
Algebraic Geometry (Intersection Theory) Seminar

Lecture 1 (January 20, 2009)

 We will discuss cycles, rational equivalence, and Theorem 1.4 in
Fulton, as well as push-forward of rational equivalence. Notationwise, we
will let "scheme" mean an algebraic scheme over a field, "variety" will
mean a reduced and irreducible scheme, and a "point" will mean a closed
point. Let  be a scheme and  a subvariety. Then  where\ Z © \ œb b@ßB 8ßB

8 Z \ V \ is a generic point of . For a variety , let  be the field of rational� �
functions.

 Let  be a variety with  a subvariety of codimension one.\ Z © \
Then  has dimension , and . For anyb bZ ß\ Z ß\" V œ V \� � � �
! Á < − V \ œ V < œ +Î, +ß , −� � � �b bZ ß\ Z ß\ with  for . For any
! Á = − j ÎW � ∞b bZ ß\ Z ß\, .� �

Definition.   Let  be a variety and  a subvariety with codimension\ Z © \
". Then there is a well-defined homomorphism such thatord  Z

‡À V \ Ä� � ™
( ):for ,  with < − V \ œ V < œ +Î, +ß , −� � � �‡ ‡

Z ß\ Z ß\b b

 (i)  ord ord ord ,Z Z Z� � � � � �< œ + � ,

 (ii) ord , andZ Z ß\� � � �+ œ j Î+b

 (iii) ord .Z Z ß\� � � �, œ j Î,b

Example.   If  is a veriety which is regular in codimension one, this\
means for any  a subvariety with codimension ,  is a discreteZ © \ " bZ ß\

valuation ring.

Cycles and rational equivalence

Definition.   Let  be a scheme. A -cycle on  is a finite formal sum\ 5 \

� c d8 Z ß 8 −3 33  ™

where  are -dimensional subvarieties of . LetZ © \ 5 \3

^ \ œ 8 Z l Z 55 3 33e f� c d  are a -dimensional subvarieties , so

^ \ œ‡ 9
5 � !

^ \5 .

Any element  is called a cycle.α αœ − ^ O� e f
5�!

5 ‡



 For  a scheme, let  be irreducible components of . For\ \ ß ÞÞÞß \ \" >

each , we have geometric multiplicity . Notice  has a\ 7 œ j \3 3 \ ß\ 3� �b
3

generic points (  is an Artinian ring).( b b3 \ ß\3 3
œ (

Notation.   We define  (this is a cycle).c d c d�\ œ 7 \ − ^ \
3œ"

>

3 3 ‡

 We want to give an equivalence relation on cycles. Let  be a\
scheme and  a -dimensional subvariety. For , we[ © \ 5 % " < − V [� � � �‡

define

c d � � c d� � �div ord .

cod

< œ < Z

Z œ "
Z ©[

[

Z

Notice a -cycle  is rationally equivalent to , written , if there are a5 ! µ !α α
finite number of -dimensional subvarieties  and 5 % " [ © \ < − V [3 3 3

‡� �
such that div .α œ <�c d� �3

 All the cycles equivalent to  are written Rat . We can now define! \5

the cycle class,

E \ œ ^ \Î \5 5 5Rat , with

E \ œ E \ œ ^ \Î \‡ 5 5 59 9
5 � ! 5 � !

Rat .

Examples.  (1) , since  and  have the sameE \ z E \ \ \5 5� � � �red reduced

subvarieties.

(2)  If , then\ œ \ ∪ \ ∪ ÞÞÞ ∪ \" # >

^ \ œ ^ \ E \ œ E \
> >

‡ ‡ 3 ‡ ‡ 39 9
3 œ " 3 œ "

   and   .

(3) If dim , then , then there are no " -dimensional\ œ 8 E \ œ ^ \ 5 % "8 8

subvarieties", so there is nothing to mod out by.

(4) If  and  are subschemes of , then\ \ \" #

E \ ∩ \ Ä E \ Š E \ Ä E \ ∪ \ Ä !5 " # 5 " 5 # 5 " #� � � �

is an exact sequence.



