Lecture 3 (January 16, 2009) -

Example. Let K be a field, V a 1-dimensional K-vector-space, and W a 2-dimensional K-vector space. Take

 $(id_K, embedding of v.s.), (K, V) \rightarrow (K, W).$

As we will see, $(K, V) \vDash \theta$ and $(K, W) \vDash \theta$. Consider the formula $\varphi(v)$, which will say

 $\varphi(v) = \forall w \, \exists \lambda \, \lambda \bigstar v \approx w.$

Then $\varphi(v)^{(K,V)} = \{a \in V \mid a \neq 0_V\}$, since all non-zero elements of a 1-dimensional vector space span that vetor space. On the other hand, $\varphi(v)^{(K,W)} = \emptyset$, since there is no single basis element for a 2-dimensional vector space.

Definition. We say that $\mathcal{N} \subseteq \mathcal{M}$ is an elementary substructure (written $\mathcal{N} \preceq \mathcal{M}$) if for all *L*-formulae $\varphi(\overline{x}), \varphi^{\mathcal{M}} \cap \mathcal{N} = \varphi^{\mathcal{N}}$. [Familiarize yourself with this last part.]

Definition. An embedding $\mathcal{N} \hookrightarrow \mathcal{M}$ is elementary if $f(\mathcal{N}) \preceq \mathcal{M}$.

We now claim that if $f : \mathcal{N} \to \mathcal{M}$ is a bijection, then f is an embedding if and only if f is an elementary embedding.

Definition. We say \mathcal{M}, \mathcal{N} are fundamentarily equivalent if $Th(\mathcal{M}) = Th(\mathcal{N})$ and we write $\mathcal{M} \equiv \mathcal{N}$.

Remarks. The above definition is a weaker version of isomorphism.

Exercise. If $\mathcal{N} \preceq \mathcal{M}$, then $\mathcal{N} \equiv \mathcal{M}$.

Example. There are $\mathcal{M} \subseteq \mathcal{N}$ substructures such that $\mathcal{M} \cong \mathcal{N}$ but $\mathcal{M} \not\preceq \mathcal{N}$. Take a 1-sorted language, with one binary relation symbol R, and \mathcal{M} 's universe to be the natural numbers \mathbb{N} , with $R^{\mathcal{M}} \coloneqq \langle$ (less than).

Compactness: If T is a set of sentences and if $\forall T_0 \subseteq_{\text{fin}} T$ there is $\mathcal{M}_{T_0} \models T_0$, then $\exists \mathcal{M} \models T$. $(\mathcal{M}_{T_0} \models T_0 \text{ means } \forall \theta \in T_0, \mathcal{M} \models \theta)$.

Upward Löwenheim-Skolem: If T has an infinite model \mathcal{M} , then $\forall \kappa > |\mathcal{M}|$, $\exists \mathcal{N} \succeq \mathcal{M}$ such that $|\mathcal{N}| = \kappa$.

Proof. " \mathcal{N} is huge": define $L^+ := L \cup \{C_i \mid i \in \kappa\}$ (L with κ many constant symbols), and $T_1 = \{C_i \not\approx C_j \mid i \neq j\}$. We also need " $\mathcal{M} \preceq \mathcal{N}$ ". So, we grow our language again:

$$L^{++} \coloneqq L^+ \cup \{C_m \mid m \in \mathcal{M}\}.$$

Let $T_2 := \left\{ \varphi(C_{m_1}, \dots, C_{m_n}) \mid \varphi(x_1, \dots, x_n)^{\mathcal{M}} \ni (m_1, \dots, m_n) \right\}$. Then let $T := T_1 \cup T_2$. This completes the proof. \Box [Homework. Understand this...]

Downward Löwenheim-Skolem. If $A \subseteq M$, then there is $\mathcal{N} \preceq \mathcal{M}, A \subseteq \mathcal{N}$, $|A| = |\mathcal{N}|$.

Proof. Exercise. (to look it up) It involves Skolem functions. \Box

We now claim if $\mathcal{M} \equiv \mathcal{N}$, then there is $\mathcal{U} \succeq \mathcal{M}$ and $\mathcal{U} \succeq \mathcal{N}$.

