Sample problems for Exam 2

Problem 1. Prove or disprove that set S is a subspace of vector space V.
(1) $V=\mathbb{R}^{2}, S=\left\{(x, y)^{T} \mid x=y\right\}$
(2) $V=\mathbb{R}^{2}, S=\left\{(x, y)^{T} \mid x^{2}=y^{2}\right\}$
(3) $V=P_{3}, S=\left\{p \in P_{2} \mid p(2)=3\right\}$
(4) $V=P_{3}, S=\left\{p(x)=a x^{2}+b x+c \mid a+b+c=0\right\}$
(5) $V=\mathbb{R}^{2 \times 2}, S=\left\{A \in \mathbb{R}^{2 \times 2} \left\lvert\, A\binom{1}{1}=\binom{0}{0}\right.\right\}$
(6) $V=\mathbb{R}^{2 \times 2}, S=\left\{\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \right\rvert\, a+b+c+d=2\right\}$

Problem 2. Let S be the subspace of \mathbb{R}^{4} spanned by

$$
\mathbf{w}_{\mathbf{1}}=\left(\begin{array}{l}
1 \\
0 \\
2 \\
1
\end{array}\right), \quad \mathbf{w}_{\mathbf{2}}=\left(\begin{array}{l}
1 \\
1 \\
2 \\
0
\end{array}\right), \quad \mathbf{w}_{\mathbf{3}}=\left(\begin{array}{c}
2 \\
1 \\
4 \\
1
\end{array}\right), \quad \mathbf{w}_{4}=\left(\begin{array}{c}
3 \\
2 \\
6 \\
1
\end{array}\right)
$$

a) Does $b=(1,0,0,0)^{T}$ belong to S ?
b) $\mathrm{Do}_{\mathbf{w}_{\mathbf{1}}}, \mathbf{w}_{\mathbf{2}}, \mathbf{w}_{\mathbf{3}}, \mathbf{w}_{\mathbf{4}} \operatorname{span} \mathbb{R}^{4}$?
c) Are $\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}, \mathbf{w}_{\mathbf{3}}, \mathbf{w}_{\mathbf{4}}$ linearly independent?
d) Do $\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}, \mathbf{w}_{\mathbf{3}}, \mathbf{w}_{\mathbf{4}}$ form a basis of \mathbb{R}^{4} ?
e) Find a basis of S. What is the dimension of S ?

Problem 3. Let S be the subspace of P_{3} spanned by $\mathbf{p}_{\mathbf{1}}=x^{2}+2 x+3, \mathbf{p}_{\mathbf{2}}=2 x^{2}+$ $3 x+1, \mathbf{p}_{\mathbf{3}}=3 x^{2}+x+2, \mathbf{p}_{4}=x^{2}+x+1$.
a) Does x belong to S ?
b) Do $\mathbf{p}_{\mathbf{1}}, \mathbf{p}_{\mathbf{2}}, \mathbf{p}_{\mathbf{3}}, \mathbf{p}_{\mathbf{4}}$ span P_{3} ?
c) Are $\mathbf{p}_{\mathbf{1}}, \mathbf{p}_{\mathbf{2}}, \mathbf{p}_{\mathbf{3}}, \mathbf{p}_{\mathbf{4}}$ linearly independent?
d) Do $\mathbf{p}_{\mathbf{1}}, \mathbf{p}_{\mathbf{2}}, \mathbf{p}_{\mathbf{3}}, \mathbf{p}_{\mathbf{4}}$ form a basis of P_{3} ?
e) Find a basis of S. What is the dimension of S ?

Problem 4. Let S be the subspace of $\mathbb{R}^{2 \times 3}$ spanned by

$$
\mathbf{B}_{1}=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right), \quad \mathbf{B}_{2}=\left(\begin{array}{ccc}
6 & 5 & 4 \\
3 & 2 & 1
\end{array}\right), \quad \mathbf{B}_{3}=\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right) .
$$

a) Does $\left(\begin{array}{ccc}7 & 4 & 1 \\ -2 & -5 & -8\end{array}\right)$ belong to S ?
b) Do $\mathbf{B}_{\mathbf{1}}, \mathbf{B}_{\mathbf{2}}, \mathbf{B}_{\mathbf{3}}$ span $\mathbb{R}^{2 \times 3}$?
c) Are $\mathbf{B}_{\mathbf{1}}, \mathbf{B}_{\mathbf{2}}, \mathbf{B}_{\mathbf{3}}$ linearly independent?
d) Do $\mathbf{B}_{\mathbf{1}}, \mathbf{B}_{\mathbf{2}}, \mathbf{B}_{\mathbf{3}}$ form a basis of $\mathbb{R}^{2 \times 3}$?
e) Find a basis of S. What is the dimension of S ?

Problem 5. Let $A=\left(\begin{array}{ccccc}1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 6 & 8 & 10 \\ 3 & 6 & 9 & 11 & 15 \\ 4 & 7 & 11 & 16 & 0\end{array}\right)$.
a) Find a basis for the row space of A.
b) Find a basis for $R(A)$.
c) Find a basis for $N(A)$.
d) Find rank and nullity of A.

