Algebraic Geometry (Intersection Theory) Seminar

Lecture 1 (January 20, 2009)

We will discuss cycles, rational equivalence, and Theorem 1.4 in Fulton, as well as push-forward of rational equivalence. Notationwise, we will let "scheme" mean an algebraic scheme over a field, "variety" will mean a reduced and irreducible scheme, and a "point" will mean a closed point. Let \backslash be a scheme and $Z \mathbb{C} \backslash$ a subvariety. Then $b_{\mathbb{B}} œ b_{8 \mathbb{B}}$ where 8 is a generic point of Z. For a variety \backslash, let $\bigvee(\backslash)$ be the field of rational functions.

Let \backslash be a variety with $Z @ \backslash$ a subvariety of codimension one. Then $b_{Z \beta}$ has dimension ", and $V\left(b_{z \beta}\right) œ V(\backslash)$. For any ! Á <-V $(\backslash) œ V\left(b_{Z \beta}\right)$ with $<œ \hat{H}$, for $+ß,-b_{Z \beta}$. For any $!A ́=-b_{z \beta}, j\left(b_{z \beta} I ̂ W\right) \square \infty$.

Definition. Let \backslash be a variety and Z © \ a subvariety with codimension ". Then there is a well-defined homomorphism $\operatorname{ord}_{Z} \mathrm{~A} \mathrm{~V}(\backslash)^{\ddagger} \mathrm{A}{ }^{\mathrm{TM}}$ such that $\left(\right.$ for $<-\mathrm{V}(\backslash)^{\ddagger} œ \mathrm{~V}\left(\mathrm{~b}_{\mathrm{Z}}\right)^{\ddagger},<œ \hat{H}$, with $\left.\mathrm{ß}_{1},-\mathrm{b}_{\mathrm{Z}}\right)$:
(i) $\operatorname{ord}_{Z}\left(\Varangle œ \operatorname{ord}_{z}(+) \square \operatorname{ord}_{Z}(\right.$,$) ,$
(ii) $\operatorname{ord}_{z}(+) \propto j\left(b_{z \beta} \hat{\imath}+\right)$, and
(iii) $\operatorname{ord}_{z}() œ j,\left(b_{z \beta} \hat{\imath},\right)$.

Example. If \is a veriety which is regular in codimension one, this means for any $Z © \backslash$ a subvariety with codimension ", $b_{Z \beta}$ is a discrete valuation ring.

Cycles and rational equivalence

Definition. Let \backslash be a scheme. A 5-cycle on \backslash is a finite formal sum

$$
\sum 8_{3}\left[Z_{3}\right] \quad \mathrm{B8} 8_{3}-{ }^{\mathrm{Tm}}
$$

where $Z_{3} \odot \backslash$ are 5-dimensional subvarieties of \backslash. Let

$$
\begin{gathered}
\wedge_{5} \backslash \propto\left\{\sum 8_{3}\left[Z_{3}\right] \mid Z_{3} \text { are a } 5 \text {-dimensional subvarieties }\right\} \text {, so } \\
\hat{\ddagger}_{\ddagger} \backslash \underset{5}{œ_{!}} \hat{\wedge}_{5} \backslash .
\end{gathered}
$$

Any element $\alpha \propto \sum_{5!}\{\alpha\}_{5}-\widehat{\ddagger} \mathrm{O}$ is called a cycle.

For \a scheme, let \" SH\#\#S >be irreducible components of \backslash. For each $\backslash{ }_{3}$ we have geometric multiplicity $7_{3} œ j\left(b_{_{3}}\right)$. Notice $\backslash{ }_{3}$ has a generic points ($3_{3}\left(b_{\text {® }_{\Omega}} œ_{1_{3}}\right.$ is an Artinian ring).

We want to give an equivalence relation on cycles. Let \backslash be a scheme and [© \a(5\%")-dimensional subvariety. For $<-\mathrm{V}\left([)^{\ddagger}\right.$, we define

Notice a 5 -cycle α is rationally equivalent to!, written $\alpha \mu$!, if there are a finite number of 5% "-dimensional subvarieties $\left[3\right.$ © \backslash and $\lessgtr-V\left([3)^{\ddagger}\right.$ such that $\alpha œ \sum[\operatorname{div}(\lessdot)]$.

All the cycles equivalent to! are written Rats \backslash. We can now define the cycle class,

$$
\begin{gathered}
E_{5} \backslash œ^{\wedge_{5}} \backslash \text { ÎRat } \backslash \text {, with } \\
E_{\ddagger} \backslash œ_{5} \bigoplus_{!} E_{5} \backslash œ_{5} \bigoplus_{!} \wedge_{5} \backslash \text { ÎRat } \backslash .
\end{gathered}
$$

Examples. (1) $E_{5}(\backslash) z E_{5}(\backslash$ red $)$, since \backslash and \backslash reduced have the same subvarieties.
(2) If $\backslash œ \backslash " U \backslash \# \cup$ ゆ $\cup \backslash \geqslant$ then

$$
\hat{\ddagger}_{\ddagger} \backslash \underset{3 œ \bigoplus^{\prime \prime}}{>} \hat{\ddagger}_{\ddagger} \backslash 3 \text { and } E_{\ddagger} \backslash \underset{3 œ \bigoplus^{\prime \prime}}{\oplus_{\ddagger}} E_{\neq} \backslash 3
$$

(3) If $\operatorname{dim} \backslash œ 8$, then $E_{8} \backslash œ \wedge_{8} \backslash$, then there are no " 5% "-dimensional subvarieties", so there is nothing to mod out by.
(4) If \backslash " and \backslash \# are subschemes of \backslash, then

$$
E_{5}(\backslash " \cap \backslash \#) \ddot{A} E_{5} \backslash " S ̌ E_{5} \backslash \# \ddot{A} E_{5}(\backslash " U \backslash \#) A ̈!
$$

is an exact sequence.
(5) If Z is an irreducible component of \backslash, then for any cycle class $\alpha-E_{\ddagger} \backslash$, we define the coefficient of Z in α to be the coefficient of $[Z]$ in any cycle which represents α (since $\alpha œ \sum 8_{3}\left[Z_{3}\right]$).

(8) Let Z be a 5% "-dimensional variety. Assume we have 0 ÀZ Ä \square " a dominant function $\left(\overline{0(Z)} œ \square^{\prime \prime}\right.$, or other way to think about it is that 0 maps a generic point of Z to a generic point of $\square^{\prime \prime}$, or even $\left.0-V(Z)^{\ddagger}\right)$. Let's
 $!œ(" A ̀!)$ and ∞ œ(! À")). Then $O^{\square}(!)$ and $0^{\square}(\infty)$ are purely 5dimensional subschemes, so $\left[0^{\square "}(!) \square 0^{\square "}(\infty)\right]$ œ[div(0)].