Proof. Eldiag(\mathcal{M}) \cap Eldiag(\mathcal{N}). Assume Eldiag(\mathcal{M}) $\supseteq \mathcal{O}_{\mathcal{M}} \coloneqq \bigwedge F_{\mathcal{M}}$ and similarly for \mathcal{O}_N .

Lecture 5 (January 23, 2009) -

Last time, we showed that given a theory T, then the following are equivalent:

- T is model-complete.

- All modules of R are existentially closed (e.c.) models of T.
- Every existential is equivalent to a universal.

Every formula is equivalent to an existential and to an universal.

What fields are e.c. fields?

Axioms of Fields

The language we will use will be $\mathcal{L}_{\text{fields}} = \{+, \cdot, 0, 1\}$. We will use

$$\begin{aligned} \forall x \,\forall y \,\forall z \, x + (y + z) &\approx (x + y) + z \wedge x \cdot (y \cdot z) = (x \cdot y) \cdot z \wedge x \cdot (y + 1) = x \cdot y + x \cdot z \\ \forall x \,\forall y \, (x + y = y + x \wedge x \cdot y = y \cdot x) \\ \forall x \,\forall x \, (x + 0 = x \wedge x \cdot 1 = x) \\ \forall x \,\exists y \, (x + y = 0) \\ \forall x \,\exists y \, (x = 0 \lor x \cdot y = 1). \end{aligned}$$

The theory of fields is an $\forall \exists$ -theory.

Lemma. If T is an $\forall \exists$ -theory, then $A_i \models T \ \forall i \in I$ ordered, $\forall i < j, A_i \leq A_j$, then

$$\bigcup_{i \in I} A_i \vDash T.$$

Proof. It suffices to prove this for $T = \{\theta\}$.

Note. If (I, <), $A_i \preceq A_j \forall i < j$, then $\forall i A_i \preceq \bigcup_{i \in I} A_i$.

Definition. Given A_i for $i \in (I, c)$, define

 $\bigcup_{i \ \in \ I} A_i$: universe : union of universes (sortwise)

For example, if f is an n-ary function symbol and $a_1, ..., a_n \in \bigcup_{i \in I} A_i$ of the right sort,

$$f^{igcup_{i\in I}}_{{}^{i\in I}}(a_1,...,a_n)\coloneqq f^{A_j}(a_1,...,a_n).$$

Let $j: \forall i \ a_i \in A_j$. If $j': \forall i \ a_i \in A_{j'}$, then

$$f^{A_j}(a_1,...,a_n) = f^{A_{j'}}(a_1,...,a_n),$$

where $j < j', A_j \le A_{j'}$ implies the above.

We claim that an e.c. field is algebraically closed:

Proof. If F is not algebraically closed, there is a polynomial $p(x) \in F(x)$ such that $F \notin \exists x \ p(x) = 0$ but $\overline{F} \ge F$, $\overline{F} \vDash \exists x \ p(x) = 0$. \Box

Exercise. Find a *T* which has no e.c. models of any size.

Exercise. Find a theory T, \mathcal{M} an e.c. model of T, $\mathcal{M} \preceq \mathcal{N}$ which is not an e.c. model of T.

Proposition. Suppose that T is an $\forall \exists$ -theory, $A \models T$, $\lambda \ge |A|, \lambda \ge |L|$, then $\exists \mathcal{M}$ is an e.c. model of T such that $A \le \mathcal{M}$ and $|\mathcal{M}| = \lambda$.

Proof. We have a chain $A = \mathcal{M}_0 \leq \mathcal{M}_1 \leq \mathcal{M}_2 \leq \dots$ Our induction hypothesis will be $|M_i| \leq \lambda$. The base case $\mathcal{M}_0 = A$ is trivial. We want to list

$$\Big\{\Big(\varphi^j(x_1,...,x_n);\Big(m^j,...,m^j_{n_j}\Big)\Big)\,\Big|\,j\in\lambda\Big\},\$$

the pairs of L-formula, tuples of elements for \mathcal{M} . For the limit cardinal case we have

$$\alpha: M_{\alpha} = \bigcup_{i \in \alpha} \mathcal{M}_i.$$

The successor case: Given \mathcal{M}_i , we look at φ^i , $(\overline{m}^i) \in \mathcal{M}_i$. If $\mathcal{M}_i \models \varphi^i(\overline{m}^i)$, then $\mathcal{M}_{i+1} = \mathcal{M}_i$. Otherwise, if there is $\mathcal{N} \models T$, $\mathcal{M}_i \leq \mathcal{N}$, $\mathcal{N} \models \varphi^i(\overline{m}^i) = \exists y \varphi(\overline{m}^i, y)$. So we need to find $\alpha \in \mathcal{N}$ s.t. $\mathcal{N} \models \varphi(\overline{m}, y)$.

We get \mathcal{N}_2 from \mathcal{N}_1 like \mathcal{N}_1 from \mathcal{N}_0 . We claim that \mathcal{M} is an e.c. model of T (T is $\forall \exists$). Suppose not. If there is $\mathcal{N} \models T$, $\mathcal{M} \models \mathcal{N}$, then this is existential $\varphi(x), \overline{m} \in \mathcal{M}$ such that $\mathcal{N} \models \varphi(\overline{m}), \mathcal{M} \not\models \varphi(\overline{m}), \overline{m} \in \mathcal{N}_i, (\varphi, \overline{m}) = (\varphi^j, \overline{m}^j)$ for some $j \leq \lambda$ in the construction of \mathcal{N}_{i+1} , and this was fixed.

E.c. fields

- Are algebraically closed
- For any characteristic p, for any $\lambda \geq \aleph_0$, there is an e.c. field of char p, of size λ .

- For $\lambda > \aleph_0$, for each char p, there is a unique algebraically closed field of size λ , char p (transcendence basis)

Therefore, for uncountable field k, k is an e.c. field if and only if k is algebraically closed.

Lecture 6 (January 26, 2009) - Algebraically Closed Fields

Definition. ACF = Th(fields) $\cup \{ \forall \overline{y} \text{ if } y = 0 \}$

 $ACF_p = ACF \cup \{\theta_p : 1 + 1 + \dots + 1 = 0\}$

 $ACF_0 = ACF \cup \{ \exists \theta_p : p \in \mathbb{N} \}.$

Facts about algebraically closed fields. (1) Infinite.

(2) [Can't read board at that angle from here, copy Ramin's notes again... :(]

Proposition. Given an $\forall \exists$ theory T with no finite models, which is λ -categorical for some $\lambda \geq |L|$, then T is model-complete.

Proof. Suppose $A \models T$ is not an existentially closed model of T, i.e., $\exists B \models T, a \in A$ existential $\varphi(x)$ such that $A \leq B, A \notin \varphi(a), B \models \varphi(a)$. Then $L^+ = L \cup \{P, C\}$. Consider an L^+ -structure \mathcal{M} with $\mathcal{M} \mid_L := B, P^{\mathcal{M}} = A, C^{\mathcal{M}} := a$. Th_L+ $(\mathcal{M}) \supseteq T$ with " $P \models T$ " (relativization). Now we find $\mathcal{N} \models T^+$ s.t. $|P(\mathcal{N})| = \lambda$. By compactness, $\geq \lambda$. Then by the down-ward Löwenheim-Skolem this $= \lambda$. Now $P(\mathcal{N})\mid_L \models T$, size λ , not .c. but since T is $\forall \exists$ and $\lambda \geq |L|$, there is some e.c. closed model of T of size L. But T is λ -categorical. \Box

Corollary. If $K \vDash ACF$ and Σ is a system of polynomials over K and Σ has a solution in some field $F \ge K$, then Σ has a solution in $\overline{F} \ge K \vDash ACF$ then Σ has a solution in K (Hilbert's Nullstelensatz).

Definition. *T* eliminates quantifiers (has quantifier elimination) if $\forall \varphi(x), \exists a q.f. \psi(x)$ *s.t.* $\varphi(x) \Leftrightarrow \psi(x)$.

Proposition. Suppose T is model-complete, and {substructures of models of T} has the amalgamation property (A.P.) then T has q.e.

Proof. (1) It suffices to show q.e. for existential $\varphi(x)$ (induction). Fix existential φ . Take

$$S_{\varphi} := \{ (A, a) \mid A \vDash T, A \vDash \varphi(a) \}$$
$$F_{(A,a)} = \{ \psi(x) \mid \psi \text{ is q.f. and } A \vDash \psi(a) \}$$

We claim if $(B, b) \vDash T \cup F_{(A,a)}$ then $B \vDash \varphi(b)$. For a q.f. type of b in B and q.f. type of ain A, then $\langle b \rangle_B \cong \langle a \rangle_A = D$ so there is some $C_0 \subseteq C \vDash T$ s.t. $D \cong \langle a \rangle_A \hookrightarrow A$ and $D \cong \langle b \rangle_B \hookrightarrow B$ with $A \hookrightarrow C_0$ and $B \hookrightarrow C_0$ with $C_0 \hookrightarrow C \vDash T$. Now, $A \vDash \varphi(a)$ so (since φ is existential), $C \vDash \varphi(a), C \vDash \varphi(b)$. Since T is model-complete, this implies $B \vDash \varphi(b)$.

Lecture 7 (January 28, 2009) -

Organizational:

- No class on Friday Feb 6th, 27th. (class 2-4 on Mon Feb 2nd, 23rd)
- Grad student logic conference in Ubrana on 18/19 April.
- ASL conference Notre Dame May 20-23 Apply for funding NOW.

Quantifier Elimination for A.C.F

Corollary. If $\mathcal{M} \models ACF$, and $\varphi(x)$ is a formula with 1 free variable, then $\varphi(\mathcal{M})$ is finite or cofinite.

Proof. If φ is quantifier-free, without loss of generality (d.n.f)

$$\varphi = \bigvee_{j=1}^{m_i} \left(\bigwedge_{j=1}^{m_i} \varphi_{ij}(x) \right)$$

where φ_{ij} is a poly equation or inequality. It suffices to show that $\bigwedge_{i=1}^{m_j} \varphi_{ij}(k)$ is finite/confinite. Hence, it suffices to show $\varphi_{ij}(x)$ is finite/cofinite: finite if equal, cofinite is ineq. \Box

Definition. A theory T is strongly minimal if the previous corollary holds for T in place of ACF.

Examples. (1) $L = \emptyset$, theory of infinite sets.

(2) Distinguishable, torsion-free abelian groups (\mathbb{Q} -vector space).

(3) For any prime p, \mathbb{F}_p -vector spaces.

Zilber's Trichotomy Conjecture.

Counterexample: Read Hrushovski's article "A new strongly minimal set."

From this point, we let T be a strongly minimal theory.

Lemma. (about uniform finiteness/cofiniteness) *Take* $\varphi(x; y)$ *with* x, y *single variables. Then* $\exists n$ *such that for all but finitely many* $b \in \mathcal{M}$, $|\varphi(\mathcal{M}; b)| = n$ *(finiteness), or for all but finitely many* $b \in \mathcal{M}$, $|\mathcal{M} \setminus \varphi(\mathcal{M}; b)| = n$ *(cofiniteness).*

Proof. Note that for each n, $||\varphi(\mathcal{M}, y)| = n$ " is 1-st order, call it $f_n(y)$ (finite), and $||\varphi(\mathcal{M}, y)| = n$ " is 1-st order, call it $c_n(y)$ (cofinite). Then

$$\mathcal{M} = (\bigsqcup_n f_n(\mathcal{M})) \sqcup (\bigsqcup_n c_n(\mathcal{M})).$$

We claim that not all f_n, c_n are finite. Further, we claim that $\forall i \neq j, f_i \cap f_j, f_i \cap c_i, f_i \cap c_j, c_i \cap c_j = \emptyset$. We claim there are infinitely many non-empty f_i or infinitely many non-empty c_i . Take $\Sigma = T \cup \{\varphi(x, C) \text{ is infinite, co-infinite}\}$. By strong minimality of T, Σ is inconsistent. So a finite part of Σ is inconsistent.

$$\Sigma = \{\exists_{\geq n} \, x \, \varphi(x, C) \, | \, n \in \mathbb{N}\} \cup \{\exists_{\geq n} \, x \, \neg \varphi(x, C) \, | \, n \in \mathbb{N}\}$$

(we are adding one constant C to the language).

