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Lecture 3 (January 16, 2009) - Maschke's Theorem

Examples

 For any field , remember  acts on  by permuting the indices of some basesJ W J8
8

/ ß ÞÞÞß / [ œ - / l - œ ! − W A − [ † − [" 8 " 3 3 3 8 "". Let . If , , we claim that .e f� � 5 ) =
Then  so that  doesn't change. Take5 $� �� � � �- / œ - / œ - / -3 3 3 " 3 335� �
[ œ + / l + œ + œ ÞÞÞ œ + œ J † / � / � ÞÞÞ � / − W ß + − J# 3 3 " # 8 " # 8 8e f e f� . Let .5
Then

5 5† + † / � ÞÞÞ � / œ + † † / � ÞÞÞ � /� � � �" 8 " 8

œ + † / � ÞÞÞ � / œ + † / � ÞÞÞ � /ˆ ‰ � �5 5� � � �" 8 " 8 .

 Recall two -representations or -modules  and  are called equivalent ifK JK ß Z [

there exists  which commutes with the action of , or .Z Ä [ K JK
<

Z Ä [
<

3 3� � � �1 Æ Æ 1    #

Z Ä [
<

.

Theorem.   Let  be a finite group with Then any submodule of an -K JKchar . J l KÎ k k
module is a direct summand, i.e., if  is an -module and  is an -Z JK ! Á Y © Z JK
submodule, then there exists  such that  as -modules.[ Z œ Y Š[ JK

Corollary.   If  , then  is irreducible if and only if it is indecomposable.charJ l K ZÎ k k
Proof.   Iredducibility obviously implies indecomposability. If it is not irreducible, then if
there exists , then there exists  such that . Y Á ! [ Z œ Y Š[ �

Corollary.     char , If then every -module is injective.J l KÎ k k JK

Proof.    (of Maschke's Theorem)  The idea is to produce an -equivalent projectionJK
1 1 1À Z Ä Y JK B − JK B † @ œ B † @. Then -equivalent means if , then . Recall� � � �
projective means  is surjective, and . This last part can be1 1 1 1À Z Ä Y Z œ Z� � � �� �
thought of as projection onto the Euclidean plane: if we project once and then project
again, then that second action does nothing since it is already projected onto the plane.

 Continuing, let ker . We claim . If , then ker [ œ Z œ Y Š[ @ − Y ∩[ @ −1 1
and  for some  ( ). So  so indeed@ œ 1 C Z œ Y C œ C œ @ œ !1 1 1 1 1 1� � � � � � � � � �� �
1 1 1 1 1� � � � � � � �� �C œ @ @ − Z @ œ @ # @ � @ @ # @ − [ œ. If , write  and we say ker , and
1 1 1 1 11 1 1� � � � � � � � � � � �� �@ − Y @ # @ œ @ # @ œ @ # @ œ !. Then, . So, we have shown
that  and . This then implies .Y ∩[ œ ! Y �[ œ Z Z œ Y Š[e f
 If  is -equivalent and ker  and , then we want to show1 1JK @ − œ [ B − JK
B † @ − [ œ B † @ œ B † @ œ B † ! œ ! [ JKker . Indeed,  so  is in fact -stable.1 1 1� � � �
 We need to make an appropriate . Start with an arbitrary , just a vector1 1! À Z Ä Y
space projection. Now, if ,   [  convince yourself of1 − K 1 1 ? œ ? a? − Y1!

#" Exercise.
this]. Now, we let
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1 1œ 1 1"
K

1−K
!

#"k k � ,

and we can do this because char , or otherwise  would be  in 's domain.J l K K !Î k k k k 1

Exercise.  Check that  and . 1 1 1 1� � � � � �� �? œ ? ? œ ? �

Wedderburn's Theorem.   (Let  be a non-zero ring with identity not necessarilyV
commutative Then the following are equivalent:). 

 Every -module is injective.(1)  V

 Every -module is projective.(2)  V

 Every -module is completely reducible.(3)  V

(4)  The ring  considered as a left -module is a direct sum ,V V V œ P Š ÞÞÞ Š P" 8

where each  is a simple module iwth  for some 's satisfyingP P œ V/ /3 3 3 3

   for        (i)           (ii)  (iii) ./ / œ ! 3 Á 4 / œ /3 4 33
# � / œ "3

(5)  As rings,  is isomorphic to a direct product of matrix rings over division rings,V

V œ V ‚ ÞÞÞ ‚ V" <,

       with each  with  a division ring and each  a two-sided idealV œ Q V4 8 4 4 34
� �? ?

in . Further, 's are up to isomorphism uniquely determined.V <ß 8 ß4 4?

Proof.   Next time! �

Lecture 4 (January 21, 2009) - Maschke's Theorem
Definition.   Let  be a ring and  a module. Then  is injective if one of the followingV U U
holds:

 (a)  (  commutative) If  is a short exact sequence, thenV ! Ä P Ä Q Ä R Ä !

! Ä RßU Ä QßU Ä PßU Ä !Hom Hom Hom� � � � � �
is exact.

(b) If  is exact, then! Ä P Ä Q

! Ä P Ä Q
0 Æ á

U.

(c)  If  is a submodule of any , then  is a direct summand. [Maschke's Thm]U Q U

(d) If  is a left-sided ideal of , then any -module homomorphism  can beM V V M Ä U
extended to . [Baer's criterion]V Ä U

Definition.   Let  be a ring and  a module. Then  is projective if one of theV T T
following holds:

 (a) (  commutative) If  is short exact thenV ! Ä P Ä Q Ä R Ä !

! Ä TßP Ä T ßQ Ä TßR Ä !Hom Hom Hom� � � � � �
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is exact.

(b)   is a direct summand of a free module.T

(c)  If  is exact, thenQ Ä R Ä !

! Ä P Ä Q
0 Å ß

T .

Corollary.   (to Wedderburn's Theorem) If char , thenJ l KÎ k k
JK z Q ‚ ÞÞÞ ‚Q8 " 8 <" <

� � � �? ?

with  division rings.? ?" <ß ÞÞÞß

Terminology.   Such a ring is called semi-simple.

Modules over  (  a division ring)Q8� �? ?

Definition.   (1)  A non-zero element  is called idempotent if ./ / œ /#

(2)  / ß / / † / œ / † / œ !" # " # # " are orthogonal if .

(3) An idempotent  is called primitive if it cannot be written as  with / + � , +ß ,
orthogonal idempotents.

(Notice .)� �+ � , œ + � , � +, � ,+ œ + � , œ + � ,# # # # #

(4) / is called primitive central idempotent if it cannot be written as a sum of two
orthognal idempotents in .^ V� �
Proposition.   Let  and the identity matrix.V œ Q M8� �?
 The only two-sided ideals of are  and .(a)  V ! V

 The center of  is .(b) V ^ V ³ M l − ^� � e f� �α α ?

 matrix with all zeros except in .(c)  / œ I œ3 33 33

 L  simple leftmodules. ,  and .(d) 3 3 3 " " 8œ V/ a3 P z P V œ P Š ÞÞÞ Š P

 (e) If  is a simple -module, then .Q V Q z P"

Lecture 5 (January 23, 2009) -
Recall our proposition from last time.

Lemma.   For  an abritrary non-zero ring,V

(i)  If  and  are simple -modules, then if is a non-trivial -moduleQ R V À Q Ä R V:
homomorphism, then  is an isomorphism.:

(ii) If  is simple, then Hom  is a division ring.Q QßQV� �
Remarks.  Let , withI œ +34 <=� �
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+ œ . œ
" < œ 3ß = œ 4
!<= < =$

3 4 œ if 
elsewhere.

(a) is the matrix whose th row is equal to the th row of  and zero's elsewhere.I E 3 4 E34

For example,

Œ Œ  Œ ! ! + , ! !
" ! - . + ,

œ .

(b)  is the matrix whose th column is equal to the th column of  and else zero's.EI 4 3 E34

(c)  is the  entry in .I EI := +:; <= ;<

Exercise.  Verify the above explicitly.

 Let  be a two-sided ideal and let . Then if some entry  of  is non-zero,N E − N + E;<

then . Then . This means  impliesI EI − N I œ I EI − N a:ß =ß I − N:; <= <= :; <= :;
"
+;<

N œ V E − ^ V I E œ EI 3 Á 4 + œ !. Next, let . Then . Then if , then . (verify!)� � 34 34 34

 Next, . This is going to be ith column with 0's everywhere else. If  isV/ œ VI E3 33

non-zero, then . We then claim that . If  is a non-zeroVE œ V † </ © V/ VE œ V/ +3 3 3 :3

enetry of , then , so that . If  and , thenE I œ I E − VE V/ © VE E − V/ E Á !33 3: 3 3
"
+:3

VE œ V/3 so that it is simple.

 It's trivial that  .P z P3 4

 Let  be any simple module. Since ,  so .Q "7 œ 7a7 / 7 œ 7 / 7 œ 7� �� �3 3

Given ,  such that . We can then write a map . This map sends7 b/ / 7 Á ! P Ä Q3 3 3

</ È </ 7 < œ " − / œ / 7 Á !3 3 3 3

:
? :. If , then .� �

 Additionally, the 's are primitive. We see this as follows. Assume that ./ / œ + � ,3 3

Then . We claim  with . ThenV/ œ V+ � V, V+ ∩ V, œ ! <+ œ =,3 e f
<+ œ <+ œ <+ † + œ =, † + œ !# .

Homework.  Look up the Dummit and Foote theorem on ! ThisV œ V ‚ ÞÞÞ ‚ V" <

module will be a simple module.

Lecture 6 (January 26, 2009) - Introduction to Characters

Recall that . Then the regular representation will be‚ ‚ ‚K z Q ‚ ÞÞÞÞ ‚Q8 8" <
� � � �

8 Q Š ÞÞÞ Š 8 Q" " < <.

Furthermore,  will be  copies of , but it can also be realized asQ 8 Q8 " ""
� �‚

Q ŒQ z Œ z" "
‡ 8 8 8 .‚ ‚ ‚" # "

#

A regular representation will always be   (the so-called Peter-Weyl Theorem9 Q ŒQ3 3
‡

for compact groups).
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Definition.   A function  is called a class function if  (orbits: : :À K Ä J 1B1 œ B� � � �#"

of conjugation) .aB a1

Definition.   If  is a representation of  on a vector space  over , then we can define: K Z J

; ::� � � �1 œ 1tr .

Example.   For a regular representations of ,  acts on  by .K K 1 † 2 œ 12‚ α αK 2 2� � � �
The basis vectors are precisely . If , then it sends , so that the tracee f2 1 œ " 2 È 22−K

will be precisely . If , then  (ever). So there won't be anything on thek kK 1 Á " 2 È 12 Á 2
diagonal, and hence trace . Hence,œ !

;reg� � œ k k1 œ
! 1 Á "
K 1 œ "

if 
if .

