HOMEWORK 12

This problem set is due Monday November 24. You may work on the problem set in groups; however, the final write-up must be yours and reflect your own understanding. You may assume that the ground field is the complex numbers.

Problem 0.1. Let C be the smooth, complex projective curve associated to the affine plane curve $y^{2}=$ $x^{3}+1$. Let $\pi: C \rightarrow \mathbb{P}^{1}$ be the projection to the x-axis. Let $w=e^{2 \pi i / 3}$ and let $p_{j}=\left(-w^{j}, 0\right)$ for $j=0,1,2$. Let $q_{j}=\left(0,(-1)^{j}\right)$ for $j=0,1$. Let $r=\pi^{-1}(\infty)$. Let $s_{j}=\left(2,(-1)^{j} 3\right)$ for $j=0,1$. Prove that the following divisors are linearly equivalent:

$$
\begin{gathered}
2 p_{0} \sim 2 p_{1} \sim 2 p_{2} \sim q_{0}+q_{1} \sim s_{0}+s_{1} \sim 2 r \\
p_{0}+p_{1}+p_{2} \sim 3 r \\
q_{0}+s_{0} \sim q_{1}+s_{1}
\end{gathered}
$$

Determine the complete linear system $L\left(p_{0}+q_{0}\right)$. Find a point p such that $p \sim p_{0}+q_{1}-r$. Find a point p such that $p \sim 2 s_{0}-r$. What is the genus of C ?

Problem 0.2. Let C be the plane curve determined by the equation $x^{4}+y^{4}-z^{4}=0$. Let $p=(0,1,1)$ Describe the complete linear system $L(3 p)$. Let $q=(1,0,1)$. Find a pair of points r_{1}, r_{2} such that $3 p \sim q+r_{1}+r_{2}$. Show that $4 p \sim 4 q$. Describe the complete linear system $L(4 p)$. What is the genus of C ?

Problem 0.3. Let C be the smooth, complex projective curve associated to the affine plane curve $y^{2}=$ $x^{6}-1$. Let $w=e^{\pi i / 3}$. Let $p_{j}=\left(w^{j}, 0\right)$ for $j=0,1, \ldots, 5$. Let $\pi: C \rightarrow \mathbb{P}^{1}$ be the projection to the x-axis. Let $q+r=\pi^{-1}(\infty)$. Prove the following linear equivalences

$$
\begin{gathered}
2 p_{j} \sim q+r \\
p_{0}+p_{1}+\cdots+p_{5} \sim 3 q+3 r
\end{gathered}
$$

Describe the complete linear system $L\left(p_{0}+p_{2}+p_{4}\right)$. Find an effective divisor D such that $p_{1}+D \sim$ $p_{0}+p_{2}+p_{4}$. What is the genus of C ?