(5) If  is an irreducible component of , then for any cycle classZ \
α α− E \ Z Z‡ , we define the coefficient of  in  to be the coefficient of  inc d
any cycle which represents  (since ).α α œ 8 Z� c d3 3

(6)  If spec , then  (just one point).\ œ O E \ œ ^ \ œ! ! B™c d

(7)  If , then  and Pic .\ œ E \ œ ^ \ œ E \ œ œ� ™ � ™" "
5 " " !B :c d c d

(8) Let  be a -dimensional variety. Assume we have  aZ 5 % " 0 À Z Ä �"

dominant function ( , or other way to think about it is that  maps0 Z œ 0� � �"

a generic point of  to a generic point of , or even ). Let'sZ 0 − V Z�" ‡� �
look at the fibers  and  (i.e., if , we have0 ! 0 ∞ œ B À B�" �" "

! "� � � � � ��
! œ " À ! ∞ œ ! À " 0 ! 0 ∞ 5� � � � � � � � and ). Then  and  are purely -�" �"

dimensional subschemes, so div .c d c d� � � � � �0 ! � 0 ∞ œ 0�" �"

Push-forward of cycles

 Let  be a proper morphism of two schemes. Then for a0 À \ Ä ]
unique , we want to understand . Assume  is a -cycleα α α− ^ \ 0 − ^ ] 5‡ ‡ ‡

with  with  a -dimensional subvariety. We want ?α œ 8 Z Z 5 0 Z œ� c d c d3 3 3 ‡

− ^ ] \ ]‡  to have some (covariant) functorial property relating  and . If
0 À \ Ä ] 0 À Z Ä [ œ 0 Z 0 Z ] and  (  is a subvariety of ). We want� � � �

 (1)  dim dim  means .[ � Z 0 Z œ !‡c d

 (2)  dim dim  means  has degree[ œ Z V Z V [� � � �ä

        c d� � � �V [ À V Z � ∞

We then call  (so  is well-defined).0 Z œ V Z À V [ † [ 0‡ ‡c d c d c d� � � � α

Theorem.  [1.4]   If  is a proper morphism and  is a -cycle on0 À \ Ä ] 5α
\ ! 0 which is rationally equivalent to , then  is rationally equivalent to‡α
zero on .]

Proof.   We write div  for  for some -dimensionalα œ < < − V Z 5 % "c d � �� �
subvariety of . That is,\

α œ < œ 8 Z

Z œ "

c d c d� � �div .

codim
Z ©Z

Z 3

3 3
3



For this cycle, we can assume  and . We can assume  is\ œ Z ] œ 0 Z \� �
a variety and  is a variety and  is a proper surjection. Now we] 0 À \ Ä ]
use the below proposition.

Proposition.   [1.4]  Let  be a proper, surjective morphism and0 À \ Ä ]
let . Then< − V \� �‡

 if (a) div   dim dim .0 < œ ! ] � \‡c d� �

 (b) div div  dim dim ,0 < œ R < ] œ \‡c d c d� � � � if 

where  is determinant of  as an -linear morphismR < V \ Ä V \ V ]
<� � � � � � � �

( ).R V − V ]� � � �

Proof Case 1.   .   Let spec  for  a field. Let  with] œ O O \ œ �"
5

0 À Ä O V \ œ O > < − V \ œ O > < œ +Î,�"
5 spec . Since , and  (� � � � � � � �

with ), we can assume  is an irreducible polynomial+ß , − O > < − O >c d c d
(since div div div , so if we prove it for div  andc d c d c d c d� � � � � � � �< œ + � , +
c d� �div  (and we know  and  are polynomials), then we have shown it for, + ,
c d � �� �div ). Furthermore, let  be a maximal prime ideal (< T œ < T − \ œ �"

5

is a closed point). In this case, ord  (since ), andT : <� � c d< œ " œ O >b � �
ord  for  with .U� � c d< œ ! U © O > U Á T

 Finally, consider the point . Then  (itT − T œ § O∞ ∞
"
5

" "
> >� ˆ ‰  ‘

corresponds to the prime ideal generated by  in the ring ). The way to" "
> >O ‘

visualize this is that  is for everything but , and  is forO > ∞ Oc d  ‘"
>

everything but . Call degree . Then , some poly. For! < œ . < œ 2ˆ ‰ ˆ ‰" "
> >

�.

example, . Then on , we have< œ > % " œ " %# "" "
> >

�#
5

ˆ ‰ ˆ ‰
# �

c d c d c d� �div  and< œ : � . T∞

0 < œ V T À O � . V T À O œ . � . † " œ !‡ ∞c d c d c d� � � � � �div ,

with .V T œ O > Î<� � c d

Case 2.  If  is finite, set with  and  and0 À \ Ä ] O œ V ] P œ V \� � � �
O P < [ § ]ä . Also, assume all varieties in div  map to a variety  ofc d� �
codimension . Let  (the generic point of this image) and" E œ b[ ß]

7 œ 7[ ß] . Consider the commutative diagram



 Spec  Spec P Ä \ ‚ E Ä \]