Example.   Consider  acting on  byH#8
#‘

3 5À À
! "
" !  Œ cos sin

sin cos

# #
8 8
# #
8 8

1 1

1 1  and ,

and call this the "natural" class functions. Define  cos  and .  ; 3 ; 5nat nat� � � �œ # œ !#
8
1

For any  is a class function:: ;À K Ä KP Z ß� � :

 tr tr tr .; : : : : : ;: :� � � � � � � � � � � � � �1B1 œ 1B1 œ 1 B 1 œ B œ B#" #" #"

Fact.    [ , tr tr : : ; ; : : : :" # " # " #
#" #"µ Í œ 1 œ E 1 E 1 œ E 1 E œ: ;" #

� � � � � � � �
tr :#� �1 Ó

 Consider . Then  extends to ,J K‚ ; ‚:

; α α ;: :� � � �� �1 11 œ 1 .

Recall the group algebra  also acts on . (if  can think of tr ) We write‚ ‚K Z 0 − K 0
‚ ‚ ‚K z Q ‚ ÞÞÞ ‚Q Q ß ÞÞÞßQ8 8 " <" <

� � � � with  inequivalent. Every finite dimensional
representation

Q œ + Q Š ÞÞÞ Š + Q + � !" " < < 3 with .

If we write
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then we easily see . Let's write . On the other hand,; ; ; ; ;Q " Q < Q 3 Qœ + � ÞÞÞ � + œ
" < 3

every sum will be the character of a representation. Next, let

D œ !ß !ß ÞÞÞß !ß " ß !ß ÞÞÞß !
Æ
3

3

Î ÑÐ Ó
Ï Ò

th

,

with  (id matrix). Then 's are linearly independent. Each character " − Q D8 3 43
� �‚ ;

satisfies the following:   for  (b/c it acts by the zero matrix on ), and;4 3 4� �D œ ! 3 Á 4 Q
; ; ;4 4 4 " < " <� �D œ 8 ß ÞÞÞß D ß ÞÞÞß D. Hence, the  are a dual basis to the independent set .

   (dual basis); $ Ö $ Ö4 3 4 34 3 34 4 4 4
B
8� � � �D œ 8 D œ B œ 8 D4

4

         's  are linearly independent.Ö;4

Then if , then Q z F Q Š ÞÞÞ Š , Q œ , � ÞÞÞ � , œ + � ÞÞÞ � +" < < Q " " < < " " < <; ; ; ; ;
naturally means (for ).+ œ , " Ÿ 3 Ÿ <3 3

Class functions

 Let  be such that  with  linearly
if 
elsewhere.

b b ; ;
b

" = " <
"ß ÞÞÞß 0 1 œ ß ÞÞÞß

" = −
!b"

� � œ
independent class functions. We will show  later.< Ÿ =

 Let  be class functions. Define) <ß

� � � � � ��) < ) <ß œ 1 1"
K

1−K
k k .

Proposition.   For  have . ThenD ß ÞÞÞß D Q ‚ ÞÞÞ ‚Q z K" < 8 8" <
� � � �‚ ‚ ‚

D œ 1 13 3
"

K
1−K

#";3� �k k � � �; .

Proof.   Write  and . RecallD œ D D œ 13 1�α
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;reg� � œ k k1 œ
! 1 Á "
K 1 œ "

if 
if .

Then Reg . We then claimœ 8 Q œ 89 �
"
<

3 3 3 3
3œ"

<

Ö; ;reg

; αreg� � k kD1 œ K#"
1 .

Indeed,

; ; α α ; αreg reg reg� � � � � � k k� �D1 œ 21 œ 21 œ K#" #" #"
2 2 1.

Next, if  is the representation on , then: Q4

 tr tr .; : : :4 4 4 4
#" #" #"� � � � � � � �D1 œ D1 œ D 1

If , then . Hence,4 Á 3 D œ !:4 3� �
:

:4
#"

3
#"� � œ � �D1 œ

! 4 Á 3

1 4 œ 3,

so

; ; $4 3 34
#" #"� � � �D1 œ 1 .

Finally,

� � � k k � �
4œ"

<

4 4 34 1 1 3 3
#" #""

K8 1 œ K œ 8 1; $ α Ö α ;k k .

However, tr . Then; :3 3 3� � � �" œ " œ 8

α ; ;1 3 3
"
K

#"œ " 1k k � � � �,
so that

D œ " 1 13 3 3
"
K

3

#"k k� � � � �; ; . �

Lecture 7 (January 28, 2009) -

Let  be distinct conjugacy classes, with . Then  form a basis forO ß ÞÞÞß O \ œ 1 \" = 3 3
1−O

� e f
3

class functions  (dim , the number of simple modules).^ K ^ K œ <� � � �‚ ‚

Corollary.    < œ =

Proof.    First, the 's are linearly independent. The next claim is that any element of\3

^ K \ 1 − ^ K� � � ��‚ α ‚ is a linear combination of the 's. Let  . This means that for all3 1

2 − K 2 2 œ 2 1 2 œ 1 œ 1, . Hence,   and . Hence,α α α α α α#" #"
1 12 12� �� � �#"

α α2 12 1#" œ a1 a2 .

Take . RecallD ß ÞÞÞÞß D" <
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D œ 1 13 3
"

K
1−K

#";3� �k k � � �; ,

and notice

D œ D D œ 1 2 123 34 3 4 3 4
"

K K
"

1ß2

#" #"$ ; ;
; ;3 4� �k k k k� �� � � � �

œ BC B C; ;3 4� �k k k k� �"
K K

"

1−K B−K
3 4

#" #"� �Œ � � � �; ;

Hence . But1 œ BC ß 1 œ CB ß 2 œ B ß 2 œ B#" #" #" #" #"

D œ C C3 34 34 3
C−K

"
K

#"$ $ ;� � �;3� �k k .

Since the  are linearly independent elements, the corresponding coefficients must beC
equal:

$ ; ; ;34 3 3 4
" "

K K K
#" #" #""

B−K

; ; ;3 3 4� � � �k k k k k k� �� � � � � ��C œ BC B .

Hence,

$ ; ; $ ; ;34 3 3 34 3 4
K
" K

#" #" #" #"

B−K

"k k� � k k� �
;

;

4

3� � � � � � � ��C œ BC C B .

Put . ThenC œ "

k k � � � �Kl œ B B$ ; ;34 3 4
"
" K

" #";
;
3

4

� �� � k k .

Notice in either case  and ), the left hand side is just . Thus,Ð3 œ 4 3 Á 4 $34

$ ; ;34 3 4
"
K

B−K

#"œ B Bk k� � � � �.
Lemma.   for  a character of any representation.; ; ;3 3

#"� � � �B œ B

Proof.    Look at . Let  be the representation associated to  and look at . Then: : ; :� � � �B B

: : : : :� � k k � � � � � �ˆ ‰B œ B œ " B œ 5 B œ B œ " œ "k k k kK 5K 5. In fact, if , then . Hence,
:� �B \ # " œ ! \ # " satisfies the equation . Since the roots of  are distinct, the5 5

minimal polynomial of  which divides  will have distinct roots and all will be:� �B \ # "5

roots of unity. Then  must be diagonalizable,:� �B
: -

-

-
� � k kÎ Ñ

Ï ÒB µ œ "ä
"

8

3with .

Then . Hence,; -� � �B œ 3

:

- -

- -

#"

#"
"

8
#"

"

8

� � Î Ñ Î Ñ
Ï Ò Ï ÒB µ œä ä ,

so . Thus,; - - ;� � � �� �B œ œ œ B#"
3 3
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$ ; ; ; ; ; ;34 3 4 3 4 3 4
" "
K K

#"œ B B œ B B œ ßk k k k� �� � � � � � � � � �.
Theorem.   (First orthogonality relation)  Let , e.g.  so� � 9; ; $" 4 34 3 33œ8

<ß œ Q œ + Q
that . Then; ;Q 3 3œ +�
  .� � � �ˆ ‰� � � � � �; ; ; ; ; ; $Q Q 3 3 4 4 3 4 3 4 3 4 34 33 4 3 4 3ß4 3

#ß œ + ß + œ + + ß œ + + œ +

Corollary.    A representation  is irreducible if and only if .Q ß œ "� �; ;Q Q

In other words, a regular representation

3reg œ
! 1 Á "
K 1 œ "œ k k .

So .Ø ß Ù œ 1 1 œ K K œ K3 3 3 3" "
K K

1−K
k k k k� � � � � k kk k k k

Corollary.    If  is any class function,)

) ) ; ;� � � � � ��1 œ ß 1
3

3 3 .

Theorem.   � �Second orthogonality relation

� � � � � œ k k� �
; ;3 3

KB C œ
G B B µ C
! otherwise.

(1)  A complex number  is called an algebraic integer ifα ‚−

 (i)  it satisfies a monic equation with integral coefficients.

 (ii)   is a finitely generated -module.™ α ™c d
(2)  If a rational number is an algebraic integer, then it must be an integer. [i.e., if   is� -3
a sum of algebraic integers equal to , then .]:Î; ; œ "

Recall the collection of algebraic integers is a ring. Furthermore, if  is a character of<
some representation, then ,  is an algebraic integer. Then aB − K B B œ< < -� � � � � 3

(roots of unity).

Lecture 8 (January 30, 2009) - More Character Theory
Fact.   If  is a character of a representation of , then for all ,  is an algebraic< <K B − K B� �
integer.

Notation.   We will use the nonstandard notation  ot denote the integral closure of  in™ ™

� (algebraic integers).

Proposition.   [19.1.3 Dummit and Foote] Define complex-valued functions  on  byA K3

A 1 œ3
1 1

"� � k k � �� �conjugacy class of ;
;

3

3
.