Push-forward of cycles

Let 0 À \ddot{A}] be a proper morphism of two schemes. Then for a unique $\alpha-\widehat{\wedge}_{\ddagger} \backslash$, we want to understand $\left.0_{\ddagger} \alpha-\widehat{\wedge}_{\ddagger}\right]$. Assume α is a 5 -cycle with $\alpha \propto \sum 8_{3}\left[Z_{3}\right]$ with Z_{3} a 5 -dimensional subvariety. We want $O_{\ddagger}[Z] œ$? $\left.\widehat{-}_{\ddagger}\right]$ to have some (covariant) functorial property relating \backslash and]. If $0 A ̀ l \ddot{A}]$ and $0 A ̀ Z A ̈[\quad 0(Z)(0(Z)$ is a subvariety of]). We want
(1) $\operatorname{dim}\left[\quad \square \operatorname{dim} Z\right.$ means $O_{\ddagger}[Z] œ$!.
(2) $\operatorname{dim}[$ œdim Z means $V(Z)$ ä $V([)$ has degree $[V([) A ̀ V(Z)] \square \infty$
We then call $O_{\ddagger}[Z] \propto\left[V(Z) \hat{A} V([\quad)] \dagger\left[[\quad]\right.\right.$ (so $O_{\ddagger} \alpha$ is well-defined).
Theorem. [1.4] If 0 À A Ä] is a proper morphism and α is a 5 -cycle on \ which is rationally equivalent to !, then $0_{\ddagger} \alpha$ is rationally equivalent to zero on] .

Proof. We write α œ[$\operatorname{div}(\Varangle]$ for $<-\mathrm{V}(\mathrm{Z})$ for some 5% "-dimensional subvariety of \backslash. That is,

$$
\alpha œ[\operatorname{div}(\Varangle)] \sum_{Z_{3} \odot Z} \sum_{Z_{3}} 8_{3}\left[Z_{3}\right] .
$$

For this cycle, we can assume $\backslash œ Z$ and $] œ 0(Z)$. We can assume \backslash is a variety and] is a variety and 0 À Ä] is a proper surjection. Now we use the below proposition.
Proposition. [1.4] Let 0 Àl Ä] be a proper, surjective morphism and let $<-\mathrm{V}(\backslash)^{\ddagger}$. Then
(a) $0_{\ddagger}[\operatorname{div}(\Varangle)]$ œ! if $\left.\operatorname{dim}\right] \square \operatorname{dim} \backslash$.
(b) $0_{\ddagger}[\operatorname{div}(\Varangle]$ œ[div $R(\Varangle]$ if $\operatorname{dim}]$ œedim \backslash,
where $\mathrm{R}(\triangleleft$ is determinant of $\mathrm{V}(\backslash) \dot{\mathrm{A}} \mathrm{V}(\backslash)$ as an $\mathrm{V}(\mathrm{]})$-linear morphism ($\mathrm{R}(\mathrm{V})-\mathrm{V}(\mathrm{]})$).

Proof. Case 1. Let] œspec O for O a field. Let $\backslash œ \square_{5}^{\prime \prime}$ with $0 \hat{A} \square_{5}^{\prime \prime} \ddot{A} \operatorname{spec} O$. Since $V(\backslash) œ O(\forall$, and $<-V(\backslash) œ O(\not)(<œ \hat{H}$, with $+\mathbb{K},-\mathrm{O}[\ngtr)$, we can assume $<-\mathrm{O}[\ngtr$ is an irreducible polynomial (since $[\operatorname{div}(\Varangle)] \propto[\operatorname{div}(+)] \square[\operatorname{div}()$,$] , so if we prove it for [\operatorname{div}(+)]$ and $[\operatorname{div}()$,$] (and we know +$ and, are polynomials), then we have shown it for $[\operatorname{div}(\Varangle])$. Furthermore, let T œ (\Varangle be a maximal prime ideal (T $-\backslash \propto \square_{5}^{"}$ is a closed point). In this case, ordт $\left(\triangleleft \propto "\right.$ (since b : œO $\left.[\}_{(\Varangle)}\right)$, and $\operatorname{ord}_{U}(\Varangle \propto!$ for $U @ O[\ngtr$ with U Á T.

Finally, consider the point $T_{\infty}-\square_{5}^{\prime \prime}$. Then $\mathrm{T}_{\infty} \propto\binom{\frac{1}{4}}{)} \S \mathrm{O}\left[\frac{n}{>}\right]$ (it corresponds to the prime ideal generated by ${ }_{>}^{\prime}$ in the ring $\mathrm{O}\left[\frac{1}{8}\right]$). The way to visualize this is that $\mathrm{O}\left[\ngtr\right.$ is for everything but ∞, and $\mathrm{O}\left[\begin{array}{c}n \\ \frac{1}{>}\end{array}\right]$ is for everything but!. Call degree <œ. . Then <œ $\left(\frac{" 1}{>}\right)^{\square \cdot} 2\left(\frac{"}{\lambda}\right)$, some poly. For example, <œ \#\%" œ $\left(\frac{"}{>}\right)^{\square \#}\left(" \% \frac{"}{\#}\right)$. Then on $\square_{5}^{\prime \prime}$, we have

$$
\begin{aligned}
& {\left[\operatorname{div}(\Varangle] \text { œ }[:] \square .\left[\mathrm{T}_{\infty}\right]\right. \text { and }}
\end{aligned}
$$

with $\mathrm{V}(\mathrm{T}) \propto \mathrm{O}[\ngtr \mathrm{i}<$
Case 2. If 0 À A A] is finite, set with $O \propto V(])$ and $P \propto V(\backslash)$ and O ä P. Also, assume all varieties in $[\operatorname{div}(4)]$ map to a variety [§] of codimension ". Let $\mathrm{E} œ_{[}$(the generic point of this image) and 7 œ7[⿴囗. Consider the commutative diagram

Spec O Ä Spec E Ò]
with E ä F ä P and $\operatorname{dim} F$ œdim E œ". Finally, F has finitely many maximal ideals 7_{3} such that $7_{3} \cap E \propto 7$. There is a one-to-one correspondence between $\square^{\prime \prime},\left\{Z_{3} \S \backslash I O\left(Z_{3}\right) \propto[\}\right.$ and $\left\{7_{3}-F I 7_{3} \cap\right.$ $E \propto 7$ \}PAlso, from the diagram, $F ⿷_{E} O \propto P$ and $F_{7_{3}} \mathscr{F}_{E} O œ P$.

