Lecture 3 (January 16, 2009) -

Example. Let K be a field, V a 1-dimensional K-vector-space, and W a 2-dimensional K-vector space. Take

$$
\left(\mathrm{id}_{K}, \text { embedding of v.s. }\right),(K, V) \rightarrow(K, W)
$$

As we will see, $(K, V) \vDash \theta$ and $(K, W) \vDash \theta$. Consider the formula $\varphi(v)$, which will say

$$
\varphi(v)=\forall w \exists \lambda \lambda \star v \approx w .
$$

Then $\varphi(v)^{(K, V)}=\left\{a \in V \mid a \neq 0_{\mathrm{V}}\right\}$, since all non-zero elements of a 1-dimensional vector space span that vetor space. On the other hand, $\varphi(v)^{(K, W)}=\emptyset$, since there is no single basis element for a 2 -dimensional vector space.

Definition. We say that $\mathcal{N} \subseteq \mathcal{M}$ is an elementary substructure (written $\mathcal{N} \preceq \mathcal{M}$) if for all L-formulae $\varphi(\bar{x}), \varphi^{\mathcal{M}} \cap \overline{\mathcal{N}}=\varphi^{\mathcal{N}}$. [Familiarize yourself with this last part.]

Definition. An embedding $\mathcal{N} \hookrightarrow \mathcal{M}$ is elementary if $f(\mathcal{N}) \preceq \mathcal{M}$.
We now claim that if $f: \mathcal{N} \rightarrow \mathcal{M}$ is a bijection, then f is an embedding if and only if f is an elementary embedding.

Definition. We say \mathcal{M}, \mathcal{N} are fundamentarily equivalent if $\operatorname{Th}(\mathcal{M})=\operatorname{Th}(\mathcal{N})$ and we write $\mathcal{M} \equiv \mathcal{N}$.

Remarks. The above definition is a weaker version of isomorphism.
Exercise. If $\mathcal{N} \preceq \mathcal{M}$, then $\mathcal{N} \equiv \mathcal{M}$.
Example. There are $\mathcal{M} \subseteq \mathcal{N}$ substructures such that $\mathcal{M} \cong \mathcal{N}$ but $\mathcal{M} \npreceq \mathcal{N}$. Take a 1sorted language, with one binary relation symbol R, and \mathcal{M} 's universe to be the natural numbers \mathbb{N}, with $R^{\mathcal{M}}:=<$ (less than).

Compactness: If T is a set of sentences and if $\forall T_{0} \subseteq$ fin T there is $\mathcal{M}_{T_{0}} \vDash T_{0}$, then $\exists \mathcal{M} \vDash T$. $\left(\mathcal{M}_{T_{0}} \vDash T_{0}\right.$ means $\left.\forall \theta \in T_{0}, \mathcal{M} \vDash \theta\right)$.

Upward Löwenheim-Skolem: If T has an infinite model \mathcal{M}, then $\forall \kappa>|\mathcal{M}|$, $\exists \mathcal{N} \succeq \mathcal{M}$ such that $|\mathcal{N}|=\kappa$.
Proof. " \mathcal{N} is huge": define $L^{+}:=L \cup\left\{C_{i} \mid i \in \kappa\right\}$ (L with κ many constant symbols), and $T_{1}=\left\{C_{i} \not \approx C_{j} \mid i \neq j\right\}$. We also need " $\mathcal{M} \preceq \mathcal{N} "$. So, we grow our language again:

$$
L^{++}:=L^{+} \cup\left\{C_{m} \mid m \in \mathcal{M}\right\} .
$$

Let $T_{2}:=\left\{\varphi\left(C_{m_{1}}, \ldots, C_{m_{n}}\right) \mid \varphi\left(x_{1}, \ldots, x_{n}\right)^{\mathcal{M}} \ni\left(m_{1}, \ldots, m_{n}\right)\right\}$. Then let $T:=T_{1} \cup T_{2}$. This completes the proof. \square [Homework. Understand this...]