Then the values  (are algebraic integers).A 1 −3� � ™
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Proof.   We claim that the values  (are algebraic integers). To see this, denoteA 1 −3� � ™
O ß ÞÞÞß O" < to be the conjugacy classes. We'll prove

� � � � �
1−O

3 3
4

: 1 œ A 1 M

for any  (where  is the representation for ). Let . Then 1 − O \ œ 1 \4 3 3 31−O: ; :� � �
4

commutes with everything in the image of  because:3

: : : : : : :3 3 3 3 3 3 3
#" #"

1−O 1−O 1−O

#"� � � � � � � � � � � � � �� � �2 \ 2 œ 2 1 2 œ 212 œ 1 œ \ ,
4 4 4

Hence,  commutes with everything, so . That is,  for some .\ \ − ^ K \ œ M� �� �: α α3

Notice

; α : ;3 3 3 4
1−O

� � � � � � k k�" œ \ œ 1 œ 1 † Otr tr ,
4

so that . Now let . Defineα œ 1 − O
;

;
3 4

3

� � k k� �1 O
" =

+ œ 1 ß 1 l 1 − O ß 1 − O ß 1 1 œ 134= 3 4 3 4 4 4 3 4# .e f� �
First, notice  is an integer (it is counting something). Furthermore, it is independent of+34=
1 − O 1 − O 1 œ B1B B= =

w w #". Too see, first note if , then for some . Then

1 œ 1 1 Í B1B œ B1 B † B1 B3 4 3 4
#" #" #"

(with  and ). Since  is a class function,  forB1 B − O B1 B − O A A O œ A 13 3 4 4 > > " >
#" #" � � � �

any . So, what is ? Well,1 − O A O A O3 > 3 > 4� � � �
A O A O M œ 1 † 1 œ 1 1 œ 1 1> 3 > 4 > 3 > 4 > 3 > 4 > 3 4

1 −O 1 −O 1 −O 1 −O

� � � � � � � � � � � � � �� � � �
3 3 4 4 3 3 3 3

: : : : :

1 − O 1 − O4 4 4 4

    œ 1 œ 1 " # + 1� � � � � � � �� � � � � �
=œ" =œ" =œ"

< < <

1−O 1−O 1−O1 1 œ1 1 1 œ1
> > 34= >

= = =3 4 3 4

: : :

    œ + A O Þ� � �
=œ"

<

34= > 4

Hence, the ring generated by  is in fact finitely generated as a -™ ™c d� � � �A O ß ÞÞÞß A O> " > <

module by . Then  is an algebraic integer . => " > < > 3� � � � � �O ß ÞÞÞß A O A O a>ß 3 �

Corollary.    For all ,  divides .3 " K;3� � k k
Proof.   With ,1 − O4 4

k k k k k k� � � � � � k k � �K K K
" " " K "3 3 3 3 3 3

" "

1 1
; ; ; ;3 3 3 3

œ ß œ 1 1 œ 1� � � � � � � �� �; ; ; ; ; ; � �1
   œ 1"

4œ"

<

1−O
3; ;3 3� � � �" "3 4 3 4 3 4 4 4

"

4œ"

<� � � �
4

; ; ; ;� � k k � � � ��1 œ O 1 1 1 − O  [for some ]
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   .œ A 1 1� � � � �
4œ"

<

3 4 3 4;

We saw that  and  so the product must be in  and the sum of algebraicA 1 − 13 4 3 4� � � �™ ; ™

integers is also in . Hence, . ™ ; ™ � ™k k � �K Î " − ∩ œ3 �

Induced representations

 If  and  is a representation of  on a vector space , we can restrictL Ÿ K K Z3
3 e e :l À L Ä Z K Ä L LL GL . This gives a functor . If  is a representation of � � � � � �
and we have  a -module .  Given  a representation of ,[ L ßZ œ [ Œ K ß[ L‚ ‚ :‚L � �
we can define Ind . If we pick a set ofL

K � � e f� � � � � �: :œ 0 À K Ä [ l 0 21 œ 2 0 1
representatives for , then any such  is determined on . Then in fact Ind  isKÎL 0 KÎL K

L� �:
a -representation, and .K − Kß 0 1 œ 0 1# # #� �� � � �
Fröbenius Reciprocity

 Given a character  of , there is a representation , and we consider Ind , which; : :L K
L

gives us Ind . Fröbenius reciprocity says the two inner productsK
L ; � � � �restrict induced .< ; < ;ß œ ßL K

Exercise.   Hom res Hom ind .‚ ‚L K� � � �1 : 1 :ß z ß

Lecture 9 (February 2, 2009) - Representation of Compact
Groups

We are now following the book by Varadarajan.

Definition.    A topological group  is a topological space equipped with two continuousK
maps, , and , so that the operation  turns 7 À K ‚K Ä K 3 À K Ä K B † C ³ 7 Bß C K� �
into a group with .B œ 3 B#" � �
Example.   , with  and .K œ 7 Bß C œ B � C 3 B œ #B‘ � � � �
Example.   K œ 7 Bß C œ BCß 3 B œ B‘‚ #" with .� � � �
Example.    with  and .K œ W œ D − l D œ " 7 Dß A œ DA 3 D œ D" ‚ #"e f � � � �k k‚

 The groups  and  are not compact, and  is compact. Furthermore,‘ ‘‚ "W

WS $ œ 1 − KP l 1 1 œ "� � e f� �$
X‘

is compact.   (   Check this!)Exercise.

 However,  and   locally compact, and we can indeed define locally compact‘ ‘‚ are
groups to be exactly as above but a locally compact space (this does not see the group
structure at all).

 These topological roups satisfy the second axiom of countability (i.e., every point has
a countable basis of open neighborhoods).
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Theorem.   (Haar, Von Neumann)  Given a locally compact topological group , thereK
is a unique (up to scalar multiplication) Borel measure  such that for all sets  open,. E.j
and all , . Similarly, there is a unique measure  such thatB − K BE œ E .. . .j j <� � � �
. . . .< < < j� � � �EB œ E Á. (In general, )

Example.   Over , this just means .‘ . .Leb Leb� � � �B � E œ E

 .   (of Theorem) If  is a compact set, then given ,  open with Proof G Z ! bY Y&

compact and  such that . If  is open with  compact, thenG © Y Y Ï G \ Z Z. &� �
bO © Z O Z Ï O \ with compact, such that .. &� �
 [A reference for this is Kelley-Srinivas(an?).] Suppose you have a group  acting onK
a topological space  and suppose  is locally compact. Then  carries a -invariant\ \ \ K
measure if the action satisfies a certain "topological" property.

 The uniqueness statement (in the above theorem) says if  are two regular, non-. ." #ß
trivial Borel measures such that  for  then , there is a. .3 3� � � �BE œ E 3 œ "ß # aBßE
constant  such that .- Z ! œ -. ." #

 Now let  be a left invariant measure. Define for , . Then. . .j jj
BB − K E œ EB� � � �

aC − K CE œ CEB œ EB œ E B, . There exists a scalar  such that. . . . $j
B

j j j� � � � � � � � � �
. $ . $ $ $ $ .j
B

j jœ B B Z ! BC œ B C� � � � � � � � � �, with  and . Since  is regular, one can show
that  is continuous.$� �B
 In other words, let  be compact. Then since  is continuous, . LetK B - \ B \ G$ $� � � �
B − K B Á " B Z "ß B Ä �∞ R Z ! be such that . Then if    unless for some ,$ $ $� � � � � �R

B œ " B \ " B Z " B − KßR #". Similarly, if , apply the same to . If for some $ $� � � �
$ $ $� � � �B Z " B Ä �∞, then , which contradicts the fact that  is bounded, unlessR

B œ " R B œ " B œ "R R for some  (it becomes periodic), in which case  so that $ $� � � �
which contradicts .$� �B Z "

 If  is compact,  implies K B œ "ß œ B œ ß E œ E EB œ$ . $ . . . . .� � � � � � � � � �j j
B B

j j j j

.j� �E .     � Corollary. .j is also right-invariant.

 If  is compact, we write . Since , we noramlize ourK œ œ K \ �∞. . . .< j � �
measure so that . We can normalize our measure.� �K œ "

. .w "
K� � � �E œ E
.� � .

Locally compact groups with  are called unimodular, e.g., all compact groups,. .< jœ
KP ß WP ß WS ß8 8 8� � � � � �‘ ‘ ‘ etc.

Next time, we will show that  is not unimodular.œ Œ  � �‡ ‡
! ‡

© WP# ‘

Remark.   Let  be any non-discrete locally compact topological field. Weil used this toJ
classify  multiplicatively for all such  structures.$‚ J

Lecture 11 (February 6, 2009) -
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Assume the vector spaces we will be working on are all -vector spaces. If  is a‚ K
compact group and  is a finite dimensional representation of , we set1 À K Ä KP Z K� �
) 1 ) ‚ 1 ) )1 1 1 1 1� � � � � � � � � �1 œ 1 À K Ä CBC œ B " œtr . Furthermore,  satisfies  and #"

dim id  (convince yourself of this!).Z œ � �1
Exercise.   Show that  if and only if . In other words,  is a function of) ) 1 1 )1 1 1z zw

w

only the equivalence class of  (denote this by , so we can talk about ).1 = )=

Exercise.   Show that .) ) )1 1 1 1Š w wœ �

If  are two functions on , then we defined; ;ß Kw

� � � � � �'; ; ; ;ß ³ 1 1 .1w
K

w

to be a measure that is normalized so that vol .K œ "

If  are two equivalence classes of irreducible unitary representations of , then= =ß Kw

� �) ) $= = ==ß œw w .

Definition.  We let  denote the collection of classes of irreducible unitary represen-Ks

tations.

If    with  distinct, then= = = =œ 7 ß ÞÞÞß − Ks9
"Ÿ3Ÿ< 3 3 " <

� � ˆ ‰ ˆ ‰� � �) ) ) ) ) ) $= = = = =ß œ ß œ 7 7 ß œ 7 7 œ 7Š7 Š7 3 4 A 3 4 34
3ß4

3
#

3 3 4 4 3 4
.

Example.   If we have an  matrix, then this will look like . What will 8 ‚ 8 + + /� � � �34 34 5

look like (where  is the column vector with  only in the th spot)? Well, it will be/ " 55� �E/ ß / œ + 55 6 65  (we call these matrix coefficients). It essentially selects the th column.

In general, if  is a unitary representation, a matrix coefficient of  is1 1À K Ä KP Z� �
a function of the form

f .@@
w

w À B È B @ß @� �� �1

This follows from the identity

 ,' � �� � � � � �� �� � � �K " # " #
w w w w w
" # " #

#"1 1 1 $B @ ß @ B @ ß @ .B œ . @ ß @ @ ß @ c dc d1 1w

where  is the dimension of the representation . This is true as follows. First, think of.� �1 1� � � �� �1 ‚B @ ß @ Z ‚ Z Ä @ ß @" " " # as a function from . However, first let's consider . This
is a function

� �@ ß @ È
J

" # ' � �� �� � � �
K " #" #

w w w1 1B @ ß @ B @ ß @ .B.