Now assume $<-F$. Then computationally,

$$
\begin{aligned}
& \operatorname{div}(\triangleleft) \propto \sum_{Z_{3}} \operatorname{ord}_{Z_{3}}\left(\triangleleft \dagger\left[Z_{3}\right]\right. \text {, and } \\
& \mathrm{O}_{\ddagger}[\operatorname{div}(\Varangle]] \text { œ } \sum_{\mathrm{Z}_{3}} \operatorname{ord}_{\mathrm{Z}_{3}}\left(\Varangle \dagger \left[\mathrm{~V}\left(\mathrm{Z}_{3}\right) \mathrm{A} \mathrm{~A}([\quad)][[\quad]\right.\right. \\
& œ \sum_{Z_{3}} \mathrm{j}\left(\mathrm{~F}_{7_{3} \hat{I}} \nmid\right)\left[\mathrm{V}\left(\mathrm{Z}_{3}\right) \text { ÀV }([\quad)][[\quad] .\right.
\end{aligned}
$$

Now we use two lemmas from the back of the book (A.2.3 and A.2.2), that state if $(7 \mathrm{SE}) \ddot{A} \quad\left(\mathrm{~F}_{7_{3}} \mathrm{~B} 7{ }_{3}\right)$ is a push-forward,

Alternate Definition of Rational Equivalence

Let Z ä
, $\square^{\prime \prime}$ Ä $\square^{"}$ with Z a 5% "-dimensional variety and $\, \square^{\prime \prime} A ̈ \backslash$. Then the fibers $0^{\square \prime \prime}(!) \S \backslash,\{!\}$ and $0^{\prime \prime}(\infty) \S$ $\,\{\infty\}$ are purely 5 -dimensional subvarieties of Z. Then if $0^{\prime \prime}(!) \S$
, \{!\}, we can define

$$
\begin{aligned}
& \operatorname{div}(0) œ\left[0^{\square}(!)\right] \square\left[0^{\square \prime}(\infty)\right] \text { and } \\
& : \ddagger \operatorname{div}(0) \text { œ: } \ddagger\left[0^{\square} "(!)\right] \square: \ddagger\left[0^{\square "}(\infty)\right]
\end{aligned}
$$

Proposition 1.6. A cycle α in $\wedge_{5} \backslash$ is rationally equivalent to zero if and
 that projections from Z_{3} to $\square^{\prime \prime}$ are dominant with

$$
\alpha œ \sum_{3 \underbrace{\prime}}^{>}\left[Z_{3}(!)\right] \square\left[Z_{3}(\infty)\right] .
$$

Proof. We have $\alpha œ\left[\operatorname{div}(\Varangle]\left(<-\mathrm{V}\left([)^{\ddagger},[\right.\right.\right.$ a $5 \% "$-dimensional sub-
 and $\operatorname{div}\left[\Varangle \propto:_{\ddagger}[\operatorname{div}(0)] œ[Z(!)] \square[Z(\infty)]\right.$ (where 0 ÀZ Ä $\square^{\prime \prime}$).

Lecture 2 (January 27, 2009)

Recall from last time that for \backslash a scheme, $\sum 8_{3}\left[Z_{3}\right]$ is a 5 -cycle, and $\hat{5}_{5}$ is
$\wedge_{5} \backslash œ\left\{\sum 8_{3}\left[Z_{3}\right] \mid Z_{3}\right.$ are 5 -dimensional subvarieties $\}$. Furthermore, $\hat{\jmath}_{\ddagger} \backslash \underset{5}{œ} \bigoplus_{!} \hat{5}_{5}$. For [© X 5 \% "-dimensional, $<-\mathrm{V}([\quad)$,

Furthermore, recall that $\operatorname{Rat} \backslash \propto\{\operatorname{Eldiv}(\Varangle)\}(<\mu!)$. We defined

$$
E_{5} \backslash œ \wedge_{5} \backslash \hat{I} R^{2} t_{5} \backslash
$$

with

$$
\mathrm{E}_{\ddagger} \backslash \underset{5}{\propto} \bigoplus_{!} \mathrm{E}_{5} \backslash .
$$

Theorem 1.4. For 0 Àl Ä] a proper morphism, we define

$$
\left.Q \quad \grave{A}_{5} \backslash \ddot{A} \hat{S}_{5}\right]
$$

by $O_{\ddagger}[Z]$ œ $\operatorname{deg}\left(Z \hat{l}[\quad)\left[[\quad]\left([\quad 0(Z))\right.\right.\right.$. Then for $\alpha \mu!$ on $\backslash, O_{\neq} \alpha \mu$! on].

We will motivate this theorem by seeing its application to Bezout's Theorem on plane curves.

Bezout's Theorem on plane curves

For J SK plane curves in $\square^{\#}$ with $\operatorname{deg}(\mathrm{J}) \propto 7$ §deg(K) œ8, if J §K intersect with no common roots, then

$$
\left.\sum 3 T \oiint \dagger K\right) œ 7 \dagger 8,
$$

the intersection multiplicity of J and K at T.
Assume J is irreducible. Then for all K^{w} plane curves, $\frac{K}{K^{w}}-V(J)$, so

$$
\left.\sum 3 T \oiint 十 K\right) \square \sum 3 T ß \nmid K w œ \sum \operatorname{ord} T\left(\frac{K}{K^{w}}\right) .
$$

Then for all $\mathrm{J} \stackrel{\mathrm{w}}{,} \frac{1}{\rho_{w}}-\mathrm{V}\left(\mathrm{K}_{\mathrm{w}}\right)$,

$$
\sum 3 T \oiint+K w \square \sum 3 T \oiint w_{+K} w \propto \sum \operatorname{ord}_{T}\left(\frac{1}{j w}\right) .
$$

Hence,

$$
\left.\sum 3 T ß+K\right) œ \sum 3 T ß{ }^{w}+K w
$$

Given J a plane curve, $<-\mathrm{V}(\mathrm{J})$,

$$
\left[\operatorname{div}(\Varangle] \text { œ } \sum \operatorname{ord}_{\mathrm{T}}(\triangleleft[\mathbf{T}] .\right.
$$