Downward Löwenheim-Skolem. If $A \subseteq \mathcal{M}$, then there is $\mathcal{N} \preceq \mathcal{M}, A \subseteq \mathcal{N}$, $|A|=|\mathcal{N}|$.

Proof. Exercise. (to look it up) It involves Skolem functions.
We now claim if $\mathcal{M} \equiv \mathcal{N}$, then there is $\mathcal{U} \succeq \mathcal{M}$ and $\mathcal{U} \succeq \mathcal{N}$.

Proof. $\quad \operatorname{Eldiag}(\mathcal{M}) \cap \operatorname{Eldiag}(\mathcal{N}) . \operatorname{Assume} \operatorname{Eldiag}(\mathcal{M}) \supseteq \mathcal{O}_{\mathcal{M}}:=\bigwedge F_{\mathcal{M}}$ and similarly for \mathcal{O}_{N}.

Lecture 5 (January 23, 2009) -

Last time, we showed that given a theory T, then the following are equivalent:

- T is model-complete.
- All modules of R are existentially closed (e.c.) models of T.
- Every existential is equivalent to a universal.

Every formula is equivalent to an existential and to an universal.
What fields are e.c. fields?

Axioms of Fields

The language we will use will be $\mathcal{L}_{\text {fields }}=\{+, \cdot, 0,1\}$. We will use

$$
\begin{aligned}
& \forall x \forall y \forall z x+(y+z) \approx(x+y)+z \wedge x \cdot(y \cdot z)=(x \cdot y) \cdot z \wedge x \cdot(y+1)=x \cdot y+x \cdot z \\
& \forall x \forall y(x+y=y+x \wedge x \cdot y=y \cdot x) \\
& \forall x(x+0=x \wedge x \cdot 1=x) \\
& \forall x \exists y(x+y=0) \\
& \forall x \exists y(x=0 \vee x \cdot y=1) .
\end{aligned}
$$

The theory of fields is an $\forall \exists$-theory.
Lemma. If T is an $\forall \exists$-theory, then $A_{i} \vDash T \forall i \in I$ ordered, $\forall i<j, A_{i} \leq A_{j}$, then

$$
\bigcup_{i \in I} A_{i} \vDash T .
$$

Proof. It suffices to prove this for $T=\{\theta\}$.
Note. If $(I,<), A_{i} \preceq A_{j} \forall i<j$, then $\forall i A_{i} \preceq \bigcup_{i \in I} A_{i}$.
Definition. Given A_{i} for $i \in(I, c)$, define

$$
\bigcup_{i \in I} A_{i}: \text { universe : union of universes (sortwise) }
$$

For example, if f is an n-ary function symbol and $a_{1}, \ldots, a_{n} \in \bigcup_{i \in I} A_{i}$ of the right sort,

$$
f_{i \in I}^{\bigcup_{A 1}}\left(a_{1}, \ldots, a_{n}\right):=f^{A_{j}}\left(a_{1}, \ldots, a_{n}\right) .
$$

Let $j: \forall i a_{i} \in A_{j}$. If $j^{\prime}: \forall i a_{i} \in A_{j^{\prime}}$, then

$$
f^{A_{j}}\left(a_{1}, \ldots, a_{n}\right)=f^{A_{j^{\prime}}}\left(a_{1}, \ldots, a_{n}\right)
$$

where $j<j^{\prime}, A_{j} \leq A_{j^{\prime}}$ implies the above.
We claim that an e.c. field is algebraically closed:

Proof. If F is not algebraically closed, there is a polynomial $p(x) \in F(x)$ such that $F \not \vDash \exists x p(x)=0$ but $\bar{F} \geq F, \bar{F} \vDash \exists x p(x)=0$.