We claim . [Holly notes that  are fixed.] TheJ C @ ß C @ œ J @ ß @ @ ß @� � � �� � � �1 1" # " # " #
w

identity then follows because

J C @ ß C @ œ B C @ ß @ B C @ ß @ .B œ@ ß@ " # " #
w w w w w

K " #" #
w w � � � �� �� � � � � � � � � � � �'1 1 1 1 1 1' '� �� � � �� � � �� � � � � � � �K K" # # " # " #

w w w w w
" " # @ ß@1 1 1 1BC ß @ ß @ BC @ ß @ .B œ B @ ß @ B @ ß @ .B œ J @ ß @

" #
w w ,

where the penultimate equality follows from the fact this is a Haar measure, so that we
can collapse accordingly. In other words, we have  inducing a map .Z ‚ Z Ä Z Ä Z‚ ‡
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For fixed , define a map  by  ( :@ ß @ À Z Ä Z @ @ œ J @ ß @" #
w w ‡

@ ß@ @ ß@ @ ß@" # " #< <
" # " # " #
w w w w w w� �� � � � note

Be careful with complex conjugation!). Notice  is -equivariant with  acting by < 1@ ß@" #
w w K K

on  and  on . Since representations are unitary,  and Z Z Z z Z z� � � �1 1 1w ‡ ‡ w w‡ ‡

identified by the Hermitian product. Hence,

<@ ß@" #
w w w− Z ß ZHom ,� �1 1

which is a scalar by Schur's Lemma (possibly zero). That is, if , then .c d c d1 1 <Á ´ !w
@ ß@" #
w w

On the other hand, if you have , then there is a unique Hermitian pairing onc d c d1 1œ w

Z J @ ß @ œ G † @ ß @ G invariant under . This means , where  is some constant.1 @ ß@ " # " #" #
w w � � � �

Now, fix . We claim that  is also -equivariant. This is@ ß @ @ ß @ È J @ ß @ K" # " #" #
w w

@ ß@� � � �
" #
w w

because Haar measure is right invariant. Indeed,

J @ ß @ œ B @ ß C @ B @ ß C @ .B1 1� � � �C @ ß C @ " # " #K "
w

#
w

" #
w w � � � �� �' � � � � � � � �1 1 1 1

 ,œ C B @ ß C C @ C B @ ß C C @ .B' � �� �� � � � � � � � � � � � � � � �K
#" #" w

" #"
#" #"

#
w1 1 1 1 1 1 1 1

because Haar measure is invariant. Continuing,

  .œ C B @ ß @ C B @ ß @ .B' � �� �� � � �K
#" w

" "
#"

# #
w w1 1

Now do a left change of variables. Hence, . Then weJ @ ß @ œ G † @ ß @ @ ß @@ ß@ " # " #" #
w w

" #
w w � � � �� �

can just compute the constant which is independent of . We have@ ß @ ß @ ß @" # " #
w w

' � �� �� � � �K " # " #
w w1 1B @ ß @ B @ ß @ .B.

Aaaand....why is this constant? Ramin will figure it out by Monday!

If with ) is an orthonormal basis for the space of , then� � � �/ Ð " Ÿ 3 Ÿ .3 1 1

0 À B È . A B / ß /34ß 3 4
"Î#

= � � � �� �1

will be an orthonormal basis for the space linear span of all matrix coefficientsE ³� �=
of .1

 - E ¼ E� � � �= =w

 - dimE \ ∞� �=
 - .E © P K� � � �= #

By the Peter-Weyl Theorem,  (the completion).P K œ E#
A−Ks� � � �9 =

Lecture 12 (January 9, 2009) -
Essentially, we want to show that any irreducible invariant subspace of  isP K#� �

finite dimensional, and conversely (the completeness theorem).

You have an action  on , writtenK P K#� �
� �� � � �� �3 B 0 C œ 0 CB .
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Suppose we have an operator  with an "eigenspace" . Then thereO À P K Ä P K Z# #� � � �
is  such that  gives . Then we claim  is also invariant under  if - - 30 − Z O0 œ 0 Z O
and  commute (that is, ). Indeed, then if ,3 3 3� � � �B ‰ O œ O ‰ B 0 − Z

3 3� �� � � �� �B O0 œ O ‰ B 0 .

Then  yields , so that .3 - 3 - 3 3 3� �� � � � � � � � � �� � � � � �B 0 œ O B 0 B 0 œ O B 0 B 0 − Z

In this way, the goal of the Peter-Weyl Theorem is to show there are many such
operators.

Compact self-adjoint operators (Review of functional analysis)

This material is found in the appendix of Varadarajan's book. Let  be a BanachZ
space. Suppose  is a linear operator, with  a dense subspace. E À H E Ä Z H E © Z E� � � �
is a closed if its graph is closed in . The resolvant setclosed operator Z Š Z

3 - ‚ -� � � �E œ Ö − À M # E ×#" exists as a bounded operator .

In other words,  is a bijection of  with dense image, and  extends- -M # E H E M # E� � � �#"

to a bounded operator on . Then we call the spectrumZ

5 ‚ 3� � � �E œ Ï E .

This is in fact a closed set. If  is a bounded operator, it's non-empty. If dim , weE Z \ ∞
simply get eigenvalues.

Now, let  be a Hilbert space. Then we have an inner product for which the BanachL

space norm is given by . A linear operator  is self-adjoint ifk k � �k kB œ Bß B E À L Ä L"Î#

� � � �E?ß @ œ ?ßE@ ?ß @ − L for all .

Spectral theory of self-adjoint operators

Let  be a space and let  be a -algebra of subsets of . Define \ F \ T .5 - . -' � �V -

such that

(a)      (b)     (c)  if , then .T g œ g T \ œ " I œ I T I @ œ T I @� � � � � � � �- �
8 88 8

Then we have spectral integrals

E 0 œ 0 B .T B� � � � � �'
\ .

Now we think of the 's as operators on .E 0 L� �
If  is second countable, then there is a smallest set  s.t.  .\ G T G œ "� �
-supp of T œ ! ÐEÑ

-  is a spectral projectionTÐIÑ

- Images of  are spectral subspacesT I� �
-  is an eigenvalue if and only if .- ‘ -! !− T Á !� �e f

Definition.  An operator  is called compact if it maps sets with bounded norm to setsE
with compact closure.
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Notice K . This tells us "what kind of groups" we should be looking for.� � � �Bß C œ O Cß B

Lecture 13 (February 11, 2009) -
Let's consider the right regular action . The idea is to look for� �� � � �� �3 B 0 C œ 0 CB

compact self-adjoint operators that commute with  for all .3� �B B − K

Eigenspaces will be finite-dimensional. Furthermore, these eigenspaces are invariant
under . Take a kernel function  such that (1) . Furthermore,3 O Bß C O Bß C œ O Cß B� � � � � �
(2) . The operator given by .O B1ß C1 œ O Bß C E 0 B œ O Bß C 0 C . C� � � � � � � � � � � �'O K

:

Then by (1),  is self-adjoint, and by (2),  commutes with  for all . Since  isE E B B KO O 3� �
compact, Supp  will be compact. Thus,   is a compact operator. Now,O Bß C E� � O

O Bß C œ O BC ß CC œ O BC ß "� � � � � �#" #" #" .

Hence, there is a function  such that . In order to get + O Bß C œ + BC O Bß C œ� � � � � �#"

O Cß B + BC œ + CB BC œ D CB œ D� � � � � �, we need . Then set  so , and then we#" #" #" #"#"

can just try to get . However, for any continuous function  on  satisfying+ D œ + D + K� � � �#"

+ B œ + B� � � �#"  we have an associated integral operator

E 0 B œ + BC 0 C .C+ K
#"� � � � � �'

that is compact, self-adjoint, and commutes with . Each eigenspace is finite-dimension-3
al, except possibly the kernel of . Every  belongs to a stable finiteE 0 − P K+

#� �
dimensional representation of  unless ker .K 0 − E a++

Lemma.  If for all  as above, , then .+ E 0 œ ! 0 œ !+

Proof.   Notice . This is the convolution . Now,' � � � � � � � �K
#"+ BC 0 C . C œ ! +‡0 B œ !.

there exists a sequence  with  of functions such that+ 8 � "8

 (1) is real, continuous .+ ß � !8

 (2) .' + œ "8

 (3) .+ B œ + B8 8
#"� � � �

 (4) supp .+ Ä !8

This is called a delta/Dirac sequence. Construct a sequence satisfying (1), (2), and (4),
call it . Let . Hence,, + B œ , B � , B8 8 8 8

"
#

#"� � � �� � � �
' ' '� � � � � � � � � � � �K K K8 8 8

" "
# #

#"+ B . B œ , B . B � , B . B. . . .

We claim

' '� � � � � � � �K K
#"0 B . B œ 0 B . B. .

for any integrable . Define a measure0

. .w #"� � � �e fE œ + l + − E .

We claim  is left and right invariant..w
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. . . .w #" #" #" #"#"� � � � � � � �ˆ ‰˜ ™ e f e f<E œ <+ l + − E œ + @ l + − E œ + l + − E < œ

. .� � � �e f+ l + − E œ E#" w

which implies  so  implies  and thus . Now,. . . . . .w w wœ - K œ - K - œ " œ� � � �
' ' ' '� � � � � � � � � � � � � � � �
K K K K

#" #" w0 B . B œ 0 B . B œ 0 B . B œ 0 B . B. . . . .

Hence,

' ' '� �+ œ , � , œ "Þ8 8
"
# 8

Notice for all , we are assuming  as . Thus  in . 8 ! œ + ‡ 0 Ä 0 8 Ä ∞ 0 œ ! P K8
#� � �

Theorem.  (Peter-Weyl) The irregular representations of  are all finitely-dimensionalK

and they separate the points of . The irreducible characters form a basis for K P K#� �inv

and  is the orthogonal direct sum of matrix coefficients.P K#� �
P K œ#

−Ks� � 9inv
= =‚) .

P K œ E#
−Ks� � � �9
=

= = (matrix coeffs of ).

For any  an orthonormal basis for the space of , let1 = 1− − Kß /s e f3 "Ÿ3Ÿ.� �=
@ B œ . B / ß /34ß 4 3

"Î#
=� � � � � �� �= 1 .

Then  is an orthonormal basis for . � � � �@ P K34ßA "Ÿ3ß4Ÿ. ß −Ks
#� �= = �

Lecture 15 (February 16, 2009) -
Lemma.   If  is an orthonormal basis for a vector space  and , thene f/ Z EßF À Z Ä Z3

� � �� �3ß4 3 4 4 3E/ ß / F/ ß / œ tr .� �EF

Proof.   This is obvious. Write the matrices of  and  in terms of theE œ + F œ ,� � � �34 34

basis . Thene f/3

� � � �E/ ß / œ + F/ ß / œ ,3 4 34 4 3 43 and ,

so that

� � � � �� �� � � � � �ˆ ‰
3ß4

E/ ß / F/ ß / œ + , œ + , œ EF œ EF3 4 4 3 34 43 34 43
3ß4 3

3 4 33 tr . �

Last time, we got the identity

�� k k � �� � Š ‹Š ‹ ˆ ‰
=

=
3ß4

3ß4ß
# X

0ß @ œ . 0 0= 1 1 tr .

We claim tr  is equal to tr  , where . Let  and Š ‹Š ‹ ˆ ‰ � � � � � �� �1 1 10 0 0 ‡ 0 0 B œ 0 B 0 1
X X X #"

be two functions. Then let's see what  is. Recall1 1� � � �� �0 1 @

1 1� � � � � �'1 @ œ 1 B B @ .BK .