We want to show $\sum \operatorname{ord}_{\mathrm{T}}(\triangleleft \wp!$.
Take 1 À A Ä $\square^{\prime \prime}$. Then

$$
1_{\ddagger}\left[\operatorname{div}(\Varangle] \text { œ } \sum \text { ord: }(\Varangle) \cdot[1 T] \text { in } \square^{\prime \prime},\right.
$$

(with . the degree of J) and notice ord: $\left(\Varangle œ[\operatorname{div}(;)]\left(;-V\left(\square^{\prime \prime}\right)\right) . \\right.$

Alternate Definition of Rational Equivalence

Proposition 1.6. If $+\mu!$ in $\wedge_{5} \backslash$ if and only if

$$
\alpha œ \sum\left(\left[Z_{3}(!)\right] \square\left[Z_{3}(\infty)\right]\right)
$$

$Z_{3} \bigcirc \backslash, \square^{\prime \prime}$ with $O_{3} A ̀ Z_{3} A ̈ \square^{\prime \prime}$ dominant with $T A ̀ A \backslash \square^{\prime \prime} A ̈ \backslash$, satisfying $Z_{3}(!) \propto T J{ }^{\prime \prime}(!)$ and $Z_{3}(\infty)$ œTJ ${ }^{\prime \prime}(\infty)$.
Theorem 1.7. If 0 Àl Ä] is a flat morphism (of relative dimension 8), define

$$
\left.0^{\ddagger} \dot{A}_{5}\right] \ddot{A} \wedge_{5 \%} \backslash
$$

by $0^{\ddagger}[Z] \propto[0 \square " Z]$ (Z a variety). Then for $\alpha \mu!$ in $\left.\wedge_{5}\right], 0^{\ddagger} \alpha \mu!$ in ${ }^{5 \%} \backslash$.
Note. Ramin says: "Keep in mind, for flat morphisms, it essentially means that the dimensions of fibers are constant. This is what it means to be flat, it makes these morphisms nice in the aforementioned sense." [not really a quote, just paraphrase] Specifically, for $0 \square$ " (C) a fiber of a flat morphism 0 À \nexists], the dimension is given by $\operatorname{dim} \backslash \square \operatorname{dim}]$.

Proposition 1.7. Consider the fiber square with 1 flat and 0 proper:

］wä ］

Note．Ramin says＂What is a fiber square？Think about a product structure． What is a product？The product of two sets \backslash and ］is the Cartesian pairs （BSC）such that you have two projections onto B and onto C The above is the situation when B and C don＇t have any maps onto any other thing．Now， if you did have a third map，then you＇d want the collection of pairs（BßC） which actually map into the same thing in D．Set theoretically，for a diagram

the fiber product is $\wedge^{w^{w}} \odot \backslash$ ，］given by $\wedge^{w^{w}} \bigodot\{(B ß C) \mid 1(B) œ 0(C)\}$ ． Suppose you have spec $V \ddot{A}$ Spec Wand Spec X Ä Spec Wand you want to construct something $\ddagger A \ddot{A}$ Spec V and $\ddagger A$ spec X（diagram）．First thing you do is reverse the arrows so you get $W A ̈ \vee ß W A ̈ X$ ，and then the ring you construct is $\vee \ddot{A} \vee ⿷_{W} X$ and $X \ddot{A} \vee ⿷_{W} X$ ．Then you consider the spectrum of these rings and that is the fiber product．Problem is，scheme－ theoretically you have to do this locally，so you have to make sure the data glues together．＂\square
Proof．For \backslash and ］varieties with $\alpha œ[\backslash]$ ，assume surjective．Then

$$
\left.0(\backslash) œ] \text { and } 0_{\ddagger}[\backslash] œ .[]\right] .
$$

We want $\mathrm{O}_{\ddagger}^{W \prime} \backslash$ W œ．［］W．Take \ œSpec（ P ）and ］œSpec（O）with O ßP fields，and let ］${ }^{\mathrm{w}} œ \operatorname{Spec}(\mathrm{E})$ with E local Artinian，and $\mathrm{E}{ }^{\mathrm{w}} œ \operatorname{Spec}(\mathrm{~F})$ with $F \propto E ⿷_{0} P$ ．Then we are done by Lemma A．1．3．\square

We are now ready to prove the main theorem．
Theorem 1．7．If 0 Àl Ä ］is a flat morphism（of relative dimension 8）， define

$$
\left.0^{\ddagger} \hat{A}_{5}\right] \quad \ddot{A} \wedge_{5 \%} \backslash
$$

by $0^{\ddagger}[Z]$ œ $\left[00^{\square} Z\right]$（Z a variety）．Then for $\alpha \mu!$ in $\left.\wedge_{5}\right], 0^{\ddagger} \alpha \mu!$ in ${ }_{5 \%}$ \}
Proof．Let $\alpha \mu!$ in $\left.\wedge_{o}\right]$ ．Then $\alpha \propto[Z(!)] \square[Z(\infty)]$ with
Z（！）œ；：$\square^{\prime \prime}(!)$ ，for

 that we can construct a fiber square

So
and then by the previous proposition, this equals

$$
\begin{aligned}
& : \ddagger(0, \quad ")^{\ddagger}([: \square "(!)] \square[: \square "(\infty)]) \\
& \text { œ: } \ddagger(0, ~ ")^{\square "}\left(\left[: \square^{\prime \prime}(!)\right] \square\left[: \square^{\prime \prime}(\infty)\right]\right) œ: \ddagger\left(\left[2^{\square "}(!)\right] \square\left[2^{\square "}(\infty)\right]\right)
\end{aligned}
$$

and so by Theorem 1.4 it suffices to show [[] œ $\sum_{3} 7\left[\begin{array}{ll}3] & \text { for [} \propto, ~\end{array}\right.$

1.8 An Exact Sequence

See Proposition 1.8 and Example 1.9.3.

Lecture 3 (February 3, 2009)

Recall that if \backslash is a variety and $Z \S \backslash$ is of codimension ", then we defined $a=-b_{Z \beta}$ (regular functions in the local ring), then $j\left(\mathrm{~b}_{\mathrm{z} \beta} \hat{\mathrm{I}}(\Rightarrow) \square \infty\right.$.

Furthermore, recall that a 5 -cycle is a finite formal sum $\sum_{Z \S \backslash} \operatorname{sim} Z_{\infty}$ 8\&Z].

