Rabin-Miller Primality Test

Lemma 0.1 Suppose p is an odd prime. Let $p - 1 = 2^k m$ where m is odd. Let $1 \le a < p$. Either

i) $a^m \equiv 1 \pmod{p}$ or ii) one of

$$a^{q}, a^{2m}, a^{4m}, a^{8m}, \dots, a^{2^{k-1}m}$$

is conruent to $-1 \mod p$.

Proof We know that

$$(a^{2^{k-1}m})^2 = a^{p-1} \equiv 1 \pmod{n}.$$

Thus $a^{2^{k-1}m} \equiv \pm 1 \pmod{p}$. If $a^{2^{k-1}m} \equiv -1 \pmod{p}$ we are done. Otherwise we proceed by induction.

If each of

$$a^{2^{i+1}m},\ldots,a^{2^{k-1}m}$$

is congruent to 1, then $a^{2^i}m \equiv \pm 1$. It follows that if ii) fails, we must have $a^m \equiv 1 \pmod{p}$.

Suppose we are given an odd number n and want to know if it prime. We could pick $1 \leq a < n$ and calcuate

$$a^q, a^{2m}, a^{4m}, a^{8m}, \dots, a^{2^{k-1}m}$$

mod n. If neither i) nor ii) holds then we would know n is composite. In this case we say a is a *witness* that n is composite.

If a is not a witness, this does not tell us that n is prime, but it gives us some evidence that n might be prime.

If n is composite, most 1 < a < n will witness that it is composite.

Theorem 0.2 If n is composite, then at least 75% of numbers 1 < a < n witness that n is composite.

This gives rise to a probabalistic algorithm for testing primality.

Rabin-Miller Algorithm

- Randomly pick a_1, \ldots, a_k independent elements 1 < a < n.
- For each a_i do the test described above.

- If any a_i is a witness that n is composite, you know n is composite
- If no a_i is a witness, guess that n is prime.

If you decide that n is composite, you will know that this is the correct answer. If you guess that n is prime, there is some chance that you were just unlucky. But if you guess that n is prime, the chance that you are wrong is less that $(.25)^k$. If we took k = 100, then $(.25)^{100} < 10^{-60}$. Taking k larger will increase our level of certainty further.

Fermat Test-A Flawed Attempt

One might try a simpler version of the Rabin-Miller test. If we want to know if n is prime, pick $1 < a_1, \ldots, a_k < n$ and test if $a_i^n \equiv a_i \pmod{n}$. If this fails for any i, then we know n is composite, while if it is always true we migh guess n is prime. For most numbers n we are very likely to get the right answer, but there are some composite numbers that would always pass this test.

Definition 0.3 We say n is a *Carmichael number* if $a^n \equiv a \pmod{n}$ for all n.

$$561 = (3)(11)(17)$$
. But for any a,

$$a^{561} = (a^2)^{280}(a) \equiv a \pmod{3}$$
$$a^{561} = (a^{10})^{56}(a) \equiv a \pmod{11}$$
$$a^{561} = (a^{16})^{35}(a) \equiv a \pmod{17}.$$

Thus $a^{561} \equiv a \pmod{561}$. Thus 561 is a Carmichael number.

There are infinitely many Carmichael numbers.