Then
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1 1 1 1 1 1� � � � � � � � � � � � � � � � � � � �' ' ' 'ˆ ‰0 1 @ œ 0 C C 1 B B @ .B .C œ 0 C 1 B C B @ .B .C œK K K K' ' ' '� � � � � � � � � � � �
K K K K

#" #"0 C 1 B CB @ .B .C œ C CB 0 CB 1 B C @ .B .C œ1 1[send  to ]  ' ' 'ˆ ‰� � � � � � � �� � � �
K K K

#"0 C B 1 B .B C @ .C œ 0 ‡ 1 C C @ .C1 1 ,

with

� �� � � � � �'0 ‡ 1 C œ 0 CB 1 B .B
K

#" .

Thus,

1 1 1� � � � � �0 1 œ 0 ‡ 1

which implies

tr tr .� � � � � �� � � � � �1 1 1 )0 1 œ 0 ‡ 1 œ 0 ‡ 1A

Then we get

tr tr .Š ‹ Š ‹Š ‹ Š ‹ˆ ‰1 1 10 0 œ 0 ‡ 0
X X

We claim this equals tr . Well, . We verified last1� � � � � � � �0 ‡ 0 0 B œ 0 B œ 0 BX #"X #"

time that

1 1� � � �0 œ 0X adj.

We need to show the trace is a real number, since tr . Hence, it easily followsˆ ‰EE −adj ‘

k k k k � � � �k k � ��� �0 œ 0ß @ œ . 0 ‡ 0#

3ß4
3ß4ß

−Ks

X

=
= =

=

= ) .

Lemma.  .k k � �k k0 œ 0 ‡ 0 "# X

Proof.   Well,

� �� � � � � � � � � � k k' ' k k0 ‡ 0 " œ 0 " † B 0 B .B œ 0 B 0 B .B œ 0X X #"
K K

#.

Hence,

� �� � � � � ��0 ‡ 0 " œ . 0 ‡ 0X X

A−Ks

= )= . �

So if we let  we get the so-called . In other words, a positive2 œ 0 ‡0X positive functions
function satisfies

2 " œ . 2� � � � � ��
=

=

−Ks

= ) ,

and in fact  will be  for a constant , reminding us of Fourier expansion (and)=
)� �2 - / -8 8

38

this is where this originates from).

Lecture 17 (February 23, 2009) -
Last time we talked about tangent spaces. Given a differentiable manifold  and a pointQ
B − Q X Q, we defined the tangent space  to be the collection of mapsB
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\ À G Q Ä∞� � ‘

the behave like derivative, i.e., , and they are also local\ 01 œ 0 B \ 1 � 1 B \ 0� � � � � � � � � �
at  in the sense that if  in a neighborhood of , then .B 0 œ 1 B \ 0 œ \ 1� � � �

If  is a local coordinate system at  with a distinguished set of tangentB ß ÞÞÞß B B" 8

vectors , then we can always write the derivative\ ß ÞÞÞß \" 8

\ 0 œ + \ 0� � � ��
5œ"
8

5 5

with  in the Euclidean setting. We can then say dim .\ œ X Q œ 85 B
`

`B5

Differentials of smooth maps between manifolds

If  are manifolds, a function  is smooth if for all , there is aQßR À Q Ä R B − Q9
neighborhood

such that

< 9 9 9 9Z Y ZY
#"‰ ‰ À Y Ä Z
8

� � � �
with  and .9 ‘ 9 ‘Y Z

8 7� � � �Y © Z ©

We can now define a differential of a smooth map. Given a  smooth as above, we9
can define

. À X Q Ä X RB B B9 9� �
to be the function  for . This is clearly linear.. \ 1 œ \ 1 ‰ 1 − G RB

∞9 9� �� � � � � �
Example.   Let  be a collection of functions . Then9 ‘ ‘ 9 9À Ä ß ÞÞÞß8 7

" 7� �
. À ÄB

8 79 ‘ ‘

so this is simply a generalization of a Jacobian.

Chain rule
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Consider  with . Then  andQ Ä R Ä T B − Q ‰ À Q Ä T
F G

G F

. ‰ œ . ‰ .B BB� �G F < FF� � .

Then

X Q X R X T
. .

B
B

B B

B
Ò Ò
F <
F < F

F� � � �� � � �
with .. ‰ À X Q Ä X TB B B� �G F < F� �� �
Vector fields

A vector field is a map  that takes to each point  a tangent vector \ B − Q \ − XQ
"in a smooth fashion." For each ,   and as such, a map .B − Q \ − X Q G Q ÄB B

∞� � ‘
So, do the following. Fix an . Then we get a function  given by0 − G Q Q Ä∞� � ‘
B È \ 0 \ 0 − G Q B È \ 0 Q ÄB 8

∞� � � � � �. A vector field  is smooth if for all ,  ( ) is‘
smooth.

Given any coordinate chart , then a vector field can be described asYß B ß ÞÞÞß B" 8

\ 0 œ +B 5
`0
`B� � �  

5

as before (see blue above). We require  to be a smooth function.+ B5� �
For any , we associate with it another function0 − G Q∞� �

\ 0 − G Q B È \ 0� � � � � �∞
0  given by .

So we can think of a vector field as an -linear map  thatV \ À G Q Ä G R∞ ∞� � � �
satisfies

\ 01 œ 0\ 1 � 1\ 0� � � � � �.
That is, a vector field is a differential operator on .G Q∞� �

The tangent bundle  of  is the union  topologized in such a wayXQ Q X Q-
B−Q B

that for all smooth vector fields , the map  is continuous (and indeed smooth).\ B È \B

In other words, we take the "simplest" / "nicest" topology. We want open sets to be all
subsets such that if we have any of these maps  and if we pull them back onto theB È \B

manifold, we want those to be open.

If  are vector fields and  is not one, then\ß ] \]

\] 01 œ \ ] 01 œ \ 0] 1 � 1] 0 œ� � � � � �� � � � � �
\ 0 ] 1 � 0\ ] 1 �\ 1 ] 0 � 1\ ] 0 œ� � � � � � � � � � � �� � � �

0\] 1 � 1\] 0 �\ 0 ] 1 � \ 1 ] 0� � � � � � � � � � � �
so if we consider

� �� � � � � � � � � � � � � �\] # ]\ 01 œ 0\] 1 � 1\] 0 �\ 0 ] 1 � \ 1 ] 0 #
0] \ 1 # 1]\ 0 #\ 0 ] 1 # \ 1 ] 0 œ� � � � � � � � � � � �

0 \] # ]\ 1 � 1 \] # ]\ 0� �� � � �� �.
So if we define
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c d\ß ] ³ \] # ]\

then  is a vector field. This vector field satisfies the conditionc d\ß ]

c d c d c dc d c d c d\ß ] ß ^ � ^ß \ß ] � ] ß ^ß\ œ !,

the Jacobi identity. Furthermore, .c d c d\ß ] œ # ] ß\

Definition.    Let  be a real vector space. If  is equipped with a bilinear mapP P

c d† ß † À P ‚ P Ä P

satisfying the Jacobi identity and is anti-symmetric, then it is called a Lie algebra.

Lecture 18 (February 25, 2009) -
Lie groups

A Lie group is a smooth manifold that's also a group. That is, we have  with maps`
‡ À ‚ Ä 3 À Ä ß ‡ß 3` ` ` ` ` ` with  such that both are smooth, and then .� �
Examples

- ‘ß � ß #

- ‘‚ "
Bß ‚ ß B È

-  (a (Zariski) open set in ) so  will be a manifoldKP © KP# #
% %� � � �‘ ‘ ‘ ‘

Let's look at the last one in detail. What is matrix multiplication?

Œ Œ  Œ + , / 0 +/ � ,1 +0 � ,2
- . 1 2 -/ � .1 -0 � .2

œ

Inversion is

Œ  Œ + , . #,
- . #- +

È "
+.#,-  smooth.

Furthermore,  is also a Lie group.WP#� �‘
Lie algebra

From here on, we will let  mean a Lie group. If  is a Lie group, fix . Then thereK K 1 − K
exists a map

P À K Ä K1

given by . This will be smooth. As such, it makes sense to talk about the2 È 12
derivative of this function. Thus, we have a map .. P À X K Ä X K2 1 2 12

We say a vector field  on  is called invariant if  for all\ K . P \ œ \2 1 2 12� �
1ß 2 − K. On , for example, we can look at the constant vector field.‘#

In general, if , we define a vector field  on  by? − X K \ K/
?

\ ³ . P ??
1 / 1� �,
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where  is the identity. We claim  is invariant. Hence, we need to check that/ \?

. P \ œ \2 12 2
? ?

1#"� � .

Now, we need to check

. P . P ? œ . P ?2 / 2 / 112#" � � � �, that is,

K K K
P P
Ò Ò

2 12#"

with the first  mapping to the last  by  (so ). But, checking that this isK K P / È 2 È 11

true is simply the chain rule.

Hence, there is a one-to-one correspondence betweeen invariant vector fields and
X K/ .

Next, if  and  are invariant vector fields, then so is . (check this explicitly\ ] \ß ]c d
just for "fun" :) ) Let  be the map from  to invariant vector fields.< X K/

Definition.   The Lie algebra of a Lie group  is  with Lie bracketK œ X K� /

c d � �c d?ß @ œ \ ß\<#" ? @ ,

or what is the same, .c d\ ß\? @
/

Example.  Let .  Then . The derivative identity. WhatK œ ß � P À B È B � 1 . P À� �‘ 1 / 1

is an invariant vector field? The tangent space on  is . So, it will be! ‘

\ œ ??
2

with . Now, let's look at what brackets are. If  and  are two vector fields, and?ß 2 − \ ]‘
0 À Ä‘ ‘ is a smooth function, then

\ 0 œ 0 2 \2 2
w� �

"the value of  on  at the point  will be the derivative of  at  times  at " (notice\ 0 2 0 2 \ 2
\ −2 ‘). So, now,

� � � � � �\] # ]\ 0 œ \] 0 # ]\0 œ \ ] 0 # ] \0 œ
\ ] † 0 # ] \ † 0 œ \ ] 0 � ] † \ 0 # ] \ 0 #\ † ] 0 œ� � � � � � � � � � � �w w w w w w

\ ] 0 � ] † \ † 0 # ] \ 0 #\ † ] † 0 œ \ ] 0 # ] \ 0 œ� � � � � � � �w ww w ww w w

� � � �� � � �\ ] # ] \ 0 œ \ † ] # ] † \ 0w w w w.

For invariant ("constant") vector fields, their derivatives are going to be zero. Hence,

c d\ß ] œ !

for invariant vector fields. Hence, .� ‘‘ œ ß \ß ] œ !e fc d
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Lecture 19 (February 27, 2009) -
Exponential map

If  is a vector field on any manifold and  is a smooth curve, then \ À +ß , Ä# ` #� �
is called an integral curve for  if ,  .\ a> − +ß , œ \� � .