Divisors

Definition. Let \backslash be a variety (8-dimensional). Then a Weil divisor is an (8]")-cycle on \backslash. Furthermore, $\wedge_{8 \square " \}$ œabelian group of Weil divisors.
Definition. A Cartier divisor on \backslash is defined by $\left\{\left(\mathrm{Y}_{\alpha} ß_{\alpha}\right)\right\}$ œH, where $\mathrm{Y}_{\alpha} \bigcirc \backslash$ is open, and $\backslash œ \bigcup_{\alpha} \mathrm{Y}_{\alpha}$, and O_{α} are non-zero functions in $\mathrm{V}\left(\mathrm{Y}_{\alpha}\right) œ \mathrm{~V}(\backslash)$ that satisfy (1) $\mathrm{O}_{\alpha} \hat{\mathrm{l}}$! on Y_{α}, (2) $\mathrm{O}_{\alpha} \mathrm{I} \mathrm{O}_{1}$ is a unit on $Y_{\alpha} \cap Y^{\prime \prime}$ (a unit is nowhere-vanishing, regular).

Definition. The 0_{α} 's are called the local equation of H .

Definition. If H is a Cartier divisor of \backslash, and Z © \ is a subvariety of codimension "ß then we can define an order function on the divisor,

$$
\operatorname{ord}_{z} \mathrm{H}^{3} \quad \operatorname{ord}_{\mathrm{Z}}\left(0_{\alpha}\right) .
$$

This is well-defined (independent of our choice of local equations) because they differ by a unit: $\operatorname{ord}\left(0_{\alpha}\right) œ o r d\left(? 0_{1}\right)$, where $?$ is a unit in $\mathrm{b}_{Y_{\alpha} \cap Y ॥ ß}$.

Definition. The associated Weil divisor to H is $[\mathrm{H}] \underset{\mathrm{za}}{\mathrm{Cl}} \sum_{\text {Bcodim " }}$ ord $\mathrm{H}[\mathrm{Z}]$.
Note. There are only finitely many Z ©
Definition. Let $\operatorname{Div}(\backslash)$ œgroup of Cartier divisors. Let $\mathrm{H} œ\left(\mathrm{Y}_{\alpha} \mathrm{SO}_{\alpha}\right) \mathrm{SI} \propto\left(\mathrm{Y}_{\alpha} ß 1_{\alpha}\right)$. Then we define $\mathrm{H} \% \mathrm{l}$ œ $\left(\mathrm{Y}_{\alpha} \mathrm{SO}_{\alpha} 1_{\alpha}\right)$.
We also induce a homomorphism $\operatorname{Div}(\backslash)$ Ä $\widehat{\wedge}_{8 \square " \} \backslash$ with H È $[H]$.
Definition. For any $0-\mathrm{V}(\backslash)^{\ddagger}$, we define a Principle Cartier Divisors $\operatorname{div}(0)$ by all local equations œ0.
Definition. Two Cartier divisors H and H^{w} are linearly equivalent if there exists an $0-\mathrm{V}(\backslash)^{\ddagger}$ such that $\mathrm{H}^{\mathrm{w}} œ \mathrm{H} \% \operatorname{div}(0)$.
Definition. $\quad \operatorname{Pic}(\backslash) œ \operatorname{Div}(\backslash) \hat{\imath} \mu$, where μ is the above linear equivalence.
Hence, $H^{w} œ H \% \operatorname{div}(0) O ̈[H] \square\left[H^{W} \mu!\right.$ as (8] ")-cycle. This induces Pic (\backslash) Ä $E_{8 \square "} \backslash$.
Definition. The support of a Cartier divisor Hî \denoted $\operatorname{supp}(\mathrm{H})$, or $|\mathrm{H}|$ is the unit of all subvarieties ${ }^{\wedge}$ © \backslash such that if $\mathrm{H} œ\left(\mathrm{Y}_{\alpha} \mathrm{SO}_{\alpha}\right)$ then O_{α} is not a unit of $\mathrm{b} \backslash \mathbb{B}$. Or O_{α} somewhere on some $\wedge \bigcirc$ (that is, O_{α} has a zero or a pole on ^ © \backslash).
Example. If $\backslash \odot \square^{\$}$ is defined by $\mathrm{D}^{\ddagger} œ \mathrm{BC}$, then B œDœ! is a Weil divisor, but not a Cartier divisor. This is because there is no way to have local equations about the cycles define $\mathrm{B} œ \mathrm{D}$ (! exclusively. If Dœ! Ö BœDœ! or CœDœ!. No matter what local equation you choose, you will always "get another line."

§2.1 - Line bundles as pseudo-divisors

Definition. A pseudo-divisor is a triple ($\mathrm{P} \AA^{\wedge} ß \Rightarrow$ where P œline bundle, ^ œclosed subset of \backslash ("support"), and s œnowhere vanishing section on $\backslash \square^{\wedge}$.
 $5 _{\text {, }} \wedge$ ~ sends $=\dot{E} \xlongequal{w}$ In other words, they are equal if on the closed subsets we have isomorphic line bundles. (Recall isomorphism of line bundles!)
Definition. For \backslash an algebraic scheme, E a Cartier divisor, a divisor H determines a line bundle $\mathrm{b}(\mathrm{H})$ by the sheaf of sections on the b_{\backslash}-subsheaf generated by "Î O_{3} on Y_{3} (with $\backslash{ }_{3} œ \bigcup_{3} \mathrm{Y}_{3}$).
Definition. A cartier divisor H is effective if the $\mathrm{O}_{3} œ=\left._{F_{1}}\right|_{Y_{3}}$ for $\mp_{11}-\mathrm{b}_{\backslash}$, where \mathcal{F}_{1} is the canonical section (i.e., if H has a canonical section that is regular, it is effective).
Definition. A canonical divisor H determines a pseudo-divisor $\left(\mathrm{b}_{\mathrm{B}}(\mathrm{H}) ß|\mathrm{H}| \mathrm{ß}_{=1}\right)$. If $\left(\mathrm{P} ß^{\wedge} ß=\right.$ if $|\mathrm{H}| \propto^{\wedge}$ and $\mathrm{b}_{\backslash}(\mathrm{H}) \mathrm{z}$ P.
Lemma. If \backslash is a variety, any pseudo-divisor $\left(\mathrm{P} \beta^{\wedge} ß=\right)$ is represented by a cartier divisor H such that
(1) If $\wedge \wedge$, the operation is unique.
(2) If \wedge œ , the operation is unique up to linear equivalence.