Æ Æ Æ 0  
Spec Spec    O Ä E ]Ò

with  and dim dim . Finally,  has finitely manyE F P F œ E œ " Fä ä
maximal ideals  such that . There is a one-to-one7 7 ∩ E œ 73 3

correspondence between ,  and {�"
3 3 3 3e f� �Z § \ l 0 Z œ [ 7 − F l 7 ∩

E œ 7 Þ F Œ O œ P F Œ O œ P}  Also, from the diagram,  and .E E73

 Now assume . Then computationally,< − F

div ord ,  and� � � � c d�< œ < † Z
Z

Z 3
3

3

0 < œ < † V Z À V [ [‡ Z 3
Z

c d � � c dc d� � � � � ��div  ord
3

3

 .œ j F Î< V Z À V [ [� � �c dc d� � � �
Z

7 3
3

3

Now we use two lemmas from the back of the book (A.2.3 and A.2.2), that
state if  is a push-forward,� � � �7ß E Ä F ß 77 33

j F Î< œ F Î7 À EÎ7 † j F Î<E 7 7 3 7� � c d � �
3 3 3

œ R < [ œ = † R < [� � �c d � �c d� � � �
Z

E E
3

 ord ord .

Alternate Definition of Rational Equivalence

 Let  with  a -dimensional variety andZ \ ‚ Ä Z 5 % "ä � �" "

\ ‚ Ä \ 0 ! § \ ‚ ! 0 ∞ §�" �" �". Then the fibers  and � � e f � �
\ ‚ ∞ 5 Z 0 ! §e f � � are purely -dimensional subvarieties of . Then if �"

\ ‚ !e f, we can define

div   and� � c d c d� � � �0 œ 0 ! � 0 ∞�" �"

: 0 œ : 0 ! � : 0 ∞‡ ‡ ‡
�" �"div� � c d c d� � � �

where  and .: 0 ! œ Z ! : 0 ∞ œ Z ∞‡ ‡
�" �"c d � � c d � �� � � �

Proposition 1.6.   A cycle  in  is rationally equivalent to zero if andα ^ \5

only if there are -dimensional subvarieties  of  such� �5 % " Z ß ÞÞÞß Z \ ‚3 >
"�

that projections from  to  are dominant withZ3
"�

α œ Z ! � Z ∞�c d c d� � � �
3œ"

>

3 3 .



Proof.   We have div  ( ,  a -dimensional sub-α œ < < − V [ [ 5 % "c d � �� � ‡

variety of ). Then consider  and we have \ [ Ä Z \ ‚ Ä
<

� ä � �" " "

and div div  (where ).c d c d c d c d� � � � � �< œ : 0 œ Z ! � Z ∞ 0 À Z Ä‡
"�

Lecture 2 (January 27, 2009)

 Recall from last time that for  a scheme,  is a -cycle, and\ 8 Z 5� c d3 3

^ \5  is

^ \ œ 8 Z l Z 55 3 33e f� c d  are -dimensional subvarieties .

Furthermore, . For X -dimensional, ,^ \ œ ^ \ [ © 5 % " < − V [
5 � !

‡ 59 � �

c d c d� � �div ord .< œ Z
cod[ Z œ"

Z <� �

Furthermore, recall that Rat Eldiv  ( ). We definedV\ œ < < µ !e f� �

E \ œ ^ \Î \5 5 5Rat

with

E \ œ E \
5 � !

‡ 59 .

Theorem 1.4.    For  a proper morphism, we define0 À \ Ä ]

0 À ^ \ Ä ^ ]\ 5 5

by Then for  on , 0 Z œ µ ! \ 0 µ !‡ ‡c d deg  ( ). � �c d � �Z Î[ [ [ œ 0 Z α α
on .]

 We will motivate this theorem by seeing its application to Bezout's
Theorem on plane curves.

Bezout's Theorem on plane curves

 For  plane curves in  with deg deg , if Jß K J œ 7ß K œ 8 Jß K�# � � � �
intersect with no common roots, then

� � �3 T ß J † K œ 7 † 8,

the intersection multiplicity of  and  at .J K T

 Assume  is irreducible. Then for all  plane curves, , soJ K − V Jw K
Kw � �

� � �� � � � ˆ ‰3 T ß J † K � 3 T ß J † K œw
T

K
Kord .w



Then for all , ,J − V Kw wJ
J w � �

� � �� � � � ˆ ‰3 T ß J † K � 3 T ß J † K œw w w
T

J
J ord .w

Hence,

� �� � � �3 T ß J † K œ 3 T ß J † Kw w

 Given  a plane curve, ,J < − V J� �

c d � �c d� � �div ord .< œ < TT

We want to show  ord .� � �T < œ !