Exercise. Find a T which has no e.c. models of any size.
Exercise. Find a theory T, \mathcal{M} an e.c. model of $T, \mathcal{M} \preceq \mathcal{N}$ which is not an e.c. model of T.

Proposition. Suppose that T is an $\forall \exists$-theory, $A \vDash T, \lambda \geq|A|, \lambda \geq|L|$, then $\exists \mathcal{M}$ is an e.c. model of T such that $A \leq \mathcal{M}$ and $|\mathcal{M}|=\lambda$.

Proof. We have a chain $A=\mathcal{M}_{0} \leq \mathcal{M}_{1} \leq \mathcal{M}_{2} \leq \ldots$ Our induction hypothesis will be $\left|M_{i}\right| \leq \lambda$. The base case $\mathcal{M}_{0}=A$ is trivial. We want to list

$$
\left\{\left(\varphi^{j}\left(x_{1}, \ldots, x_{n}\right) ;\left(m^{j}, \ldots, m_{n_{j}}^{j}\right)\right) \mid j \in \lambda\right\},
$$

the pairs of L-formula, tuples of elements for \mathcal{M}. For the limit cardinal case we have

$$
\alpha: M_{\alpha}=\bigcup_{i \in \alpha} \mathcal{M}_{i} .
$$

The successor case: Given \mathcal{M}_{i}, we look at $\varphi^{i},\left(\bar{m}^{i}\right) \in \mathcal{M}_{i}$. If $\mathcal{M}_{i} \vDash \varphi^{i}\left(\bar{m}^{i}\right)$, then $\mathcal{M}_{i+1}=\mathcal{M}_{i}$. Otherwise, if there is $\mathcal{N} \vDash T, \mathcal{M}_{i} \leq \mathcal{N}, \mathcal{N} \vDash \varphi^{i}\left(\bar{m}^{i}\right)=\exists y \varphi\left(\bar{m}^{i}, y\right)$. So we need to find $\alpha \in \mathcal{N}$ s.t. $\mathcal{N} \vDash \varphi(\bar{m}, y)$.

We get \mathcal{N}_{2} from \mathcal{N}_{1} like \mathcal{N}_{1} from \mathcal{N}_{0}. We claim that \mathcal{M} is an e.c. model of $T(T$ is $\forall \exists$). Suppose not. If there is $\mathcal{N} \vDash T, \mathcal{M} \vDash \mathcal{N}$, then this is existential $\varphi(x), \bar{m} \in \mathcal{M}$ such that $\mathcal{N} \vDash \varphi(\bar{m}), \mathcal{M} \not \vDash \varphi(\bar{m}), \bar{m} \in \mathcal{N}_{i},(\varphi, \bar{m})=\left(\varphi^{j}, \bar{m}^{j}\right)$ for some $j \leq \lambda$ in the construction of \mathcal{N}_{i+1}, and this was fixed.

E.c. fields

- Are algebraically closed
- For any characteristic p, for any $\lambda \geq \aleph_{0}$, there is an e.c. field of char p, of size λ.
- For $\lambda>\aleph_{0}$, for each char p, there is a unique algebraically closed field of size λ, char p (transcendence basis)

Therefore, for uncountable field k, k is an e.c. field if and only if k is algebraically closed.

Lecture 6 (January 26, 2009) - Algebraically Closed Fields

Definition. $\mathrm{ACF}=\operatorname{Th}$ (fields) $\cup\{\forall \bar{y}$ if $y=0\}$
$\mathrm{ACF}_{p}=\mathrm{ACF} \cup\left\{\theta_{p}: 1+1+\ldots+1=0\right\}$
$\mathrm{ACF}_{0}=\mathrm{ACF} \cup\left\{\exists \theta_{p}: p \in \mathbb{N}\right\}$.
Facts about algebraically closed fields. (1) Infinite.
(2) [Can't read board at that angle from here, copy Ramin's notes again... :(]