Definition. If H is a pseudo-divisor on an 8-dimensional variety with support $|\mathrm{H}|$, then the Weil divisor class is $[\mathrm{H}]-\mathrm{E}_{8 \square}{ }^{\prime \prime}(|\mathrm{H}|)$.
Definition. If $\mathrm{E} œ\left(\mathrm{P} \beta^{\wedge} ß \Rightarrow\right.$ and $\mathrm{F} œ\left(\mathrm{P}^{\wedge} ß^{\wedge} \vee^{\vee}=y\right.$ are pseudo-divisors, then

$$
\begin{aligned}
& \square E \propto\left(P^{\square} \beta^{\wedge} \beta^{\prime \prime} 1 \text { I }=,\right.
\end{aligned}
$$

where the tensor product is taken over the trivial bundle, ($\mathrm{P} \subset \mathrm{P}^{\square} \mathrm{D}^{\mathrm{B}} \mathrm{ß}^{\wedge} ß=\mathbb{F} \pm "$).
Definition. Let 0 À ${ }^{w}$ Ä \backslash with $\mathrm{H} \propto\left(\mathrm{P} \beta^{\wedge} ß \mathcal{B} \Rightarrow \hat{I} \backslash\right.$. Then

Notice

$$
\text { œ }\left(0 ^ { \ddagger } (\mathrm { P }) \Subset 0 ^ { \ddagger } \left(\mathrm { Py } ß 0 ^ { \square " } (\wedge) \cup 0 ^ { \square " } \left(\wedge y ß O ^ { \ddagger } \left(\Rightarrow \subsetneq 0^{\ddagger}(=9) .\right.\right.\right.\right.
$$

Intersecting with divisors

Definition. If H is a pseudo-divisor on a scheme \backslash and Z is a 5dimensional sub- variety of \backslash, define $\mathrm{H}[\mathrm{Z}]$ or $\mathrm{H} \dagger \mathrm{Z}$ in $\mathrm{E}_{5 \mathrm{~b}}(|\mathrm{H}| \cap \mathrm{Z})$ to be

4 H , a pseudo-divisor on Z with support $|\mathrm{H}| \cap \mathrm{Z}$.
Then $\mathrm{H} \dagger \mathrm{Z}$ is the Weil divisor class of $\Psi^{\ddagger} \mathrm{H} œ[4 \mathrm{H}]$.
Note: If H is a Cartier divisor, and $\mathrm{Z} \hat{\Phi}|\mathrm{H}|$, then H retracts (pullback) to a Cartier divisor by 4 H .

Definition. Let $\alpha œ \sum 8_{\mathrm{Z}}[\mathrm{Z}]$ be a 5-cycle. Then the support of $\alpha,|\alpha|$ is the union of subvarieties with non-zero coefficients 8_{Z}.

Definition. Each $\mathrm{H} \dagger[\mathrm{Z}]$ is a class in $\mathrm{E}_{5 \square}(|\mathrm{H}| \cap|\alpha|)$. We define the intersection class

$$
\mathrm{H} \dagger \alpha œ \sum 8_{Z} \mathrm{H} \dagger[\mathrm{Z}] .
$$

Proposition. If H is a pseudo-divisor on \backslash and α is a 5 -cycle, then
(1) $\mathrm{H}\left(\alpha \% \alpha y\right.$ œ $\propto \dagger \boldsymbol{H} \% \mathrm{H} \dagger \alpha^{w}$,

(3) If $0 \dot{A} \backslash A ̈ \backslash w_{i s}$ a morphism, then there is

$$
1_{\ddagger} A \grave{A l}^{\square "}(|\mathrm{H}| \cap|\alpha|) A ̈|H| \cap O(|\alpha|)
$$

with $1_{\ddagger}\left(0^{\ddagger} H \dagger \alpha\right) œ H \dagger O_{\ddagger}(\alpha)$.
(4) Same as above but other direction.
(5) If H is a pseudo-divisor with $\mathrm{b}_{\backslash}(\mathrm{H})$ is trivial, then $\mathrm{H} \dagger \alpha$ œ!

Lecture 4 (February 10, 2009)

Theorem 2.4 Let H §H ${ }^{\text {w }}$ be Cartier divisors on an 8-dimensional variety \. Then

$$
\mathrm{H} \dagger\left[\mathrm{H}^{\mathrm{w}} œ \mathrm{H}^{\mathrm{w}}+[\mathrm{H}] \text { in } \mathrm{E}_{8 \square \#\left(|\mathrm{H}| \cap \mid \mathrm{H}^{w}\right),}\right.
$$

Proof. Assume H and H^{w} are effective Cartier divisors that intersect properly (that is, there is no codimension " subvariety of \backslash in their intersection, $\left.|\mathrm{H}| \cap \mid \mathrm{H}^{W}\right)$. Recall the following fact:

Let E be a local domain of dimension \# Take $\mathbb{H}^{+}+^{\mathrm{N}}-\mathrm{E}$. Define $/ E\left(+\& E I+{ }^{\prime} E\right)$ as follows:

! Ä ker Ä EÎ + ${ }^{\nu} E \ddot{A}^{+} E I ̂+{ }^{v} E$ Ä coker Ä !

 minus length of kernel).

Next, we will need the lemmas:

Note: For the above lemma, we want $\mathrm{H}+\left[\mathrm{H}^{W} \propto \sum 7{ }_{3}\left[\mathrm{~A}_{3}\right]\right.$ to be $\mathrm{H}^{\mathrm{w}+}[\mathrm{H}] œ \sum 7{ }_{3}\left[\mathrm{~A}_{3}\right]$.
Case 1 Assume H and H^{w} are effective that intersect properly. Calculate the coefficient of [in $\mathrm{H} \dagger\left[\mathrm{H}^{W}\right.$, with dim E œ\# Then all primes ©with ht " correspond to a subvariety \mathbf{Z} of codimension ". Hence,

$$
\left[H^{W W} \underset{\substack{\text { ht } œ \sum^{\prime} \\:- \text { Spec E }}}{ } 83\left[Z_{3}\right] \%\right. \text { \% }
$$

 $8_{3} œ j_{E_{G}}\left(E_{G} \hat{l}+{ }^{V} E_{\mathbb{G}}\right)$. To continue, we first must compute

$$
\mathrm{H}+\left[\mathrm{H}^{W} \propto \underset{\mathbb{G}_{3}-\mathrm{E}}{ } 8_{3} \mathrm{H}+\left[\mathrm{Z}_{3}\right],\right.
$$

with

Well, the coefficient of $\left[\right.$ in $\mathrm{H}+\left[\mathrm{Z}_{3}\right]$ is
by the lemma.
Case 2 Assume H and H^{w} are effective. We wil reduce to the case of proper intersection.