.> >
#

#� �
Now, we can think of  as a -dimensional manifold. Hence, for any , it� � � �+ß , " > − +ß ,

makes sense to talk about

. À . +ß , Ä X> > ># `� � #� � .

This is naturally a linear map. What is a linear map from  where  is a vectorV Ä Z Z
space? This is a choice of a vector . Then,  gives you a vector, usually denoted@ − Z .>#
by . Then. Î.>#

.

.> .>
.0 >

>

# #� � ¹0 œ � �� �
!

.

Theorem 1.   Given a vector field  and an , there exists an  and a smooth\ 7 − Z !` &
curve  such that  and  is an integral curve for .# & & # #À # ß Ä Q ! œ 7 \� � � �
Theorem 2.   Given a vector field  and an , if  and \ 7 − À M Ä À M Ä` # ` # `" " # #

are two solutions to the above differential equation (are integrals curves), then

# #" #� � � �! œ ! œ 7

implies  on .# #" # " #œ M ∩ M

If for all  any integral curve as above for  can be extended to , then  is7 − ß \ \` ‘
called complete.  Any vector field on a compact manifold is complete.Fact. 

Example.   Take the upper half-plane on  not including . Let  be the constant‘# C œ ! \
vector fields with unit vectors pointing south. Then integral curves will be ones pointing
straight down. However, this won't work, because we "run into a wall".

We define flow as follows. When we have a complete vector field  on , we have\ `
a notion of flow on : A family of maps  for each real  can then be` F ` ` ‘> À Ä > −
given as  where  is the integral curve for  that satisfies .F # # #>� � � � � �7 œ > \ ! œ 7

Fact.    If  is a Lie group, then every left-invariant vector field is complete.K

Definition.   (exponential) Let  be a Lie group, and let . For each , letK œ X K @ −� �/

\@ @
> be the associated invariant algebra and  the flow. Then letF

exp  exp .À Ä K @ ³ /� F  with   � � � �"

Properties.   (1) exp  is smooth.À Ä K�

(2)  exp  will be the identity.. À Ä! � �

(3) By the Implicit Function Theorem, exp is a local diffeomorphism.

Lemma.   If  is a Lie group homomorphism, thenF À K Ä L

. À ÄF � ¡/
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is a Lie algebra homomorphism, and the following diagram commutes:

�Ò ¡
F. /

exp expÆ Æ
K LÒ
F

.

Example.  Let . Then  (  by  matrices). Then the mapK œ KP œ Q 8 88 8‚8� � � �‘ � ‘
exp  is the classical exponential,À Ä K�

exp .\ œ �
8œ!

∞

8x
X8

In particular, let  be a Lie subgroup of e.g. ). Let L KP Ð WP À L KP8 8 8� � � � � �‘ ‘ F ä ‘
be the embedding. Then  will be an embedding. If , we want to know. À \ −F ¡ ä � ¡/

what exp  is. Well,\

F/ L K
8œ!

∞
\
8x� � �exp exp .\ œ \ œ
8

Adjoint group

Given , we have a map (conjugation)1 − K

ad   with    and .1
#"À K Ä K B È 1B1 / È /

Then Ad ad . Hence, Ad . Hence,1 / 1 / / 1³ . À X K Ä X K À Ä� �

1 − K −  means  Ad End ,1 �

and in fact Ad Ad , with Ad . Then1 1 1
#"

#" œ − KP� � � ��
Ad ,À K Ä KP� ��

so Ad is a representation of  onto its Lie algebra! This is called the K adjoint represen-
tation. A group  is called of adjoint type if Ad is faithful.K

Fact.   Commutative groups are not adjoint.

Lecture 20 (March 2, 2009) -
Tensor algebra (tensor products and exterior products)

Let  and  be two real vector spaces. Let  be the free vector spaceZ [ J Z ß[� �
generated by elements of the form , for . Let  be the sub-@ ‚ A @ − Z ß A − [ M Z ß[� �
vector space generated by elements of the form

� � � � � �@ � @ ß A # @ ß A # @ ß A ß" # " #� � � � � �@ß A � A # @ßA # @ß A ß" # " #� � � �+@ß A # + @ß A ß� � � �@ß +A # + @ß A .

We let . Then we have mapsZ Œ[ œ J Z ß[ ÎM Z ß[� � � �
Z ‚[ Ä J Z ß[ Ä Z Œ[ ?ß @ È ? Œ @� � � �   (that is, ))
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with  the natural bilinear embedding. We can characterize tensor< À Z ‚[ Ä Z Œ[
products by a universal property. If  is a vector space and  is a bilinear mappingY :
: 9 : 9 <À Z ‚[ Ä Y À Z Œ[ Ä Y œ ‰, then there is a  linear map  with .unique

Properties.   (a) .Z Œ[ z [ Œ Z

(b) .Z Œ [ Œ Y z Z Œ[ Œ Y� � � �
(c) Hom .Z Œ[ z Z ß[‡ � �
Exercise.  Prove these. (Later edit by Robert: Well, I guess there is nothing to prove
except part (c))

Let . How would we associate a Hom ? Well, we don't. We˜: :− Z Œ[ − Z ß[‡ � �
define a map

Z ‚[ Ä Z ß[ @ ßA @ È @ @ A‡ ‡ ‡Hom      .� � � �� � � �
Then using the above property of tensor products, we get  so get canZ ‚[ Ä Z Œ[‡ ‡

take Hom .Z Œ[ Ä Z ß[‡ � �
Exercise.  Do the above computations and show the map is invertible.

In particular, dim dim Hom dim dim dim dim .Z Œ[ œ Z ß[ œ Z † [ œ Z † [� �‡ ‡

Notation. We will call

ðóóóñóóóò ðóóóóñóóóóòZ Œ ÞÞÞÞ Œ Z Œ Z Œ ÞÞÞ Œ Z
< =

‡ ‡

� �<ß = -tensors.

Definition.   The wedge product

3 èëëéëëê � �5
5Z œ Z Œ ÞÞÞ Œ Z Î M Z

5-times
.

where

M Z œ5� � e fsub-vector spaces generated by symbols  s.t. for some @ Œ ÞÞÞ Œ @ 3 Á 4ß @ œ @" 5 3 4

So in . For example, in , but we can3 3 � � � �# #Z ß @ Œ @ œ ! Z ß @ � A Œ @ � A œ !
multiply, so

@ Œ @ � @ Œ A � AŒ @ � A Œ A œ @ Œ A � AŒ @ œ !.

Hence, . In order to avoid confusion, in , we will denote the image@ Œ A œ #AŒ @ Z35

of  by . This, in particular, implies that@ Œ ÞÞÞ Œ @ @ • ÞÞÞ • @" 5 " 5

@ • ÞÞÞ • @ œ #@ • @ • @ • ÞÞÞÞ • @" 5 # " $ 5 .

If , then sgn . Because of this, there is a well-5 5− W @ • ÞÞÞ • @ œ @ • ÞÞÞ • @5 " 5" 85 5� � � � � �
defined isomorphism . The pairing is defined as follows:Š ‹3 35 5

‡
‡Z z Z

 If  and , we define0 0" 5 " 5
‡ß ÞÞÞß − Z @ ß ÞÞÞß @ − Z

� �� � � �� �0 0 0" 5 " 5 3 4• ÞÞÞ • @ • ÞÞÞ • @ œ @det ,
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and note this is well-defined. Note that this is good, because elements of the form
@ • ÞÞÞ • @ Z" 5

5 form a set of generators for .3
Remark.   If  is a basis for , then the collection , with e f/ ß ÞÞÞß / Z / • ÞÞÞ • / 3 \ ÞÞÞ \" 8 3 3 "" 5

3 Z5
5 forms a basis for .3

If , and , then .  Prove by? − Z @ − Z ? • @ œ #" @ • ?3 3 � �5 j 5j Exercise.
induction.

N.B.  If , then . If , then .5 Z 8 Z œ ! 5 œ 8 Z œ "3 35 8

Let  be an -dimensional manifold. Let` 8

3 - 3 � �5 5 ‡‡
BX Q œ X

B −`
` .

We'll call a map

= ` `À Ä X35 ‡

a differential form of degree  if ,   ("stands above ").5 aB − B − X B` = `� � � �35 ‡
B

Second, for all vector fields , we want the function  given by\ ß ÞÞÞß \ Ä" 5 ` ‘

B È B \ B • ÞÞÞ • \ B=� � � �� � � �" 5

to be smooth. And, as usual, you give  the structures that make all differentiable35 ‡X Q
forms smooth.

If  is a coordinate chart on , and  a coordinate system, then take� �Yß C ß ÞÞÞß C: ` " 7e f e f`Î`C X .C3 B 3 as a basis for . The dual basis will be denoted by . So a differential`
form locally looks like:

= œ 0 .C • ÞÞÞ • .C�
3 \ ÞÞÞ \ 3" 5

3 ßÞÞÞß3 3 3" 5 " 5
.

The above smoothness requirements then becomes the requirements that the real-valued
functions  are smooth. Then03 ßÞÞÞß3" 5

� �Š ‹ ˆ ‰ œ.C • ÞÞÞ • . • ÞÞÞ • œ œ
" Ÿ :ß ; Ÿ 5

" 3 œ 4
!3 C 3 4

` `
`C `C

: :
" 5 : ;4 4" 5

det  
if 
otherwise.

$

So, we can "pick out" functions one at a time using this superization of the Kronecker
delta. �

Lecture 21 (March 4, 2009) -
Let  with  a -alternating multilinear form on the space of vector fields.= ` =− E 55� �
Then we can evaluate

= = ` ‘� �� � � �� �� � � �\ ß ÞÞÞß \ 7 ³ 7 \ 7 ß ÞÞÞß \ 7 Ä" 5 " 5    ( ).

Exterior derivatives

If , we have an associated . Effectively,0 − G ß 0 À Ä . 0 À X Ä∞
B B� �` ` ‘ ` ‘

we can think of . If  is any vector field, we can define the value.0 À XQ Ä \‘
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.0 \ B œ . 0 \ −� �� � � �B B ‘

for any . Hence, we can think of  as a one-form on , that is, . ItB − .0 .0 − E` ` `"� �
is then standard to think of  (the zero-forms). ThenG œ E∞ !� � � �` `

. À E Ä E! "� � � �` ` .

For each , there is a unique map A  such that , that is,5 . À E Ä . œ !5 5�" #� � � �` `

E Ä E Ä E
. .5 5�" 5�#� � � � � �` ` `

with . In local coordinates, this is given by the following:. 0 œ .0� �
. 0 .B • .B • ÞÞÞ • .B œ .B • .B • ÞÞÞ • .B� � �3 3 3 3 3 3

3œ"

8
`0
`B" # 5 " 53

. .

