HOMEWORK 3

This problem set is due Friday September 19. You may work on the problem set in groups; however, the final write-up must be yours and reflect your own understanding. In all these exercises assume that k is an algebraically closed field and R is a commutative ring with unit.

Problem 0.1. Let V and W be two linear spaces of dimension k and m, respectively, in \mathbb{P}^{n}. Prove that if $k+m \geq n$, then $V \cap W$ have non-empty intersection.

Problem 0.2. Using problem one, show that given

$$
k \leq\binom{ n+d}{d}-1
$$

points in \mathbb{P}^{n}, there exists a non-zero homogeneous polynomial of degree d in $n+1$ variables vanishing on all k points. We say that the points impose independent conditions on polynomials of degree d in $n+1$ variables if the codimension of the vector space of homogeneous polynomials of degree d vanishing on the k points is $\min \left(k,\binom{n+d}{d}\right)$. Prove the following statements.
(1) $k \leq n+1$ points impose independent conditions on linear polynomials if and only if the points are in general linear position.
(2) 4 points fail to impose independent conditions on degree two polynomials in three variables if and only if they lie on a line. (What is the relation to the problems in week 1?)
(3) Let p_{1}, \ldots, p_{9} be the points of intersection of two irreducible cubic polynomials in \mathbb{P}^{2}. Show that any cubic polynomial containing 8 of the points contains the ninth as well.

Problem 0.3. Prove the following statements.
(1) Show that 4 points in \mathbb{P}^{3} fail to impose independent conditions on quadrics (degree two polynomials) if and only if they lie on a line. Does the same hold for \mathbb{P}^{n} ?
(2) Show that 6 points that lie on a conic in \mathbb{P}^{3} fail to impose independent conditions on quadrics.
(3) Show that 8 points that lie on a twisted cubic fail to impose independent conditions on homogeneous polynomials on quadrics. More generally, show that $2 n+2$ points that lie on a rational normal curve of degree n in \mathbb{P}^{n} fail to impose independent conditions on quadrics (degree two polynomials in $n+1$ variables).

Problem 0.4. Let $X=\nu_{2}\left(\mathbb{P}^{2}\right)$, the second Veronese embedding of \mathbb{P}^{2}. Show that the hyperplane sections of X are either rational normal curves of degree 4 or the union of two conics intersecting at a point or a (double) conic. (When do we get a rational normal curve? When do we get a union of two conics/a (double) conic?)

Problem 0.5. Find the equations of the projection of the standard twisted cubic $\left[x_{0}, x_{1}\right] \mapsto\left[x_{0}^{3}, x_{0}^{2} x_{1}, x_{0} x_{1}^{2}, x_{1}^{3}\right]$ from the points $[1,0,0,1]$ and $[0,1,0,0]$. Harder: Show that any projection of a twisted cubic in \mathbb{P}^{3} from a point outside the twisted cubic is projectively equivalent to one of these two. Challenge: Show that the rational normal quartic in \mathbb{P}^{4} has smooth projections to \mathbb{P}^{3} (from points outside the curve) that are not projectively equivalent.