Lemma. If H and H^{w} are Cartier divisors on \backslash and $1 \mathrm{~A} \|^{\sim} \mathrm{A} \backslash$ is a proper birational morphism, with

$$
\begin{aligned}
& \left.\left.\right|^{W}{ }^{W} \cup\right|^{W}{ }^{W} \S 1^{D^{\prime \prime}}\left(\mid \mathrm{H}^{W}\right) \text {. }
\end{aligned}
$$

We have four pairs on $\^{\sim}$, (F ßF wß(F SG 以ß(GßF wß and (GßGy. If the theorem holds true for each pair, then it is true in general.
Definition. Let H ßH ${ }^{\mathrm{w}}$ be effective divisors on \backslash. Define
\& HßHV œmax $\left\{\operatorname{ord}_{z} \mathrm{H}^{\text {W }} \operatorname{tord}_{Z} \mathrm{H}^{\mathrm{M}} \operatorname{codim}_{\} \mathrm{Z}\right.$ œ" $\}$.
Note that ${\mathrm{H} S H^{w}}^{w}$ intersect properly if and only if $\&\left(H ß H^{w y} œ!\right.$. If $\&\left(\mathrm{H}_{1} \mathrm{H}^{W} \mathrm{~S} \mathrm{~S}\right.$!, then we blow up \backslash along $|\mathrm{H}| \cap \mid \mathrm{H}^{W}$. We get

$$
1 \text { À| Ä }
$$

(a) $G \cap G^{w} œ g$

Case 3 Assume $\mathrm{H}^{\text {wis }}$ effective. Let 1 be the denominator of the ideal sheaf of H . Then we can have a blow-up

$$
1 \text { Àl }
$$

with I an exceptional divisor. Then we can just consider the pair (Gß1 ${ }^{\ddagger} \mathrm{H}^{\mathrm{w}}$ and ($\mathrm{I} \mathrm{Bl}^{\ddagger} \mathrm{H}^{\mathrm{W}}$ and apply these to case 2.

Case 4 Let H and H^{w} be arbitrary divisors. Let 1 be the denominator of the ideal sheaf of H . We can have

$$
1 \text { À }{ }^{\sim} \ddot{A} \mathrm{~F} I_{1} \backslash \ddot{\mathrm{~A}} \backslash \text { with } 1^{\ddagger} \mathrm{H} œ G \square \mathrm{I} .
$$

Consider the pairs $\left(G ß I^{\ddagger} H^{y y}\right.$ and (I $\mathrm{SI}^{\ddagger} \mathrm{H}^{\mathrm{W}}$. We can apply case 3 to this and we're done! \square (of theorem)
Corollary 2.4.1. Let H be a pseudodivisor on \backslash. Let $\alpha-\wedge_{5} \backslash$ and $\alpha \mu$!. Then $\mathrm{H} \dagger \alpha œ$! in $\mathrm{E}_{5 \square}(|\mathrm{H}|) \mathrm{SE}_{5 \square}(|\mathrm{H}| \cap|\alpha|)$.
Corollary 2.4.2. Let H and H^{w} be pseudo-divisors on \backslash. Then

$$
\left.H \dagger\left(H^{v} \alpha\right) œ H^{w} H \dagger \alpha\right)
$$

for any $\alpha-\hat{5}_{5}(\backslash)$.
As cycles, $\mathrm{H}^{\mathrm{H}} \dagger^{\mathrm{H}} \mathrm{H}^{\mathrm{w}} \mathrm{A} \mathrm{H}^{\mathrm{w}}+[\mathrm{H}]$, but as classes, they are equal.

Example 2.4.1. Consider $\square^{\#}$. Consider the situation.

First, we have

$$
\begin{gathered}
H \text { œ } 1^{\ddagger} G^{"} \text { œG" \%l (principal), and } \\
H^{w} œ 1^{\ddagger} G_{\#} œ G_{\#} \% \text { I (principal), }
\end{gathered}
$$

where by principal we mean $b_{\sim} z b_{\sim}(H)$ and $b_{\ulcorner } z b_{\sim}\left(H^{W y}\right.$ respectively. We have

$$
\mathrm{H} \dagger[\mathrm{H}^{\mathrm{W}} \propto \mathrm{H} \dagger(\left[\mathrm{G}_{\#} \%[\mathrm{I}]\right) \propto \underbrace{\mathrm{H}+\left[\mathrm{G}_{\#}\right]}_{:} \% \mathrm{H} \dagger[\mathrm{I}],
$$

where : is just a point $\left(:-\wedge_{!}\left(|\mathrm{H}| \cap\left|\mathrm{G}_{\#}\right|\right)\right.$) and $\mathrm{E}_{!}(|\mathrm{H}|)_{\mathrm{E}_{!}(:)}$. Notice $\mathrm{H} \dagger\left[\mathrm{G}_{\#}-\hat{\wedge}_{!}\left(|\mathrm{H}| \cap \mid \mathrm{G}_{\#}\right)\right.$ œ^! $(\mathrm{I}: \mathrm{I})$. W ecan also think of $\mathrm{H}+\left[\mathrm{G}_{\#}\right.$ $E_{!}\left(\mid G_{\#}\right)$ and in that case : œ!, because $G_{\#} œ \square "$. Thus, $H \dagger\left[G_{\#} \propto\right.$: . On the other hand, $\mathrm{H} \dagger[\mathrm{I}] \propto!$. Why? Because $|\mathrm{I}| \S|\mathrm{H}|$ in ${ }^{\wedge}(\mathrm{I})$. Hence,

$$
\underbrace{\mathrm{H} \dagger\left[\mathrm{G}_{\#}\right.}_{:} \% \mathrm{H}+[\mathrm{I}] \propto:-\hat{\mathrm{a}}_{!}(\mathrm{I}) .
$$

Notice that since l œ $\square^{\prime \prime}$, the other one turns out to be; . Hence, they are non-equal as cycles, but are as classes.
 define

More generally, for any homogeneous polynomial of degree .,

$$
\mathrm{T}\left(\mathrm{X}_{\mathrm{n}} \mathrm{SH} \mathrm{SH}_{1} \mathrm{X}_{8}\right)
$$

with integer coefficients. Then

$$
\mathrm{T}\left(\mathrm{H}_{4} \text { §\#\#S } \mathrm{H}_{8}\right)+\alpha-\mathrm{E}_{5 \square}\left(\left(\left|\mathrm{H}_{"}\right| \cup \mathrm{H} \cup\left|\mathrm{H}_{8}\right| \cap|\alpha|\right) .\right.
$$