Take . Then1 �À J Ä "

1 1 �‡ :
"c d � � c d� � �div  ord   in  ,< œ < . T

(with  the degree of ) and notice ord div  ( ).\. J < œ ; ; − V:
"� � c d � �� � �

Alternate Definition of Rational Equivalence

Proposition 1.6.   If  in  if and only if+ µ ! ^ \5

α œ Z ! � Z ∞�� �c d c d� � � �3 3

Z © \ ‚ 0 À Z Ä T À \ ‚ Ä \3 3 3
" " "� � � with  dominant with , satisfying

Z ! œ TJ ! Z ∞ œ TJ ∞3 3
�" �"� � � � � � � � and .

Theorem 1.7.   If  is a flat morphism (of relative dimension ),0 À \ Ä ] 8
define

0 À ^ ] Ä ^ \‡
5 5%8

by    (  a variety). Then for  in ,  in0 Z œ 0 Z Z µ ! ^ ] 0 µ !‡ �" ‡
5c d c d α α

^ \5%8 .

Note.  Ramin says: "Keep in mind, for flat morphisms, it essentially means
that the dimensions of fibers are constant. This is what it means to be flat, it
makes these morphisms nice in the aforementioned sense." [not really a
quote, just paraphrase] Specifically, for  a fiber of a flat morphism0 C�"� �
0 À \ Ä ] \ � ], the dimension is given by dim dim .

Lemma 1.7.1.   For all subschemes .] © ] ß 0 ] œ 0 ]w ‡ w �" wc d c d� �

Proposition 1.7.   Consider the fiber square with  flat and  proper:1 0

\ Ä \
1

w
w

0 Æ Æ 0w  



] Ä ]1
w

X 2/8 1 0 − ^ \ 0 1 œ 1 0 ^ ]w w w w ‡ w
‡ ‡ ‡‡

‡ is flat,  is proper, and for all ,  in .α α

Note.   Ramin says "What is a fiber square? Think about a product structure.
What is a product? The product of two sets  and  is the Cartesian pairs\ ]
� �Bß C B C  such that you have two projections onto  and onto . The above is
the situation when  and  don't have any maps onto any other thing. Now,B C
if you did have a third map, then you'd want the collection of pairs � �Bß C
which actually map into the same thing in . Set theoretically, for a diagramD

^ Ä ]w

Æ Æ 0
\ Ä ^1 ,

the fiber product is  given by .^ © \ ‚ ] ^ œ Bß C l 1 B œ 0 Cw w e f� � � � � �
Suppose you have spec Spec  and Spec Spec  and you want toV Ä W X Ä W
construct something Spec  and Spec  (diagram). First thing‡ Ä V ‡ Ä X
you do is reverse the arrows so you get , and then the ringW Ä Vß W Ä X
you construct is  and . Then you consider theV Ä V Œ X X Ä V Œ XW W

spectrum of these rings and that is the fiber product. Problem is, scheme-
theoretically you have to do this locally, so you have to make sure the data
glues together." �

Proof.   For  and  varieties with , assume surjective. Then\ ] œ \α c d

0 \ œ ] 0 \ œ . ]� � c d c d and .‡

We want . Take Spec  and Spec  with 0 \ œ . ] \ œ P ] œ O Oß P‡
w w wc d c d � � � �

fields, and let Spec  with  local Artinian, and Spec  with] œ E E E œ Fw w� � � �
F œ E Œ PO . Then we are done by Lemma A.1.3. �

 We are now ready to prove the main theorem.

Theorem 1.7.   If  is a flat morphism (of relative dimension ),0 À \ Ä ] 8
define

0 À ^ ] Ä ^ \‡
5 5%8

by    (  a variety). Then for  in ,  in0 Z œ 0 Z Z µ ! ^ ] 0 µ !‡ �" ‡
5c d c d α α

^ \5%8

Proof.  Let  in . Then  withα αµ ! ^ ] œ Z ! � Z ∞O c d c d� � � �

Z ! œ ; !� � � �:�" , for



: � � � �À Z Ä ; À ] ‚ Ä ] 0 ‚ " À \ ‚ Ä ] ‚8
" " " " and  with . Take� �

[ œ 0 ‚ " Z 2 À [ Ä : À \ ‚ Ä \� ��" " " a subscheme. Then  and  so� �
that we can construct a fiber square

\ ‚ ] ‚� Ò �" "
� �0 ‚ "

: Æ Æ 0
\ ]

0
Ò .

