Rabin-Miller Primality Test

Lemma 0.1 Suppose p is an odd prime. Let $p-1=2^{k} m$ where m is odd. Let $1 \leq a<p$. Either
i) $a^{m} \equiv 1(\bmod p)$ or
ii) one of

$$
a^{q}, a^{2 m}, a^{4 m}, a^{8 m}, \ldots, a^{2^{k-1} m}
$$

is conruent to $-1 \bmod p$.
Proof We know that

$$
\left(a^{2^{k-1} m}\right)^{2}=a^{p-1} \equiv 1(\bmod n) .
$$

Thus $a^{2^{k-1} m} \equiv \pm 1(\bmod p)$. If $a^{2^{k-1} m} \equiv-1(\bmod p)$ we are done. Otherwise we proceed by induction.

If each of

$$
a^{2^{i+1} m}, \ldots, a^{2^{k-1} m}
$$

is congruent to 1 , then $a^{2^{i}} m \equiv \pm 1$. It follows that if ii) fails, we must have $a^{m} \equiv 1(\bmod p)$.

Suppose we are given an odd number n and want to know if it prime. We could pick $1 \leq a<n$ and calcuate

$$
a^{q}, a^{2 m}, a^{4 m}, a^{8 m}, \ldots, a^{2^{k-1} m}
$$

$\bmod n$. If neither i) nor ii) holds then we would know n is composite. In this case we say a is a witness that n is composite.

If a is not a witness, this does not tell us that n is prime, but it gives us some evidence that n might be prime.

If n is composite, most $1<a<n$ will witness that it is composite.
Theorem 0.2 If n is composite, then at least 75\% of numbers $1<a<n$ witness that n is composite.

This gives rise to a probabalistic algorithm for testing primality.

Rabin-Miller Algorithm

- Randomly pick a_{1}, \ldots, a_{k} independent elements $1<a<n$.
- For each a_{i} do the test described above.
- If any a_{i} is a witness that n is composite, you know n is composite
- If no a_{i} is a witness, guess that n is prime.

If you decide that n is composite, you will know that this is the correct answer. If you guess that n is prime, there is some chance that you were just unlucky. But if you guess that n is prime, the chance that you are wrong is less that $(.25)^{k}$. If we took $k=100$, then $(.25)^{100}<10^{-60}$. Taking k larger will increase our level of certainty further.

Fermat Test-A Flawed Attempt

One might try a simpler version of the Rabin-Miller test. If we want to know if n is prime, pick $1<a_{1}, \ldots, a_{k}<n$ and test if $a_{i}^{n} \equiv a_{i}(\bmod n)$. If this fails for any i, then we know n is composite, while if it is always true we migh guess n is prime. For most numbers n we are very likely to get the right answer, but there are some composite numbers that would always pass this test.

Definition 0.3 We say n is a Carmichael number if $a^{n} \equiv a(\bmod n)$ for all n.
$561=(3)(11)(17)$. But for any a,

$$
\begin{aligned}
a^{561} & =\left(a^{2}\right)^{280}(a) \equiv a(\bmod 3) \\
a^{561} & =\left(a^{10}\right)^{56}(a) \equiv a(\bmod 11) \\
a^{561} & =\left(a^{16}\right)^{35}(a) \equiv a(\bmod 17) .
\end{aligned}
$$

Thus $a^{561} \equiv a(\bmod 561)$. Thus 561 is a Carmichael number.
There are infinitely many Carmichael numbers.