If 8 œ5ß] œ $\left|\mathrm{H}^{\prime \prime}\right| \cap$ ゆ $\cap\left|\mathrm{H}_{8}\right| \cap|\alpha|$ is complete, define the intersection \# to be

Note. The "integral" means if $\alpha œ \sum 8_{3}\left[T_{3}\right]$ with \backslash over 5 then

$$
\int_{\backslash} \alpha \propto \sum 8_{3}[5(:) \dagger 5] .
$$

If Z is a pure 5 -dimensional subscheme of \backslash, then

Chern classes of line bundles

Let P be a line bundle on a scheme \backslash. We can define a homomorphism $G_{3}(P) \cap_{-} \grave{A}_{5} \backslash \ddot{A} E_{5 \square " \} \backslash$ with $\alpha \propto \sum 8_{3}\left[Z_{3}\right]$ È $G_{3}(P) \cap \alpha$ as follows. For any 5 -dimensional subvariety $Z ß P I_{z} œ b_{z}(G)$ where G is a cartier divisor on VPThen

$$
\mathrm{G}_{3}(\mathrm{P}) \cap[\mathrm{Z}] \propto[\mathrm{G}]-\mathrm{E}_{5 \square} \mathrm{n}(\backslash) .
$$

Note that if P œb $\backslash(\mathrm{H})$ for a pseudo-divisor on \backslash, then

$$
\mathrm{G}_{3}(\mathrm{P}) \cap \alpha \propto \mathrm{H} \dagger \alpha .
$$

Proposition 2.5 (a) If $\alpha \mu$! on \backslash, then $\mathrm{G}_{3}(\mathrm{P}) \cap \alpha \propto$!. So we have

$$
\mathrm{G}_{3}(\mathrm{P}) \cap \ldots \hat{A} \mathrm{E}_{5}(\backslash) \ddot{A} \mathrm{E}_{5 \square}(\backslash) .
$$

(b) If $\mathrm{P} ß \mathrm{P}^{\mathrm{w}}$ are line bundles on $\backslash, \alpha-\hat{\wedge}_{5} \backslash$, then

$$
G^{n}(P) \cap\left(G^{n}\left(P{ }^{v y} \cap \alpha\right) œ G^{n}(P v y \cap(G n(P) \cap \alpha) .\right.
$$

(c) If $0 \mathrm{~A} \backslash \mathrm{w}$ " \backslash is a proper morphism, P is a line bundle on \backslash, α is a 5 cycle on $\backslash \stackrel{\mathrm{w}}{ }$, then

$$
0_{\ddagger}\left(G^{\prime \prime}\left(O^{\ddagger} P\right) \cap \alpha\right) œ G^{\prime}(P) \cap 0_{\ddagger} \alpha .
$$

(d) If 0 À ${ }^{\mathrm{w}}$ \} \backslash is flat of relative dimension 8 , and \mathrm { P } is a line bundle on $\$, with α a 5 -cycle on \backslash, then

$$
\mathrm{G}^{\prime}\left(0^{\ddagger} \mathrm{P}\right) \cap 0^{\ddagger} \alpha \propto 0^{\ddagger}\left(\mathrm{G}^{\prime \prime}(\mathrm{P}) \cap \alpha\right) .
$$

(e) If P §P ${ }^{\mathrm{w}}$ are line bundles with $\alpha-\wedge_{5} \backslash$ ß then
Gn (P ©PVy œ

Definition. If $\mathrm{P}_{n} \mathrm{SH}_{\mathrm{H} \beta \mathrm{P}_{8}}$ are line bundles on $\backslash \mathrm{B} \alpha-\mathrm{E}_{5}(\backslash)$, and we have a homogeneous polynomial $\mathrm{T}\left(\mathrm{X}_{n}\right.$ §\#\# K_{8}) of degree ., then

In particular，

$$
\mathrm{G}^{n}(\mathrm{P})^{\cdot} \cap-\mathrm{E}_{5 \square} \cdot(\backslash) .
$$

Definition．Let H be an effective divisor on \backslash and let $3 \mathrm{~A} \mathrm{H} A ̈ \mathrm{~A} \backslash$ be the inclusion．Define the Gysin homomorphism

$$
\begin{aligned}
& \ddagger \hat{A} \wedge_{5} \backslash \ddot{A} E_{5 \square} H \\
& \alpha \text { È } \ddagger(\alpha) œ H t \alpha .
\end{aligned}
$$

Proposition 2．6．（a）If $\alpha \mu$ ！on \backslash ，then $\ddagger \alpha œ$ ！．So we have
\＃${ }^{\prime} E_{5} \backslash A ̈ E_{5 口} H$.
（b）If $\alpha-Z_{5} \backslash$ ，then
枼 $\ddagger \alpha$ œG＂$\left(b_{B}(H)\right) \cap \alpha$.
（c）If $\alpha-{ }_{5} \mathrm{H} ß$ ，then
$\ddagger_{\mathcal{F}} \alpha \propto G^{n}(R) \cap \alpha$,
where R œま $\mathrm{b}_{\text {，}}(\mathrm{H})$ ．
（d）If \backslash is purely 8－dimensional，then

$$
\ddagger[\backslash] œ[\mathrm{H}] .
$$

（e）If P is a line bundle on \backslash ，then

$$
\ddagger(G n(P) \cap \alpha) œ G^{\prime}(P) \cap \neq(\alpha)
$$

for any $\alpha-\hat{\wedge}_{5} \backslash$ p $? \Leftrightarrow / \AA$

Lecture 5 （February 16，2009）

（1） T is projective if and only if T is proper．

$T(I) \bar{A} \backslash$ ，with $\alpha-E_{\ddagger}(\backslash)$ ．
So $\boldsymbol{z}_{8}(\mathrm{I}) \cap \alpha^{3} \quad _\cap \mathrm{T}^{\ddagger} \alpha$ ．
（1） 0 À ${ }^{\mathrm{w}} \mathrm{A} \backslash ß O_{\ddagger}\left(=8\left(0^{\ddagger} \backslash\right) \cap \alpha\right) œ=8(I) \cap O_{\ddagger} \alpha$ ．
（a）$(1)=8(1) œ!$ if $3 \square!$ ．
（2）$\mp(1) \cap \alpha œ \alpha$ ．

$$
\begin{aligned}
& \text { "\#\# }{ }^{\#}{ }^{\circ} \mathrm{G}_{\#} \text {). }
\end{aligned}
$$

Lecture 7 (March 10, 2009)
Recall definition of regular imbedding, and cone.