So

0 œ 0 ; ! � ; ∞ œ 0 ; ! � ∞‡ ‡ �" �" ‡ �" �"α : : : :c d c d � �� � � � c d c d� � � �

and then by the previous proposition, this equals

: 0 ‚ " ! � ∞‡
‡ �" �"� � � �c d c d� � � �: :

œ : 0 ‚ " ! � ∞ œ : 2 ! � 2 ∞‡ ‡
�" �" �" �" �"� � � � � �c d c d c d c d� � � � � � � �: :

and so by Theorem 1.4 it suffices to show  for c d c d�[ œ 7 [ [ œ3 3
- �c d c d� � � � . Need  with  for .[ 2 œ 2 l 2 T œ 7 2 T T œ !ß ∞3 3 [ 3

�" �"
33

1.8 An Exact Sequence

 See Proposition 1.8 and Example 1.9.3.

Lecture 3 (February 3, 2009)

 Recall that if  is a variety and  is of codimension , then we\ Z § \ "
defined  (regular functions in the local ring), thena= − bZ ß\

j Î = � ∞� �� �bZ ß\ .

 Furthermore, recall that a -cycle is a finite formal sum 5 �
Z §\ß Z œ5dim 

8 Z<c d.

Divisors

Definition.   Let  be a variety ( -dimensional). Then a  is an\ 8 Weil divisor
� �8�" \ ^ \ œ-cycle on . Furthermore, abelian group of Weil divisors.8�"

Definition.   A C  on  is defined by , whereartier divisor \ Y ß 0 œ He f� �α α

Y © \ \ œ Y 0α α αα is open, and , and  are non-zero functions in-
V Y œ V \ 0 Î́ ! Y 0 Î0� � � �α α α α " that satisfy (1)  on , (2)  is a unit on
Y ∩ Yα " (a unit is nowhere-vanishing, regular).

Definition.   The 's are called the local equation of .0 Hα



Definition.    If  is a Cartier divisor of , and  is a subvariety ofH \ Z © \
codimension  then we can define an order function on the divisor,"ß

ord ord .Z ZH ³ 0� �α

This is well-defined (independent of our choice of local equations) because
they differ by a unit: where  is a unit in . ord ord ,  � � � �0 œ ?0α " ? bY ∩Y ß\α "

Definition.   ord .The associated Weil divisor to  is  H H œc d �
Z ©\ß " codim 

H Zc d

Note.  There are only finitely many  of order .Z © \ H Á !Z

Definition.    Div   Let group of Cartier divisors. Let� �\ œ
H œ Y ß 0 ß I œ H % I œ Y ß 0 1� � � � � �α α α α αY ß 1α α . Then we define .

We also induce a homomorphism Div  with .� � c d\ Ä ^ \ H È H8�"

Definition.   For any , we define a Principle Cartier Divisors0 − V \� �‡

div  � �0 by all local equations .œ 0

Definition.   Two Cartier divisors  and  are linearly equivalent if thereH Hw

exists an  such that div .0 − V \ H œ H % 0� � � �‡ w

Definition.   Pic Div ,� � � �\ œ \ Î µ  where  is the above linearµ
equivalence.

Hence, div  as -cycle. ThisH œ H % 0 H � H µ ! 8 � "w w� � c d c d � �Ö
induces Pic .� �\ Ä E \8�"

Definition.    supp , The support of a Cartier divisor  denoted orHÎ\ � �H
k k � �H ^ © \ H œ Y ß 0 0 is the unit of all subvarieties  such that if  then α α α

is not a unit of . Or  somewhere on some  (that is,  has ab\ß^ 0 ^ © \ 0α α

zero or a pole on ).^ © \

Example.    is defined by , then  is a WeilIf \ © D œ BC B œ D œ !�$ #

divisor, but not a Cartier divisor. This is because there is no way to have
local equations about the cycles define  exclusively. IfB œ D œ !
D œ ! B œ D œ ! C œ D œ !Ö  or . No matter what local equation you
choose, you will always "get another line."

§2.1 - Line bundles as pseudo-divisors

Definition.   A pseudo-divisor is a triple  where line bundle,� �Pß ^ß = P œ
^ œ \ œclosed subset of  ("support"), and s nowhere vanishing section on
\ � ^ .



 We say  if (i)  (ii)  s.t.� � � �Pß ^ß = œ P ß ^ ß = ^ œ ^ ß b À P Ä Pµw w w w w5
5l = È =\�^

w sends . In other words, they are equal if on the closed subsets
we have isomorphic line bundles. (Recall isomorphism of line bundles!)

Definition.   For  an algebraic scheme,  a Cartier divisor, a divisor \ E H
determines a line bundle  by the sheaf of sections on the -subsheafb b� �H \

generated by  on  (with )."Î0 Y \ œ Y3 3 3 33
-

Definition.   effective A cartier divisor  is if the  for ,H 0 œ = l = −3 H Y H \3
b

where  is the canonical section (i.e., if  has a canonical section that is= HH

regular, it is effective).

