $\{(a, b): a|n, b| m\}$ and $\{d: d \mid m n\}$.]
3) Solve $x^{25} \equiv 2(\bmod 437)$
4) (5pt Bonus) We say that $n \in \mathbb{N}$ is square free if there is no prime p such that $p^{2} \mid m$. Prove that if n is square free and $\operatorname{gcd}(k, n)=1$, then $x \mapsto x^{k}(\bmod n)$ is a one-to-one onto map from \mathbb{Z}_{n} to \mathbb{Z}_{n}.