Problem 6. For the given vector space V and given bases F and G of V find the transition matrix corresponding to the change of basis from G to F. Also for the given vector w in V find $[w]_{G}$ and $[w]_{F}$.

$$
\text { (1) } \begin{aligned}
V & =\mathbb{R}^{3}, F=\left\{\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)\right\}, G=\left\{\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right\} \\
w & =\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) .
\end{aligned}
$$

(2) $V=P_{2}, F=\{2 x-3,5 x-7\}, G=\{x+8,2 x+15\}, w=1$.

Problem 7. Prove or disprove that a given map is a linear transformation. See homework problems from Section 4.1 for examples.

Answers

Problem 1.

(1) S is a subspace of \mathbb{R}^{2}.
(2) S is not a subspace of \mathbb{R}^{2}.
(3) S is a not subspace of P_{3}.
(4) S is a subspace of P_{3}.
(5) S is a subspace of $\mathbb{R}^{2 \times 2}$.
(6) S is a not subspace of $\mathbb{R}^{2 \times 2}$.

Problem 2.

a) No, b does not belong to S.
b) No, $\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}, \mathbf{w}_{\mathbf{3}}, \mathbf{w}_{\mathbf{4}}$ do not span \mathbb{R}^{4}.
c) No, $\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}, \mathbf{w}_{\mathbf{3}}, \mathbf{w}_{\mathbf{4}}$ are linearly dependent.
d) No, $\left\{\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}, \mathbf{w}_{\mathbf{3}}, \mathbf{w}_{\mathbf{4}}\right\}$ is not a basis of \mathbb{R}^{4}.
e) $\left\{\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}\right\}$ is a basis of $S . \operatorname{dim} S=2$.

Problem 3.

a) Yes, x belongs to S.
b) Yes, $\mathbf{p}_{\mathbf{1}}, \mathbf{p}_{\mathbf{2}}, \mathbf{p}_{\mathbf{3}}, \mathbf{p}_{\mathbf{4}}$ span P_{3}.
c) No, $\mathbf{p}_{\mathbf{1}}, \mathbf{p}_{\mathbf{2}}, \mathbf{p}_{\mathbf{3}}, \mathbf{p}_{\mathbf{4}}$ are linearly dependent.
d) No, $\left\{\mathbf{p}_{\mathbf{1}}, \mathbf{p}_{\mathbf{2}}, \mathbf{p}_{\mathbf{3}}, \mathbf{p}_{4}\right\}$ is not a basis of P_{3}.
e) $\left\{\mathbf{p}_{\mathbf{1}}, \mathbf{p}_{\mathbf{2}}, \mathbf{p}_{\mathbf{3}}\right\}$ is a basis of S. $\operatorname{dim} S=3$.

Problem 4.

a) Yes, $\left(\begin{array}{ccc}7 & 4 & 1 \\ -2 & -5 & -8\end{array}\right)$ belongs to S.
b) No, $\mathbf{B}_{\mathbf{1}}, \mathbf{B}_{\mathbf{2}}, \mathbf{B}_{\mathbf{3}}$ do not span $\mathbb{R}^{2 \times 3}$.
c) No, $\mathbf{B}_{\mathbf{1}}, \mathbf{B}_{\mathbf{2}}, \mathbf{B}_{\mathbf{3}}$ are linearly dependent.
d) No, $\left\{\mathbf{B}_{1}, \mathbf{B}_{\mathbf{2}}, \mathbf{B}_{3}\right\}$ is not a basis of $\mathbb{R}^{2 \times 3}$.
e) $\left\{\mathbf{B}_{\mathbf{1}}, \mathbf{B}_{\mathbf{2}}\right\}$ is a basis of S. $\operatorname{dim} S=2$.

Problem 5.

a) $\{(1,2,3,4,5),(0,1,1,0,20),(0,0,0,1,0)\}$ is a basis for the row space of A.
b) $\left\{(1,2,3,4)^{T},(2,4,6,7)^{T},(4,8,11,16)^{T}\right\}$ is a basis for $R(A)$.
c) $\left\{(-1,-1,1,0,0)^{T},(35,-20,0,0,1)^{T}\right\}$ is a basis for $N(A)$.
d) $\operatorname{rank}(A)=3$ and $\operatorname{nullity}(A)=2$.

Problem 6.
(1) $S=\left(\begin{array}{ccc}0 & -1 & 0 \\ 0 & 0 & -1 \\ 1 & 1 & 1\end{array}\right),[w]_{G}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right),[w]_{F}=\left(\begin{array}{c}-1 \\ -1 \\ 3\end{array}\right)$.
(2) $S=\left(\begin{array}{cc}-47 & -89 \\ 19 & 36\end{array}\right),[w]_{G}=\binom{2}{-1},[w]_{F}=\binom{-5}{2}$.