Definition.   A canonical divisor  determines a pseudo-divisorH
� � � � k k � �� � k kb bB H \H ß H ß = Pß ^ß = H œ ^ H z P. If  if  and .

Lemma.   If  is a variety, any pseudo-divisor  is represented by a\ Pß ^ß =� �
cartier divisor  such thatH

 (1) If , the operation is unique.^ Á \

 If , the operation is unique up to linear equivalence.(2) ^ œ \

Definition.   If  is a pseudo-divisor on an -dimensional variety withH 8
support , then the is .k k c d � �k kH H − E HWeil divisor class 8�"

Definition.   If  and   are pseudo-divisors,E œ Pß ^ß = F œ P ß ^ ß =� � � �w w w

then

E % F œ P Œ P ß ^ ∪ ^ ß = Œ =� �w w w , and

�E œ P ß ^ß "Î=� ��" ,

where the tensor product is taken over the trivial bundle,
� �P Œ P ß ^ß = Œ =�" �" .

Definition.   Let  with . Then0 À \ Ä \ H œ Pß ^ß = Î\w � �
0 H œ 0 Pß 0 D ß 0 =‡ ‡ �" ‡� �� � .

Notice

0 H % H œ 0 P Œ P ß ^ ∪ ^ ß = Œ = œ 0 P Œ P ß 0 ^ ∪ ^ ß 0 = Œ =‡ w ‡ w w w ‡ w �" w ‡ w� � � � � �� � � � � �

  .œ 0 P Œ 0 P ß 0 ^ ∪ 0 ^ ß 0 = Œ 0 =� �� � � � � � � � � � � �‡ ‡ w �" �" w ‡ ‡ w

Intersecting with divisors



Definition.   If  is a pseudo-divisor on a scheme  and  is a -H \ Z 5
dimensional sub- variety of , define  or  in  to\ H Z H † Z E H ∩ Zc d � �k k5�"

be

4 H Z H ∩ Z‡ , a pseudo-divisor on  with support .k k

Then  is the Weil divisor class of .H † Z 4 H œ 4 H‡ ‡c d

Note:   If  is a Cartier divisor, and , then  retracts (pullback) to aH Z § H HÎ k k
Cartier divisor by .4 H‡

Definition.   Let  be a -cycle. Then the support of ,  isα α αœ 8 Z 5� c d k kZ

the union of subvarieties with non-zero coefficients .8Z

Definition.   Each  is a class in . We define theH † Z E H ∩c d � �k k k k5�" α
intersection class

H † œ 8 H † Zα � c dZ .

Proposition.    If  is a pseudo-divisor on  and  is a -cycle, thenH \ 5α

 (1) ,H % œ H † % H †� �α α α αw w

 (2)  � �H % H † œ H † % Hw wα α š

 (3) If  is a morphism, then there is0 À \ Ä \w

1 À 0 H ∩ Ä H ∩ 0‡
�"� � k k � �k k k k k kα α

      with .1 0 H † œ H † 0‡ ‡
‡� � � �α α

 (4) Same as above but other direction.

 (5) If  is a pseudo-divisor with  is trivial, then H H H † œ !b α\� �
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Theorem 2.4    Let  be Cartier divisors on an -dimensional varietyHß H 8w

\. Then

H † H œ H † H E H ∩ Hc d c d � �k k k kw w w
8�#  in ,

where .c d c d � ��H œ 8 Z − ^ \w

Z œ"
3 3 8�"

codim 3

Proof    . Assume  and  are effective Cartier divisors that intersectH Hw

properly (that is, there is no codimension  subvariety of  in their" \
intersection, ). Recall the following fact:k k k kH ∩ Hw



Let  be a local domain of dimension . Take . DefineE # +ß + − Ew

/ +ß EÎ+ EE
w� � as follows:

! Ä Ä EÎ+ E Ä EÎ+ E Ä Ä !
+ker cokerw w

Then let coker ker  (length of cokernel/ +ß EÎ+ E œ j � jE E E
w� � � � � �

minus length of kernel).

Next, we will need the lemmas:

Lemma A.27.   .eE
w

œ"

� � �+ß EÎ+ E œ
ht©

: − ESpec

j E Î+ E † j EÎ % +EE
w

EÎ� � � �© © © ©

Lemma A.28.   e .E
w w� � � �+ß EÎ+ E œ / + ß EÎ+E

Note: For the above lemma, we want  to beH † H œ 7 Ac d c d�w
3 3

H † H œ 7 Aw
3 3c d c d� .

