MTHT 530 Analysis for Teachers II
 Problem Set 7

1) Let $f(x)=2 x+1$ on $[1,3]$. Let $P=\left\{1, \frac{3}{2}, 2,3\right\}$.
a) Compute $L(f, P), U(f, P)$ and $U(f, P)-L(f, P)$.
b) What happens if $Q=P \cup\left\{\frac{5}{2}\right\}$?
c) Find a partition P^{\prime} where $U\left(f, P^{\prime}\right)-L\left(f, P^{\prime}\right)<2$.
2) Prove that every increasing function $f:[a, b] \rightarrow \mathbb{R}$ is integrable. [Note for later: We really need only "nondecreasing", i.e., if $x<y$, then $f(x) \leq f(y)$.]
3) Suppose $f:[a, b] \rightarrow \mathbb{R}$ is integrable.
a) Show that changing the value of f at one point does not change the value of the integral.
b) Suppose $f:[a, b] \rightarrow \mathbb{R}$ is integrable and g differs from f at only finitely many points. Prove that g is integrable and $\int_{a}^{b} g=\int_{a}^{b} f$.

Bonus (5pt) a) Find an example showing that if we alter an integrable example at countably many points the new function might not be integrable.
b) Give an example of a function discontinuous at countably many points that is integrable. [Hint: use problem 2)]