Proposition. Given an $\forall \exists$ theory T with no finite models, which is λ-categorical for some $\lambda \geq|L|$, then T is model-complete.
Proof. Suppose $A \vDash T$ is not an existentially closed model of T, i.e., $\exists B \vDash T, a \in A$ existential $\varphi(x)$ such that $A \leq B, A \not \vDash \varphi(a), B \vDash \varphi(a)$. Then $L^{+}=L \cup\{P, C\}$. Consider an L^{+}-structure \mathcal{M} with $\left.\mathcal{M}\right|_{L}:=B, P^{\mathcal{M}}=A, C^{\mathcal{M}}:=a . \operatorname{Th}_{L^{+}}(\mathcal{M}) \supseteq T$ with " $P \vDash T$ " (relativization). Now we find $\mathcal{N} \vDash T^{+}$s.t. $|P(\mathcal{N})|=\lambda$. By compactness, $\geq \lambda$. Then by the down-ward Löwenheim-Skolem this $=\lambda$. Now $\left.P(\mathcal{N})\right|_{L} \vDash T$, size λ, not .c. but since T is $\forall \exists$ and $\lambda \geq|L|$, there is some e.c. closed model of T of size L. But T is λ categorical.
Corollary. If $K \vDash \mathrm{ACF}$ and Σ is a system of polynomials over K and Σ has a solution in some field $F \geq K$, then Σ has a solution in $\bar{F} \geq K \vDash$ ACF then Σ has a solution in K (Hilbert's Nullstelensatz).

Definition. T eliminates quantifiers (has quantifier elimination) if $\forall \varphi(x), \exists$ a q.f. $\psi(x)$ s.t. $\varphi(x) \Leftrightarrow \psi(x)$.

Proposition. Suppose T is model-complete, and $\{$ substructures of models of $T\}$ has the amalgamation property (A.P.) then T has q.e.
Proof. (1) It suffices to show q.e. for existential $\varphi(x)$ (induction). Fix existential φ. Take

$$
\begin{gathered}
S_{\varphi}:=\{(A, a) \mid A \vDash T, A \vDash \varphi(a)\} \\
F_{(A, a)}=\{\psi(x) \mid \psi \text { is q.f. and } A \vDash \psi(a)\} .
\end{gathered}
$$

We claim if $(B, b) \vDash T \cup F_{(A, a)}$ then $B \vDash \varphi(b)$. For a q.f. type of b in B and q.f. type of a in A, then $\langle b\rangle_{B} \cong\langle a\rangle_{A}=D$ so there is some $C_{0} \subseteq C \vDash T$ s.t. $D \cong\langle a\rangle_{A} \hookrightarrow A$ and $D \cong\langle b\rangle_{B} \hookrightarrow B$ with $A \hookrightarrow C_{0}$ and $B \hookrightarrow C_{0}$ with $C_{0} \hookrightarrow C \vDash T$. Now, $A \vDash \varphi(a)$ so (since φ is existential), $C \vDash \varphi(a), C \vDash \varphi(b)$. Since T is model-complete, this implies $B \vDash \varphi(b)$.

Lecture 7 (January 28, 2009) -

Organizational:

- No class on Friday Feb 6th, 27th. (class 2-4 on Mon Feb 2nd, 23rd)
- Grad student logic conference in Ubrana on 18/19 April.
- ASL conference Notre Dame May 20-23 Apply for funding NOW.

Quantifier Elimination for A.C.F

Corollary. If $\mathcal{M} \vDash A C F$, and $\varphi(x)$ is a formula with 1 free variable, then $\varphi(\mathcal{M})$ is finite or cofinite.

Proof. If φ is quantifier-free, without loss of generality (d.n.f)

$$
\varphi=\bigvee_{j=1}^{m_{i}}\left(\bigwedge_{j=1}^{m_{i}} \varphi_{i j}(x)\right)
$$

where $\varphi_{i j}$ is a poly equation or inequality. It suffices to show that $\bigwedge_{i=1}^{m_{j}} \varphi_{i j}(k)$ is finite/confinite. Hence, it suffices to show $\varphi_{i j}(x)$ is finite/cofinite: finite if equal, cofinite is ineq.

Definition. A theory T is strongly minimal if the previous corollary holds for T in place of ACF.

Examples. (1) $L=\emptyset$, theory of infinite sets.
(2) Distinguishable, torsion-free abelian groups (\mathbb{Q}-vector space).
(3) For any prime p, \mathbb{F}_{p}-vector spaces.

Zilber's Trichotomy Conjecture.

Counterexample: Read Hrushovski's article "A new strongly minimal set."
From this point, we let T be a strongly minimal theory.
Lemma. (about uniform finiteness/cofiniteness) Take $\varphi(x ; y)$ with x, y single variables. Then $\exists n$ such that for all but finitely many $b \in \mathcal{M},|\varphi(\mathcal{M} ; b)|=n$ (finiteness), or for all but finitely many $b \in \mathcal{M},|\mathcal{M} \backslash \varphi(\mathcal{M} ; b)|=n$ (cofiniteness).

Proof. Note that for each n, " $|\varphi(\mathcal{M}, y)|=n "$ is 1-st order, call it $f_{n}(y)$ (finite), and $"|\varphi(\mathcal{M}, y)|=n$ " is 1 -st order, call it $c_{n}(y)$ (cofinite). Then

$$
\mathcal{M}=\left(\bigsqcup_{n} f_{n}(\mathcal{M})\right) \sqcup\left(\bigsqcup_{n} c_{n}(\mathcal{M})\right)
$$

We claim that not all f_{n}, c_{n} are finite. Further, we claim that $\forall i \neq j, f_{i} \cap f_{j}, f_{i} \cap c_{i}$, $f_{i} \cap c_{j}, c_{i} \cap c_{j}=\emptyset$. We claim there are infinitely many non-empty f_{i} or infinitely many non-empty c_{i}. Take $\Sigma=T \cup\{\varphi(x, C)$ is infinite, co-infinite $\}$. By strong minimality of T, Σ is inconsistent. So a finite part of Σ is inconsistent.

$$
\Sigma=\left\{\exists_{\geq n} x \varphi(x, C) \mid n \in \mathbb{N}\right\} \cup\left\{\exists_{\geq n} x \neg \varphi(x, C) \mid n \in \mathbb{N}\right\}
$$

(we are adding one constant C to the language).
Lemma. Suppose $b, a_{1}, \ldots, a_{n} \in \mathcal{M}$. Suppose $b \in \operatorname{acl}\left(a_{1}, \ldots, a_{n}\right) \backslash \operatorname{acl}\left(a_{1}, \ldots, a_{n-1}\right)$. Then $a_{n} \in \operatorname{acl}\left(a_{1}, \ldots, a_{n-1}, b\right)$. (Steinitz exchange)
Proof. Say $\psi\left(x ; y_{1}, \ldots, y\right)$ witnesses $b \in \operatorname{acl}\left(a_{1}, \ldots, a_{n}\right)$, i.e., $\psi(x ; \bar{a})$ is finite $(b \in \bar{a})$.
Define $\psi\left(x, a_{1}, \ldots, a_{n-1}, y_{n}\right)$ as $\tilde{\psi}\left(x, y_{n}\right)$. Then for all but finitely many $c \in \mathcal{M}, \tilde{\psi}(x ; c)$ has the same finite size, or the same cofinite size (see previous lemma). Similarly for $c \notin \operatorname{acl}\left(a_{1}, \ldots, a_{n-1}\right) \tilde{\psi}$ has the same finite size as $\varphi\left(x ; a_{n}\right)$. Also, all vertical slices $\tilde{\psi}\left(d ; y_{n}\right)$ have the same size as $\tilde{\psi}\left(b, y_{n}\right)$. If almost all vertical slices are cofinite, then any N of them intersect.