Case 1   Assume  and  are effective that intersect properly. CalculateH Hw

the coefficient of  in , with dim . Then all primes  with ht[ H † H E œ #c dw ©
" Z " correspond to a subvariety  of codimension . Hence,

c d c d�H œ 8 Z % ÞÞÞw
3 3

ht©œ"
: − ESpec

Here, ord . Since we further have8 œ + œ E ß3 Z Z ß\
w

3 3 3
� � b ©

8 œ j E Î+ E3 E
w

©3 3 3
� �© © . To continue, we first must compute

H † H œ 8 H † Zc d c d�w

−E
3 3

©3

,

with

H † Z œ 7 [c d c d�3 3 3
[ §Z3 3

codim [ œ "3

.

Well, the coefficient of  in  is[ H † Zc d3
� � � � � � �� �� �© © ©©3 3 3

j EÎ+ E † j EÎ % + œ / +ß EÎ+ EEÎ EÎ
w w

E©

by the lemma.

Case 2   Assume  and  are effective. We wil reduce to the case of properH Hw

intersection.



Lemma.   If  and  are Cartier divisors on  and  is a˜H H \ À \ Ä \w 1
proper birational morphism, with

1 1 1‡ ‡ w w w �"H œ F „ Gß H œ F „ G ß F ∪ G § H ßk k k k � �k k
k k k k � �k kF ∪ G § Hw w �" w1 .

We have four pairs on ,  and . If the\̃ Fß F ß Fß G ß Gß F ß Gß G� � � � � � � �w w w w

theorem holds true for each pair, then it is true in general.

Definition.   Let  be effective divisors on . DefineHß H \w

&� �Hß H œw max ord ord codim .e fZ Z \
wH † H l Z œ "

Note that  intersect properly if and only if . IfHß H Hß H œ !w w&� �
&� � k k k kHß H S ! \ H ∩ Hw w, then we blow up  along . We get

1 À \ Ä \˜

with exception divisor  so  and . ThenIß H œ G % I H œ G % I1 1‡ ‡ w w

 (a)  G ∩ G œ gw

 (b) if , then  and .& & & & &� � � � � � � � � �Hß H S ! Gß I � Hß H G ß I � Hß Hw w w w

Case 3   Assume  is effective. Let  be the denominator of the ideal sheafH 1w

of . Then we can have a blow-upH

1 1À \ Ä Fl \ Ä \ H œ G � I˜  with 1
‡

with  an exceptional divisor. Then we can just consider the pair I Gß H� �1‡ w

and  and apply these to case 2.� �Iß H1‡ w

Case 4  Let  and  be arbitrary divisors. Let  be the denominator of theH H 1w

ideal sheaf of . We can haveH

1 1À \ Ä Fl \ Ä \ H œ G � I˜  with .1
‡

Consider the pairs  and . We can apply case 3 to this� � � �Gß H Iß H1 1‡ w ‡ w

and we're done!  (of theorem)�

Corollary 2.4.1.    Let  be a pseudodivisor on . Let  andH \ − ^ \α 5

α α αµ ! H † œ ! E H ß E H ∩. Then  in .5�" 5�"� � � �k k k k k k

Corollary 2.4.2.   Let  and  be pseudo-divisors on . ThenH H \w

H † H œ H H †� � � �w wα α

for any .α − ^ \5� �

As cycles, , but as classes, they are equal.H † H Á H † Hc d c dw w



Example 2.4.1.   Consider . Consider the situation.�#

First, we have

H œ G œ G % I1‡
" "   (principal), and

H œ G œ G % Iw ‡
# #1  (principal),

where by principal we mean  and  respect-b b b b\ \ \ \
w

˜ ˜ ˜ ˜z H z H� � � �
ively. We have

H † H œ H † G % I œ H † G % H † I

:

c d � � c d c dc d c d ðñòw
# # ,

where  is just a point ( ) and . Notice: : − ^ H ∩ G E H! # ! E :� � � �k k k k k k
!� �

H † G − ^ H ∩ G œ ^ l:l H † G −c d � � � � c dk k k k# ! # ! #. W ecan also think of 
E G : œ ! G œ H † G œ :! # # #

"� � c dk k  and in that case , because . Thus, . On�
the other hand, . Why? Because  in . Hence,H † I œ ! I § H ^ Ic d k k k k � �!

ðñòc d c d � �H † G % H † I œ : − ^ I

:
# ! .

Notice that since , the other one turns out to be . Hence, they areI œ ;�"

non-equal as cycles, but are as classes. �

Definition.   Let  be pseudodivisors on . For any ,H ß ÞÞÞß H \ − ^ \" 8 5α
define

H † ÞÞÞ † H † œ H † H † ÞÞÞ † H † − E H ∩ ÞÞÞ ∩ H ∩" 8 " # 8 5�8 " 8α α α� � � �k k k k k k .

