MTHT 530 Analysis for Teachers II Midterm I Study Guide

The webpage

http://www.math.uic.edu/~marker/mtht530/concepts.html contains a summary of all key concepts and results we have discussed in the course.

The webpage

http://www.math.uic.edu/~marker/mtht530/wtw.html is a summary of what we have covered weak-by-weak.

Sample Exam Questions

The following are the type of questions I will ask on the exam. There are many more quesitons here than I would put on the exam.

- 1) Define the following concepts
 - a) f is differentiable at a
 - b) $(a_n)_{n=1}^{\infty}$ converges to a

c)
$$\lim_{x \to a} f(x) = l.$$

2) a) State the Completeness Axiom

- b) State the Bolzano–Weierstrass Theorem
- c) State the Mean Value Theorem
- 3) State and prove the Monotone Convergence Theorem.

4) Decide if the following statements are TRUE or FALSE. If FALSE, give an example showing the statement is FALSE.

a) If $A \subseteq \mathbb{R}$ is bounded and nonempty there is $\alpha \in A$, a least upper bound for A.

b) If $f:(a,b) \to \mathbb{R}$ is continuous, then it is bounded.

c) If $f : [a, b] \to \mathbb{R}$ is continuous and $f(x) \neq 0$ for all $x \in [a, b]$, then $g(x) = \frac{1}{f(x)}$ is bounded on [a, b].

d) If $\lim_{x\to a} f(x) = b$ and $\lim_{x\to b} g(x) = c$, then $\lim_{x\to a} g(f(x)) = c$.

e) If $(a_n)_{n=1}^{\infty}$ converges, then it is bounded.

f) If f is differentiable at a, then f is continuous at a.

g) If $f:[0,1] \to [0,2]$ is continuous, there is $x \in [0,1]$ with f(x) = 2x.

5) Suppose $\lim_{x\to a} f(x) = l$ and $(a_n)_{n=1}^{\infty}$ converges to a where no $a_n = a$. Prove that $(f(a_n))_{n=1}^{\infty}$ converges to l.

6) Let $f(x) = x^2$ Using the definition of derivatives prove that f'(a) = 2a.

7) Suppose $f : [0, 1] \to [0, 1]$ is differentiable and |f'(x)| < 1 for all $x \in [0, 1]$. Prove that there is **exactly** one $a \in [0, 1]$ with f(a) = a.

8) Let

$$f(x) = \begin{cases} 8x & \text{if } x \in Q\\ 2x^2 + 8 & \text{if } x \notin \mathbb{Q} \end{cases}.$$

Prove that f is continuous at 2, but not at 1.

9) Suppose $f'(x) \ge M$ for all $x \in [a, b]$. Prove that $f(b) \ge f(a) + M(b - a)$.