Properties.  (a) If  in a neighborhood of a point , then  in a neighborhood= ( = (œ : . œ .
of  (so it's local).:

(b) If  and  is any form, then .= ` = = = = = = =" # " # " # " #
< <− E . • œ . • . � #" • .� � � � � �

Pullbacks

If  and  are two vector spaces over , then a map  induces a map@ A 0 À Z Ä [‘
0 À [ Ä Z 0 [ Z‡ ‡ ‡ ‡ ‡ ‡. What does  do? It's supposed to be in . So, you should be able� �
to take  for all . Well, we can just define0 A @ @ − Z‡ ‡� �� �

0 A @ œ A 0 @‡ ‡ ‡� �� � � �� � .

If  is a map of differentiable manifolds, for any  we'll define a map: ` aÀ Ä 5
$: a `À E Ä E B5 5� � � �. For any , there is a map

. À X Ä X . À X Ä XB B B BB B
‡ ‡‡

: ` a : a `: :� � � �     .� � � �ˆ ‰
This introduces a map

3 3 3� � � �ˆ ‰5 ‡ 5 5 ‡
B BB

‡
. À X Ä X: a `:� � .

Classically, we would do this as follows.
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We have  given by  and a< : < ‘ ‘Z " 7 " 8Y
#" 7 8‰ ‰ À Ä B ß ÞÞÞß B È 2 B ß ÞÞÞß 2 B� � � �� � � �

differential form

 = œ 0 .C • ÞÞÞ • .C�
3 ßÞÞÞß3

3 ÞÞÞÞ3 3 3
" 5

" 5 " 5

=È 0 2 B ß ÞÞÞß 2 B . 2 B • ÞÞÞ • . 2 B� � � � � � �� � � � � � � �
3 ßÞÞÞß3

3 ÞÞÞÞ3 " 8 3 3
" 5

" 5 " 5

where .. 2 œ .B� � �3 44œ"
7 `2

`B<

3<

4

Example.   Consider the map  given by . Call these‘ ‘# $ # $ #Ä Bß C È BC ß B ß C� � � �� �B ß C ß D" " "  and consider the two-form

B .B • .C � C D .B • .D � D .C • .D" " " " " " " " ""
$ .

Now we want to pullback

� � � � � � � � � � � � � �BC . BC • . B � B C . BC • . C � C . B • . C# # $ $ # # # ' $ # .    (*)

Now,

. BC œ C .B � #BC .Cß . C œ #C .Cß . B œ $B .B� � � � � �# # # $ # and .

So,

. BC • . B œ C .B • $B .B � #BC .C • $B .B œ #'B C .B • .Cß� � � � � � � �# $ # # # $

. BC • . C œ #C .B • .C� � � �# # $ , and

. B • . C œ 'B C .B • .C� � � �$ # # .

Hence, (*) becomes

� �� � � �� � � �� �BC #'B C .B • .C � B C #C .B • .C � C 'B C .B • .C œ# $ $ # $ ' #

� �#'B C � #B C � 'B C .B • .C% $ $ & # ( .
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Thus, that is the pullback of the above differential form. �

Properties.   (a)  and  commute. That is, .$ $ < = $< =. . œ .� � � �� �
(b)  with , where$< = = < < `� �� �� � � �� � � �\ ß ÞÞÞß \ 7 œ . \ ß ÞÞÞß . \ 7 −" 5 7 "ß7 7 5ß77<� �
the  notation means to evaluate  at .\ \ 73ß7 "

Lie groups

We call a form  on  left-invariant if= K

$ = =L1 œ

[the pullback of the left invariant] for all .1 − K

Fact 1.  If  is a left-invariant -form in  and  are left-invariant vector fields= 5 K \ ß ÞÞÞß \" 5

on  then  is constant.K \ ß ÞÞÞß \=� �" 5

Fact 2.  If a 1-form , and two vector fields  are left invariant, then= \ß ]

. \ß ] œ # \ß ]= =� � � �c d .

Proof.  Exercise. Hint: Prove that if  is a -form on a manifold , and  are= `: ] ß ÞÞÞß ]! :

vector fields, then

. ] ß ÞÞÞß ] œ #" ] ] ß ÞÞÞß ] ß ÞÞÞß ] �s= =� � � �� Š ‹! : 3 ! 3 :
3œ!

:
3

�� � c dŠ ‹
3\4

3�4
3 4 ! 3 4 :#" ] ß ] ß ] ß ÞÞÞß ß ] ß ÞÞÞß ] ß ÞÞÞß ]s s= .

Then use Fact 1. �

One other fact. If  is a Lie group homomorphism, then  sends invariant: $:À K Ä L
forms to invariant forms. Simple:

$ $: = $ : = $ : = $: $ = $: =P œ ‰ P œ P ‰ œ P œ1 1 1 1� � � � � �ˆ ‰ ˆ ‰why?
.: :� � � �

Lecture 23 (March 9, 2009) -
Integration on chains

For each , let  each . If , we: � " œ + ß ÞÞÞß + − l + Ÿ "ß + � ! : œ !? ‘: :
" : 3 3e f� � �

denote . If  is a manifold, a differentiable singular -chain simplex  in ? ` 5 `! œ ! :e f
is a map  which extends to a smooth map from a neighborhood of  to .5 ? ` ? `À Ä: :

A -chain in  is , where the 's are -simplices, and the . We: - œ + : + −` 5 5 ‘� 3 3 3 3

define a collection of maps  for . For , we have5 À Ä ! Ÿ 3 Ÿ : � " : œ !3
: : :�"? ?

5 ! œ ! 5 ! œ "! "
! !� � � �   and   .

For , we want to define a map . So, let's send: � " Ä? ?: :�"

5 + ß ÞÞÞß + œ " # + ß + ß ÞÞÞß +!
:

" : 3 " :
3œ"

:� � Œ �
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5 + ß ÞÞÞß + œ + ß ÞÞÞß + ß !ß + ß ÞÞÞß +3
:

" : " 3#" 3 :� � � �
for ." Ÿ 3 Ÿ : � "

If  is a -simplex in  ( ), we define its th face ( ) to be the simplex5 `: : � " 3 ! Ÿ 3 Ÿ :

5 53 3
:#"œ ‰ 5 , with

? Ò? `
5:#" :

:#"
35

Ä .

We define the boundary of 5

` œ # "5 5�� �
3œ!

:
3 3.

If we have a -chain , then .: œ + ` œ + `5 5 5 5� �4 4 4 4

Example.   Let . Then: œ #

5 À œ !ß " Ä + È " # +ß +!
" " # !? ? 5c d � � with    ( )

5 À Ä + È !ß +"
" " # "? ? 5   with     ( )� �

5 À Ä + È +ß !#
" " # #? ? 5   with        ( ).� �

Then

` œ #" � #" � #"? 5 5 5# ! " #! " #� � � � � � .

[Draw a picture. :) ]

Example.   Let . Then: œ $

5 À + ß + È " # + # + ß + ß +!
#

" # " # " #� � � �
5 À + ß + È !ß + ß +#
" " # " #� � � �

5 À + ß + È + ß !ß +#
#

" # " #� � � �
5 À + ß + È + ß + ß !$
#

" # " #� � � �.
Theorem.   .` ‰ ` œ !

Proof.   Easy exercise.

If , we want to integrate differential -forms on -chains, and  is a -form,: œ ! : : !=
i.e., a function 0 . If , then  , because' ' '� � � �� �

5 5 ?
= = 5 = $5 =œ : � " œ :

5 ? Ó 5 ` ‘À Ä Q À Y Ä Y ©: %     ( ).

If , then .5 5 = =œ + ³ +� �' '3 3 35 53

Stokes's Theorem (First version).   If  is a -chain ( ) in a differentiable manifold5 : : � "
` = 5 and  is a smooth -form defined on a neighborhood of the image of , then� �: # "' '
`5 5
= =œ . .

Corollary (Fundamental Theorem of Calculus) .   Set  and .: œ " œ` ‘

Lecture 27 (March 20, 2009) -
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The torus is a Lie group isomorphic to  (homeomorphic to  (‘ ™5 5 " "Î W ‚ ÞÞÞ ‚ W 5
times)).

Definition.   A subgroup  of a compact Lie group  is called a maximal torus if there isX K
no subgroup  where  is a torus.X ¨ X Xw w

A maximal torus always exists. There exists a one-parameter subgroup in , so it must beK
compact. . If does not exist, then id (identity) is a maximal torus. Then take X ¨ ‡ X X
and look for  such that , with dim dim . Hence, this search stops. Hence,X X ¨ X X Z Xw w w

it exists.

Example.   Look at . If  acts on a set  transitively, thenWY # K \� �
\ z KÎe fstab of any point .

Moreover, if  is Lie and  is a topological space, and action is continuous, then K \ z
above is a homeomorphism. ( )Exercise

Naturally,  acts on :  . Hence it preserves setsWY # B ß C ß B ß C œ B B � C C� � � �� � � �‚#
" " # # " # " #

of vectors such that .� �@ß @ œ "

� � e f� �@ß @ œ Bß C l B B � C C œ "" " " " " .

But here  are complex numbers. Hence this is a sphere of dim  (our ). It is easyB ß C $ \" "

to check this action is transitive. Take f.r.t on  and find stabilizer.W$

Š ‹ œ Œ  Œ Œ ¹EE œ " œ œ "
+ , + ,
- . - .

+ -

, .

X
.

This means . The++ � ,, œ "ß +- � ,. œ !ß -+ � ., œ !ß -- � .. œ "ß +. # ,- œ "
" " conditions are equivalent. We can determine them uniquely. Let's find stabilizer:œ !
stabilizer of  is the identity. The stabilizer leaves invariant orthogonal complement� �"ß !
to  which is -dimensional. Stabilizer is . But , so the� � � � � � e f"ß ! " WY 8 # " WY " œ "
stabilizer here is just the identity, so it is equivalent to : .W WY # z W$ $� �

What are the maximal tori here? We can find at least one torus: diagonal matrices

Œ α

α

!

! #" ,

where . Thenα − W œ D À D œ "8 e fk k
E œ

!

!Œ α

α#"

and . The dimension of this torus is , and of the group is .αα αœ œ " " $k k#
Exercise:  Show this torus is maximal.

Another example: consider matrices of the form

Œ Œ Œ  Œ " " " #"
! " ! "

!

! !
œ

�α

α α

α α α
#"

#"

.

Conjugation gives different subgroup.



Robert Krzyzanowski            Representation Theory Notes

32

Main Theorem.   All maximal tori in a compact Lie group are conjugate.

Definition.   Weyl subgroup of torus  is .X 1 � K l 1X1 œ Xe f#"

Proposition.   .Weyl group is finite

Example.   A subgroup of a compact group does not have to be compact. Consider

š ›/ l 8 − § W# 38 # "1 È
™ .

Everywhere dense. ( )Exercise.

We claim Aut . Indeed,X œ KP 8ß8 � �™
! Ä Ä Ä X Ä !™ ‘8 8 8 .