More generally, for any homogeneous polynomial of degree ,.

T X ß ÞÞÞß X� �" 8

with integer coefficients. Then

T H ß ÞÞÞß H † − E H ∪ ÞÞÞ ∪ H ∩� � � �k k k k k k" 8 5�" " 8α α .



If  is complete, define the intersection #8 œ 5ß ] œ H ∩ ÞÞÞ ∩ H ∩k k k k k k" 8 α
to be

� � � �'H † ÞÞÞ † H † œ T H ß ÞÞÞß H †" 8 " 8\ Dα α˜ .

Note. The "integral" means if  with  over  thenα œ 8 T \ 5� c d3 3

' � c d� �\ 3α œ 8 5 : † 5 .

If  is a pure -dimensional subscheme of , thenZ 5 \

T H ß ÞÞÞß H † Z œ T H ß ÞÞÞß H Z� � � �c d" 8 " 8
˜ .

Chern classes of line bundles

Let  be a line bundle on a scheme . We can define a homomorphismP \

G P ∩ À ^ \ Ä E \ œ 8 Z È G P ∩3 5 5�" 3 3 3� � c d � �� _  with α α

as follows. For any -dimensional subvariety  where  is5 Z ß P l œ G GZ Zb � �
a cartier divisor on V  ThenÞ

G P ∩ Z œ G − E \3 5�"� � c d c d � �.

Note that if  for a pseudo-divisor on , thenP œ H \b\� �

G P ∩ œ H †3� � α α.

Proposition 2.5 (a) If  on , then . So we haveα αµ ! \ G P ∩ œ !3� �

G P ∩ À E \ Ä E \3 5 5�"� � � � � � __ .

(b)  If  are line bundles on , , thenPß P \ − ^ \w
5α

G P ∩ G P ∩ œ G P ∩ G P ∩" " " "
w w� � � � � � � �� � � �α α .

(c) If  is a proper morphism,  is a line bundle on ,  is a -0 À \ Ä \ P \ 5w α
cycle on , then\w

0 G 0 P ∩ œ G P ∩ 0‡ " " ‡
‡� � � �� � α α.

(d) If  is flat of relative dimension , and  is a line bundle on0 À \ Ä \ 8 Pw

\ 5 \, with  a -cycle on , thenα

G 0 P ∩ 0 œ 0 G P ∩" "
‡ ‡ ‡� � � �� �α α .

(e) If  are line bundles with  thenPß P − ^ \ßw
5α

G P Œ P œ"
w� �

Definition.   If   are line bundles on , and we haveP ß ÞÞÞß P \ß − E \" 8 5α � �
a homogeneous polynomial  of degree , thenT X ß ÞÞÞß X .� �" 8



T G P ß ÞÞÞß G P ∩ − E \� � � �� � � �" " " 8 5�.α .

In particular,

G P ∩ − E \" 5�.
.� � � �.

Definition.   Let  be an effective divisor on  and let  be theH \ 3 À H Ä \
inclusion. Define the Gysin homomorphism

3 À ^ \ Ä E H‡
5 5�"

α α αÈ 3 œ H †‡� � .

Proposition 2.6.   (a) If  on , then . So we haveα αµ ! \ 3 œ !‡

3 À E \ Ä E H‡
5 5�" .

(b) If Z , thenα − \5

3 3 œ G H ∩‡ " B
‡α b α� �� � .

(c) If , thenα − ^ Hß5

3 3 œ G R ∩‡
‡ "α α� � ,

where .R œ 3 H‡
\b � �

(d)  If  is purely -dimensional, then\ 8

3 \ œ H‡c d c d.

(e) If  is a line bundle on , thenP \

3 G P ∩ œ G P ∩ 3‡ ‡
" "� � � � � �� � α α

for any α − ^ \Þ J?<>2/<ß5

C ." " " "
w w� � � � � � � �� � � �P ∩ G P ∩ œ G P ∩ G P ∩α α
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(1)  is projective if and only if  is proper.T T

(2) proj .bI� �" ß E B ß ÞÞÞß Bc d! /

T I Ä \ − E \
T� � � �, with .α ‡

So __ .= I ∩ ³ ∩ T8
‡� � α α

(1) .0 À \ Ä \ß 0 = 0 I ∩ œ = I ∩ 0w ‡
‡ 8 8 ‡� � � �� � α α

(a) (1)  if .= I œ ! 3 � !8� �

      (2) .= I ∩ œ!� � α α
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"
# "

deg .
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\ I œ " % H % H " � O % O % G œ� � � �ˆ ‰ˆ ‰deg " " "
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# #
#
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