Lemma. Suppose $b, a_1, ..., a_n \in \mathcal{M}$. Suppose $b \in acl(a_1, ..., a_n) \setminus acl(a_1, ..., a_{n-1})$. Then $a_n \in acl(a_1, ..., a_{n-1}, b)$. (Steinitz exchange)

Proof. Say $\psi(x; y_1, ..., y)$ witnesses $b \in \operatorname{acl}(a_1, ..., a_n)$, i.e., $\psi(x; \overline{a})$ is finite $(b \in \overline{a})$. Define $\psi(x, a_1, ..., a_{n-1}, y_n)$ as $\tilde{\psi}(x, y_n)$. Then for all but finitely many $c \in \mathcal{M}$, $\tilde{\psi}(x; c)$ has the same finite size, or the same cofinite size (see previous lemma). Similarly for $c \notin \operatorname{acl}(a_1, ..., a_{n-1})$ $\tilde{\psi}$ has the same finite size as $\varphi(x; a_n)$. Also, all vertical slices $\tilde{\psi}(d; y_n)$ have the same size as $\tilde{\psi}(b, y_n)$. If almost all vertical slices are cofinite, then any N of them intersect.

Lecture 9 (February 2, 2009) -

(1) Given $A \subseteq \mathcal{M}$, and given $n \in \mathbb{Z}$, there is a unique *n*-type of dimension *n*.

Proof. Induct on n. If n = 1, the generic type of \mathcal{M} over A will be

 $\forall \varphi(x) \text{ w/ parameters from } A, \varphi(\mathcal{M} \text{ finite}) \text{ or } \varphi(\mathcal{M}) \text{ cofinite.}$

Now for the induction case (*n* to n + 1), we need to show if $(\overline{b}, c), (\overline{d}, e)$ are (n + 1)-tuples then dim_A = n + 1 (they have the same order over A). We need $bc \equiv A de$, that is,

$$type(bc/A) = type(de/A).$$

First, note that b, d both satisfy the unique (by induction) n-type over A of dimension n.

$$p(x) = \big\{ \varphi(\overline{x},y) \, | \, \vDash \varphi\big(\overline{b},c\big) \text{ w/ param from } A \big\},$$

 $\exists y, \varphi(\overline{x}, y) \in \text{type}(\overline{b}/A) = \text{type}(\overline{d}/A)$. Then p(y) = p(d, y) is a consistent type. Alice waves her hands and says "I refer you to Monster model." (What is Monster model?) Now we just need to show e and e' have the same type over $A\overline{d}$.

If \overline{b} models the generic *n*-type over *A*, then \overline{b} is a generic point of A^n (not the same as in algebraic geometry).

(2) $RM(p) = \dim(p)$. Take $\overline{a} \models p$, reorder s.t. $\overline{a} = \overline{b}\overline{c}$ with \overline{b} a transcendence basis for \overline{a} , and for each c_i , take $\psi_i(x, y)$ that witnesses that c_i is algebraic over \overline{b} (\subset acl (\overline{b})). We claim there exists $\varphi_i(x, y) \in \text{generic length}(\overline{x})$ -type, least possible n_i . Take

$$\Theta(\overline{x},\overline{y}) = \bigwedge_i [\psi_i(\overline{x},y) \land \exists_{=n,y} \, \psi_i(\overline{x},y)].$$

Then any $q \ni \Theta$ has $RM(q) \le r$, and Rm(p) = r implies q = p.

(3) The unique generic type p has RM(p) = r. We will induct on r. For r = 1, it is an easy exercises to show $RM(p) \neq 0$. Now, inductively, take $\varphi(\overline{x}, y)$ to be of generic (r+1)-type. We need $MR(\varphi(\overline{x}, y)) \geq r + 1$. We need

$$\{\psi_i(\overline{x}, y)\}_{i\in\aleph_0}$$
 s.t. $MR(\psi_i) \ge r, \ \psi_i \cap \psi_j = \emptyset$ so $\psi_i \Longrightarrow \varphi$.

Now, find $\{b_i\}_{i\in\omega}$ independent parameter with $\varphi_i(\overline{x}, y) = \varphi(\overline{x}, y) \wedge y = b_i$. Then it is an easy propostion of RM that $RM(\operatorname{tp}(\overline{b}\overline{c}/A)) \geq RM(tp(\overline{b}/A))$ and this is equality if and only if $\overline{c} \in \operatorname{acl}(A\overline{b})$.

Given $\varphi(\overline{y}, x), pk \leq \text{length}(\overline{x}), \ \{\overline{a} \mid MR(\varphi(\overline{a}; \overline{x})) \geq k\}$ is definable. [Couldn't read the board at this point.]