Lecture 9 (February 2, 2009) -

(1) Given $A \subseteq \mathcal{M}$, and given $n \in \mathbb{Z}$, there is a unique n-type of dimension n.

Proof. Induct on n. If $n=1$, the generic type of \mathcal{M} over A will be
$\forall \varphi(x)$ w/ parameters from $A, \varphi(\mathcal{M}$ finite $)$ or $\varphi(\mathcal{M})$ cofinite.
Now for the induction case (n to $n+1$), we need to show if $(\bar{b}, c),(\bar{d}, e)$ are $(n+1)$ tuples then $\operatorname{dim}_{A}=n+1$ (they have the same order over A). We need $b c \equiv{ }_{A} d e$, that is,

$$
\operatorname{type}(b c / A)=\operatorname{type}(d e / A)
$$

First, note that b, d both satisfy the unique (by induction) n-type over A of dimension n.

$$
p(x)=\{\varphi(\bar{x}, y) \mid \vDash \varphi(\bar{b}, c) \text { w/ param from } A\}
$$

$\exists y, \varphi(\bar{x}, y) \in \operatorname{type}(\bar{b} / A)=\operatorname{type}(\bar{d} / A)$. Then $p(y)=p(d, y)$ is a consistent type. Alice waves her hands and says "I refer you to Monster model." (What is Monster model?) Now we just need to show e and e^{\prime} have the same type over $A \bar{d}$.
If \bar{b} models the generic n-type over A, then \bar{b} is a generic point of A^{n} (not the same as in algebraic geometry).
(2) $R M(p)=\operatorname{dim}(p)$. Take $\bar{a} \vDash p$, reorder s.t. $\bar{a}=\bar{b} \bar{c}$ with \bar{b} a transcendence basis for \bar{a}, and for each c_{i}, take $\psi_{i}(x, y)$ that witnesses that c_{i} is algebraic over $\bar{b}(\subset \operatorname{acl}(\bar{b}))$. We claim there exists $\varphi_{i}(x, y) \in$ generic length (\bar{x})-type, least possible n_{i}. Take

$$
\Theta(\bar{x}, \bar{y})=\bigwedge_{i}\left[\psi_{i}(\bar{x}, y) \wedge \exists_{=n, y} \psi_{i}(\bar{x}, y)\right]
$$

Then any $q \ni \Theta$ has $R M(q) \leq r$, and $\operatorname{Rm}(p)=r$ implies $q=p$.
(3) The unique generic type p has $R M(p)=r$. We will induct on r. For $r=1$, it is an easy exercises to show $R M(p) \neq 0$. Now, inductively, take $\varphi(\bar{x}, y)$ to be of generic $(r+1)$-type. We need $M R(\varphi(\bar{x}, y)) \geq r+1$. We need

$$
\left\{\psi_{i}(\bar{x}, y)\right\}_{i \in \aleph_{0}} \text { s.t. } M R\left(\psi_{i}\right) \geq r, \psi_{i} \cap \psi_{j}=\emptyset \text { so } \psi_{i} \Longrightarrow \varphi .
$$

Now, find $\left\{b_{i}\right\}_{i \in \omega}$ independent parameter with $\varphi_{i}(\bar{x}, y)=\varphi(\bar{x}, y) \wedge y=b_{i}$. Then it is an easy propostion of $R M$ that $R M(\operatorname{tp}(\bar{b} \bar{c} / A)) \geq R M(\operatorname{tp}(\bar{b} / A))$ and this is equality if and only if $\bar{c} \in \operatorname{acl}(A \bar{b})$.

Given $\varphi(\bar{y}, x), p k \leq$ length $(\bar{x}),\{\bar{a} \mid M R(\varphi(\bar{a} ; \bar{x})) \geq k\}$ is definable. [Couldn't read the board at this point.]