Therefore, if we have a map  then we have a map  and we can: ‘À X Ä X Ä X8 7 8 8

factor through into . Now we need to check  preserves operation. Why is it that ˜X7 : :
also preserves operation?

Proof.  [of finiteness of Weyl group] Let  be normalizer and  a connectedR R!

component. First notice  is a closed subgroup ( ). This implies compact, andR 1X1 œ X#"

so  is discrete, compact (and so finite). We want to show that . We haveRl R œ XR !!

R Ä X œ KPAut 8� �™
with id, i.e., any element of  commutes with all elements in  . If weR Ä R Xß R ª X! ! !

show that  is torus then we are done. If  is a -parameter subgroup of ,R À Ä R " R! ! !α ‘
then  is connected subgroup containing .α ‘ Ö α ‘� � � �X § X

Lecture 28 (March 30, 2009) -
Maximal tori and Weyl groups

A torus is a Lie group isomorphic to  (in fact, any -dim lattice  will do).‘ ™ A5 5Î 5
Then the torus will be isomorphic to . If  is a Lie group, then a subgroup #

5
"W K X Ÿ K

is called a maximal torus if it is a torus that is maximal (not contained in any other torus).
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œ Œ  ¹" B
! "

B − ‘

has no maximal tori, and neither does .‘‚

Algebraic Geometry Definition.  (i.e., thisA torus ovedr a field  is a -form of . 5 5 †7

will be , so for example for , this just says .)� � e fKÎ5 Ð5Ñ œ 5 W W œ B � C œ "
‚ " " # #

Definition.  For a Lie group  and a maximal torus , define the normalizer to beK X

R œ 1 − K l 1X1 œ Xe f#" .

Further, let , called the Weyl group[ œ RÎX .

Theorem.   [  is finite.

Main Lemma.  Let  be a compact, connected Lie group, and let  be a maximal torus.K X
Then the map  given by 1 À KÎX ‚ X Ä K 1ß > È 1>1� � #".

Notice  is given by . This map has mapping degree . In1̃ À K ‚ X Ä K 1ß > È 1>1 [� � k k#"

particular,  is surjective.;

Definition.  (Mapping degree) Let  be compact, connected oriented -dimensionalQßR 8
manifolds, and let . Then there exists deg  (mapping degree) such that0 À Q Ä R 0 −� � ™
for all ,α − E R8� �

' '� �Q R
‡0 œ 0α αdeg  .

If deg , then  is surjective.0 Á ! 0

Lecture 29 (April 1, 2009) -
Main Lemma.  If  is compact, connected, and  a maximal torus in , then the mapK X K

; À KÎX ‚ X Ä K� �1X ß > È 1>1#"

has mapping degree  is surjective.k k[ Á ! ;Ö

Definition.  (Mapping degree) Let  be compact, connected oriented -dimensionalQßR 8
manifolds, and let . Then there exists deg  (mapping degree) such that0 À Q Ä R 0 −� � ™
for all ,α − E R8� �

' '� �Q R
‡0 œ 0α αdeg  .

If deg , then  is surjective.0 Á ! 0

We need to know deg (pullback of this differential form). Notice  acts on  using the; K‡ �
following: 1 − K

- 1 À K Ä K B È 1B1� � #".

Clearly, . Then . Hence Ad  (recall Ad )- 1 / œ / . - 1 À X K Ä X K 1 È 1 1 À Ä� � � � � � � �/ / / � �
is a representation of the compact group  on the finite dimensional vector space .K �
Hence there exists an inner product (metric) or  invariant under Ad.�
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� � � �' � � � �?ß @ œ 1 ?ß 1 @ .1K !1 1 .

Write . Set . So what we are really saying is that� œ > Š > P KÎX œ >¼ ¼� �
� œ > Š P KÎX� �.

If we take Ad , this will act trivially on  since  is commutative (but nontrivially onl > XX

P KÎX À X Ä P KÎX� � � �� �). Hence, we obtain a map Ad Aut . Then we haveKÎX

differential forms , and . On the other hand, we have a projection. 1X ß .> .1� �
1 À K Ä KÎX ,

which introduces a map . Notice that . We can write. À Ä X KÎX . > œ !/ /X /1 � 1� � � �
. À > Š P KÎX Ä X KÎX/ /X1 � � � �,

so  induces a map . If dim  and dim , then. P KÎX z X KÎX 8 œ K 5 œ X/ /X1 � � � �
1 À K Ä KÎX

gives us a pullback . [Btw all of this is in Broker.] There is an1‡ 8#5. 1X − E K� � � �
orthogonal projection pr  along .  Consider pr  . We have À Ä > P KÎX .> .> − >� A� � ‡ 5 ‡

/

(with ). Then we can take/ − X

pr .‡ 5 ‡
/.> − A �

Extend this to a -invariant differential form on  of degree , denoted  (abuse ofK K 5 .>
notation!).  We can consider

1‡� �.1X • .>.

Both of those are -invariant, and their wedge is a -invariant -form. As such, it wouldK K 8
be . In fact, . ( . Show the integral of left is , and right- † .1 .1 œ .1X • .> "1‡� � Exercise
is . We know the  part is . So just show the pullback of  is as well.)" .> " 1

On the other hand,  has a differential form given by the following:KÎX ‚ X

pr pr  " #
‡ ‡. 1X • .>� �

where

KÎX Ã KÎX ‚ X Ä X
pr pr

.
" #

Thus

P KÎX ‚ X œ X KÎX Š > z P KÎX Š > œ� � � � � �/X �,

where the leftmost thing has identity . Then .� �/X ß / œ .1α� �/X ß/ /

; À KÎX ‚ K Ä K

; .1 œ ; †‡ det .α

We define det  by this equation. Question is: what is det ?; ; 1X ß >� �� �
Proposition.   det det Ad  where  is the identity on� �� � ˆ ‰; 1X ß > œ > # I IKÎX KÎX KÎX

#"

P KÎX� �.
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Proof.   The forms  are left invariant under  is left invariant under . Then.1ß . 1X Kß .> X� �
K ‚ X Ä K ‚ X Ä K Ä K

� � � � � �� �� � � �� �� �� �Bß C È Bß >C È 1B >C 1B È 1> 1 1B >C 1B
6 6;+ ,#" #"#" #"˜

.

with  (where  and  mean "left translation by " and "left translation by ",+ œ 1ß > 6 6 + ,� � + ,

respectively). Notice

� �� �� �� � � �� �� �1> 1 1B >C 1B œ 1> B>CB 1 œ - 1 - > BCB#" #" #" #" #" #"#" ,

where  is conjugation. So the point . We claim that det  is- 1 À K Ä K /ß / È /ß / ;� � � � � �
the determinant of the differential of this map at the point  restricted to the subspace� �/ß /
P KÎX Š > © Š >� � � . �

Lecture 30 (April 3, 2009) -
We have a map where  is a maximal torus. Then1 À K Ä KÎX X

.1 œ . 1X • .>1‡ � �
on , we have , where dim . We can evaluate . We hadX .> − E X 5 œ X .> −5 ‡

/
53 −

− � � −© ©. This gives us a projection map , orthogonal projection. As such,

$ − �‡ ‡ ‡À Ä

gives a map

3 3 35 5 5‡ ‡ ‡$ − �À Ä .

Then we get

3 3� �5 5‡ ‡
/$ �.> − .

Extend this to a left-invariant differential form of degree  on . Another differential5 K
form is

α œ . 1X • .>pr pr  " #
‡ ‡� �

where

KÎX Ã KÎX ‚ X Ä X
pr pr

.
" #

So  is on  and  is on . Now, we have a map  which is.1 K KÎX ‚ X ; À KÎX ‚ X Ä Kα
given by .  So we can pullback  and this will be a top-degree; 1X ß > œ 1>1 ; .1� � #" ‡

differential form, and we have a top-degree differential form  already, and since theα
space of top-degree differential forms is 1-dimensional, we have

; .1 œ ;‡ � �det .α

We start by writing a map

K ‚ X Ä K
Æ ß

KÎX ‚ X .
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Then the exact map is � � � � � �� �� � � �� �� �� �Bß C È 1Bß >C È 1B >C 1B È 1> 1 1B >C 1B#" #"#" #"

which is � � � �� �� �Bß C È - 1 - > B † C † B#" #"

Exercise.  Given  by , verifyK ‚K Ä K 2 ß 2 È 2 2� �" # " #

. À Š Ä \ß ] È \ � ]� �/ß/ . � � �    .� �
Then with this exercise, we know the derivative of  is� � � �Bß C È - > B † C † B#" #"

� � � �\ß ] È > \ � ] #\Ad , thenKÎX
#"

Œ  Œ � �\
]

È
> # I

I

AdKÎX KÎX
#"

X

so

det det Ad ,; œ > #P KÎX KÎX KÎX
#"� �ˆ ‰� �

where  is of the form .
cos sin 
sin cos

> > œ
#Œ ) )

) )

Lemma.  If  is such that  is dense in , then> − X Ø>Ù X

(i) ; > [#"� � k k has  points, and

(ii) det  ; Z ! at each of these.

Weyl Integration Formula

Let  be compact connected and  a maximal torus, and take  continuous on . ThenK X 0 K

' ' '� � � � � �’ “ˆ ‰
K X KÎX

"
[ KÎX KÎX

#" #"0 1 .1 œ I # > 0 1>1 .1 .>k k det Ad .

We have

; À KÎX ‚ X Ä K Ä 1X ß > È 1>1
0
‘   given by   .� � #"

In general, when we integrate over conjugacy classes

' � �KÎX
#"0 1>1 .1,

the integral is  unless the conjugacy class is of maximal dimension.!

For now let , and let  be the diagonal group. Thenß K œ Y 8 H § K� �
H œ à > œ "

>
ä

>

Ú Þ
Û ßÜ à

Î Ñ
Ï Ò k k"

8

3

is a maximal torus, and  ( -copies). In this case, the Weyl group H z W ‚ ÞÞÞ ‚ W 8 [" "

will be isomorphic to  (permutation group on  letters), and the action will be byW 88

permuting the diagonal entries. If  is a conjugacy class in , since we know every# K
element of  is diagonalizable since it is compact, we know that . In fact, thisK ∩H Á g#
will be a single -orbit in . If , then we claim . If you[ H > − ∩ H [ † > © ∩ H# #
remember,  (the normalizer of , modulo ). The way it acts is that[ œ R X ÎX X X� �
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� �8ß > È 8>8 8>8 − A † > − ∩ H#" #", which means that . Then  (since we assume we# #
are working with things that are normalizing the torus). Now if  is a class function on ,0 K
then  means that  and  determine each other. So  will be a function0 ³ 0l 0 0 0H H H H

which is -invariant on  (with no further restrictions). The idea is that if we have a[ H
representation  of , this will have a character  which is a class function. Then .1 ; ;K l1 1 H

Second,  will be  .1l 7 BH 4 4�


