Lecture 3 (January 16, 2009) - Maschke's Theorem

Examples

For any field F, remember S_{n} acts on F^{n} by permuting the indices of some bases e_{1}, \ldots, e_{n}. Let $W_{1}=\left\{\sum c_{i} e_{i} \mid \sum c_{i}=0\right\}$. If $\sigma \in S_{n}, w \in W_{1}$, we claim that $\theta \cdot \omega \in W_{1}$. Then $\sigma\left(\sum c_{i} e_{i}\right)=\sum c_{i} \delta e_{1}=\sum c_{i} e_{\sigma(i)} \quad$ so that $\sum c_{i}$ doesn't change. Take $W_{2}=\left\{\sum a_{i} e_{i} \mid a_{1}=a_{2}=\ldots=a_{n}\right\}=F \cdot\left\{e_{1}+e_{2}+\ldots+e_{n}\right\} . \quad$ Let $\quad \sigma \in S_{n}, a \in F$. Then

$$
\begin{aligned}
& \sigma \cdot a \cdot\left(e_{1}+\ldots+e_{n}\right)=a \cdot \sigma \cdot\left(e_{1}+\ldots+e_{n}\right) \\
& =a \cdot\left(e_{\sigma(1)}+\ldots+e_{\sigma(n)}\right)=a \cdot\left(e_{1}+\ldots+e_{n}\right) .
\end{aligned}
$$

Recall two G-representations or $F G$-modules, V and W are called equivalent if there exists $V \xrightarrow{\psi} W$ which commutes with the action of G, or $F G$.

$$
\begin{aligned}
V(g) & \stackrel{\psi}{\rightarrow} W \\
& \downarrow \rho_{2}(g) \\
V & \xrightarrow{\psi} W .
\end{aligned}
$$

Theorem. Let G be a finite group with char $F \backslash|G|$. Then any submodule of an $F G$ module is a direct summand, i.e., if V is an $F G$-module and $0 \neq U \subseteq V$ is an $F G$ submodule, then there exists W such that $V=U \oplus W$ as $F G$-modules.

Corollary. If char $F \backslash|G|$, then V is irreducible if and only if it is indecomposable.
Proof. Iredducibility obviously implies indecomposability. If it is not irreducible, then if there exists $U \neq 0$, then there exists W such that $V=U \oplus W$.
Corollary. If char $F \backslash|G|$, then every $F G$-module is injective.
Proof. (of Maschke's Theorem) The idea is to produce an $F G$-equivalent projection $\pi: V \rightarrow U$. Then $F G$-equivalent means if $x \in F G$, then $\pi(x \cdot v)=x \cdot \pi(v)$. Recall projective means $\pi: V \rightarrow U$ is surjective, and $\pi(\pi(V))=\pi(V)$. This last part can be thought of as projection onto the Euclidean plane: if we project once and then project again, then that second action does nothing since it is already projected onto the plane.

Continuing, let $W=$ ker π. We claim $V=U \oplus W$. If $v \in U \cap W$, then $v \in \operatorname{ker} \pi$ and $v=\pi(g)$ for some $y(\pi(V)=U)$. So $\pi(y)=\pi(\pi(y))=\pi(v)=0$ so indeed $\pi(y)=v$. If $v \in V$, write $v=(v-\pi(v))+\pi(v)$ and we say $v-\pi(v) \in W=\operatorname{ker} \pi$, and $\pi(v) \in U$. Then, $\pi(v-\pi(v))=\pi(v)-\pi \pi(v)=\pi(v)-\pi(v)=0$. So, we have shown that $U \cap W=\{0\}$ and $U+W=V$. This then implies $V=U \oplus W$.

If π is $F G$-equivalent and $v \in \operatorname{ker} \pi=W$ and $x \in F G$, then we want to show $x \cdot v \in W=\operatorname{ker} \pi$. Indeed, $\pi(x \cdot v)=x \cdot \pi(v)=x \cdot 0=0$ so W is in fact $F G$-stable.

We need to make an appropriate π. Start with an arbitrary $\pi_{0}: V \rightarrow U$, just a vector space projection. Now, if $g \in G, g \pi_{0} g^{-1} u=u \forall u \in U$ [Exercise. convince yourself of this]. Now, we let

$$
\pi=\frac{1}{|G|} \sum_{g \in G} g \pi_{0} g^{-1},
$$

and we can do this because char $F \nmid|G|$, or otherwise $|G|$ would be 0 in π 's domain. Exercise. Check that $\pi(u)=u$ and $\pi(\pi(u))=\pi(u)$.

Wedderburn's Theorem. Let R be a non-zero ring with identity (not necessarily commutative). Then the following are equivalent:
(1) Every R-module is injective.
(2) Every R-module is projective.
(3) Every R-module is completely reducible.
(4) The ring R considered as a left R-module is a direct sum $R=L_{1} \oplus \ldots \oplus L_{n}$, where each L_{i} is a simple module iwth $L_{i}=R e_{i}$ for some e_{i} 's satisfying
(i) $e_{i} e_{j}=0$ for $i \neq j$
(ii) $e_{i}^{2}=e_{i}$
(iii) $\sum e_{i}=1$.
(5) As rings, R is isomorphic to a direct product of matrix rings over division rings,

$$
R=R_{1} \times \ldots \times R_{r},
$$

with each $R_{j}=M_{n_{j}}\left(\Delta_{j}\right)$ with Δ_{j} a division ring and each R_{i} a two-sided ideal in R. Further, r, n_{j}, Δ_{j} 's are up to isomorphism uniquely determined.

Proof. Next time!

Lecture 4 (January 21, 2009) - Maschke's Theorem

Definition. Let R be a ring and Q a module. Then Q is injective if one of the following holds:
(a) (R commutative) If $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$ is a short exact sequence, then

$$
0 \rightarrow \operatorname{Hom}(N, Q) \rightarrow \operatorname{Hom}(M, Q) \rightarrow \operatorname{Hom}(L, Q) \rightarrow 0
$$

is exact.
(b) If $0 \rightarrow L \rightarrow M$ is exact, then

$$
\begin{gathered}
0 \rightarrow L \rightarrow M \\
f \downarrow \swarrow \\
Q .
\end{gathered}
$$

(c) If Q is a submodule of any M, then Q is a direct summand. [Maschke's Thm]
(d) If I is a left-sided ideal of R, then any R-module homomorphism $I \rightarrow Q$ can be extended to $R \rightarrow Q$. [Baer's criterion]

Definition. Let R be a ring and P a module. Then P is projective if one of the following holds:
(a) (R commutative) If $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$ is short exact then

$$
0 \rightarrow \operatorname{Hom}(P, L) \rightarrow \operatorname{Hom}(P, M) \rightarrow \operatorname{Hom}(P, N) \rightarrow 0
$$

is exact.
(b) P is a direct summand of a free module.
(c) If $M \rightarrow N \rightarrow 0$ is exact, then

$$
\begin{gathered}
0 \rightarrow L \rightarrow M \\
f \uparrow \quad \nearrow \\
P .
\end{gathered}
$$

Corollary. (to Wedderburn's Theorem) If char $F \nmid|G|$, then

$$
F G \cong M_{n_{1}}\left(\Delta_{1}\right) \times \ldots \times M_{n_{r}}\left(\Delta_{r}\right)
$$

with $\Delta_{1}, \ldots, \Delta_{r}$ division rings.
Terminology. Such a ring is called semi-simple.
Modules over $M_{n}(\Delta)(\Delta$ a division ring)
Definition. (1) A non-zero element e is called idempotent if $e^{2}=e$.
(2) e_{1}, e_{2} are orthogonal if $e_{1} \cdot e_{2}=e_{2} \cdot e_{1}=0$.
(3) An idempotente is called primitive if it cannot be written as $a+b$ with a, b orthogonal idempotents.
(Notice $(a+b)^{2}=a^{2}+b^{2}+a b+b a=a^{2}+b^{2}=a+b$.)
(4) e is called primitive central idempotent if it cannot be written as a sum of two orthognal idempotents in $Z(R)$.

Proposition. Let $R=M_{n}(\Delta)$ and I the identity matrix.
(a) The only two-sided ideals of R are 0 and R.
(b) The center of R is $Z(R):=\{\alpha I \mid \alpha \in Z(\Delta)\}$.
(c) $e_{i}=E_{i i}=$ matrix with all zeros except in ii.
(d) $L_{i}=R e_{i}$ simple leftmodules. $\forall i, L_{i} \cong L_{1}$ and $R=L_{1} \oplus \ldots \oplus L_{n}$.
(e) If M is a simple R-module, then $M \cong L_{1}$.

Lecture 5 (January 23, 2009) -

Recall our proposition from last time.
Lemma. For R an abritrary non-zero ring,
(i) If M and N are simple R-modules, then if $\varphi: M \rightarrow N$ is a non-trivial R-module homomorphism, then φ is an isomorphism.
(ii) If M is simple, then $\operatorname{Hom}_{R}(M, M)$ is a division ring.

Remarks. Let $E_{i j}=\left(a_{r s}\right)$, with

$$
a_{r s}=\delta_{r_{i}} d_{s_{j}}= \begin{cases}1 & \text { if } r=i, s=j \\ 0 & \text { elsewhere }\end{cases}
$$

(a) $E_{i j} A$ is the matrix whose i th row is equal to the j th row of A and zero's elsewhere. For example,

$$
\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
a & b
\end{array}\right) .
$$

(b) $A E_{i j}$ is the matrix whose j th column is equal to the i th column of A and else zero's.
(c) $E_{p q} A E_{r s}$ is the $p s$ entry in $a_{q r}$.

Exercise. Verify the above explicitly.
Let J be a two-sided ideal and let $A \in J$. Then if some entry $a_{q r}$ of A is non-zero, then $E_{p q} A E_{r s} \in J$. Then $E_{r s}=\frac{1}{a_{q r}} E_{p q} A E_{r s} \in J$. This means $\forall p, s, E_{p q} \in J$ implies $J=R$. Next, let $A \in Z(R)$. Then $E_{i j} A=A E_{i j}$. Then if $i \neq j$, then $a_{i j}=0$. (verify!)

Next, $R e_{i}=R E_{i i}$. This is going to be ith column with 0's everywhere else. If A is non-zero, then $R A=R \cdot r e_{i} \subseteq R e_{i}$. We then claim that $R A=R e_{i}$. If $a_{p_{i}}$ is a non-zero enetry of A, then $E_{i i}=\frac{1}{a_{p_{i}}} E_{i p} A \in R A$, so that $R e_{i} \subseteq R A$. If $A \in R e_{i}$ and $A \neq 0$, then $R A=R e_{i}$ so that it is simple.

It's trivial that $L_{i} \cong L_{j}$.
Let M be any simple module. Since $1 m=m \forall m$, $\left(\sum e_{i}\right) m=m$ so $\sum e_{i} m=m$. Given $m, \exists e_{i}$ such that $e_{i} m \neq 0$. We can then write a map $L_{i} \rightarrow M$. This map sends $r e_{i} \stackrel{\varphi}{\mapsto} r e_{i} m$. If $r=1 \in \Delta$, then $\varphi\left(e_{i}\right)=e_{i} m \neq 0$.

Additionally, the e_{i} 's are primitive. We see this as follows. Assume that $e_{i}=a+b$. Then $R e_{i}=R a+R b$. We claim $R a \cap R b=\{0\}$ with $r a=s b$. Then

$$
r a=r a^{2}=r a \cdot a=s b \cdot a=0 .
$$

Homework. Look up the Dummit and Foote theorem on $R=R_{1} \times \ldots \times R_{r}$! This module will be a simple module.

Lecture 6 (January 26, 2009) - Introduction to Characters

Recall that $\mathbb{C} G \cong M_{n_{1}}(\mathbb{C}) \times \ldots . \times M_{n_{r}}(\mathbb{C})$. Then the regular representation will be $n_{1} M_{1} \oplus \ldots \oplus n_{r} M_{r}$.
Furthermore, $M_{n_{1}}(\mathbb{C})$ will be n_{1} copies of M_{1}, but it can also be realized as

$$
M_{1} \otimes M_{1}^{*} \cong \mathbb{C}^{n_{1}} \otimes \mathbb{C}^{n_{2}} \cong \mathbb{C}^{n_{1}^{2}}
$$

A regular representation will always be $\bigoplus M_{i} \otimes M_{i}^{*}$ (the so-called Peter-Weyl Theorem for compact groups).

Definition. A function $\varphi: G \rightarrow F$ is called a class function if $\varphi\left(g x g^{-1}\right)=\varphi(x)$ (orbits of conjugation) $\forall x \forall g$.
Definition. If φ is a representation of G on a vector space V over F, then we can define

$$
\chi_{\varphi}(g)=\operatorname{tr} \varphi(g)
$$

Example. For a regular representations of G, G acts on \mathbb{C}_{G} by $g \cdot \sum \alpha_{h} h=\sum \alpha_{h}(g h)$. The basis vectors are precisely $\{h\}_{h \in G}$. If $g=1$, then it sends $h \mapsto h$, so that the trace will be precisely $|G|$. If $g \neq 1$, then $h \mapsto g h \neq h$ (ever). So there won't be anything on the diagonal, and hence trace $=0$. Hence,

$$
\chi_{\mathrm{reg}}(g)= \begin{cases}0 & \text { if } g \neq 1 \\ |G| & \text { if } g=1\end{cases}
$$

Example. Consider $D_{2 n}$ acting on \mathbb{R}^{2} by

$$
\rho:\left(\begin{array}{cc}
\cos \frac{2 \pi}{n} & \sin \frac{2 \pi}{n} \\
\sin \frac{2 \pi}{n} & \cos \frac{2 \pi}{n}
\end{array}\right) \text { and } \sigma:\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right),
$$

and call this the "natural" class functions. Define $\chi_{\text {nat }}(\rho)=2 \cos \frac{2 \pi}{n}$ and $\chi_{\text {nat }}(\sigma)=0$. For any $\varphi: G \rightarrow G L(V), \chi_{\varphi}$ is a class function:

$$
\chi_{\varphi}\left(g x g^{-1}\right)=\operatorname{tr} \varphi\left(g x g^{-1}\right)=\operatorname{tr} \varphi(g) \varphi(x) \varphi(g)^{-1}=\operatorname{tr} \varphi(x)=\chi_{\varphi}(x)
$$

Fact. $\quad \varphi_{1} \sim \varphi_{2} \Leftrightarrow \chi_{\varphi_{1}}=\chi_{\chi_{2}}\left[\varphi_{1}(g)=A \varphi_{2}(g) A^{-1}, \operatorname{tr} \varphi_{1}(g)=\operatorname{tr} A \varphi_{2}(g) A^{-1}=\right.$ $\left.\operatorname{tr} \varphi_{2}(g)\right]$

Consider $F \mathbb{C}$. Then χ_{φ} extends to $\mathbb{C} G$,

$$
\chi_{\varphi}\left(\sum \alpha_{g} g\right)=\sum \alpha_{g} \chi_{\varphi}(g)
$$

Recall the group algebra $\mathbb{C} G$ also acts on V. (if $f \in \mathbb{C} G$ can think of tr f) We write $\mathbb{C} G \cong M_{n_{1}}(\mathbb{C}) \times \ldots \times M_{n_{r}}(\mathbb{C})$ with M_{1}, \ldots, M_{r} inequivalent. Every finite dimensional representation

$$
M=a_{1} M_{1} \oplus \ldots \oplus a_{r} M_{r} \text { with } a_{i} \geq 0
$$

If we write

then we easily see $\chi_{M}=a_{1} \chi_{M_{1}}+\ldots+a_{r} \chi_{M_{r}}$. Let's write $\chi_{i}=\chi_{M_{i}}$. On the other hand, every sum will be the character of a representation. Next, let

$$
z_{i}=\binom{i \mathrm{th}}{0,0, \ldots, 0, \stackrel{\downarrow}{1}, 0, \ldots, 0}
$$

with $1 \in M_{n_{i}}(\mathbb{C})$ (id matrix). Then z_{i} 's are linearly independent. Each character χ_{j} satisfies the following: $\chi_{j}\left(z_{i}\right)=0$ for $i \neq j$ (b/c it acts by the zero matrix on M_{j}), and $\chi_{j}\left(z_{j}\right)=n_{j}$. Hence, the $\chi_{1}, \ldots, \chi_{r}$ are a dual basis to the independent set z_{1}, \ldots, z_{r}.

$$
\chi_{j}\left(z_{i}\right)=n_{j} \delta_{i j} \Longrightarrow \frac{x_{j}}{n_{j}}\left(z_{i}\right)=\delta_{i j} \Longrightarrow x_{j}=n_{j} z_{j} \text { (dual basis) }
$$

$\Longrightarrow \chi_{j}$'s are linearly independent.
Then if $M \cong B_{1} M \oplus \ldots \oplus b_{r} M_{r}$, then $\chi_{M}=b_{1} \chi_{1}+\ldots+b_{r} \chi_{r}=a_{1} \chi_{1}+\ldots+a_{r} \chi_{r}$ naturally means $a_{i}=b_{i}$ (for $1 \leq i \leq r$).

Class functions

Let $\mathcal{O}_{1}, \ldots, \mathcal{O}_{s}$ be such that $f_{\mathcal{O}_{1}}(g)=\left\{\begin{array}{ll}1 & \text { if } s \in \mathcal{O}_{1} \\ 0 & \text { elsewhere. }\end{array}\right.$ with $\chi_{1}, \ldots, \chi_{r}$ linearly independent class functions. We will show $r \leq s$ later.

Let θ, ψ be class functions. Define

$$
(\theta, \psi)=\frac{1}{|G|} \sum_{g \in G} \theta(g) \overline{\psi(g)} .
$$

Proposition. For z_{1}, \ldots, z_{r} have $M_{n_{1}}(\mathbb{C}) \times \ldots \times M_{n_{r}}(\mathbb{C}) \cong \mathbb{C} G$. Then

$$
z_{i}=\frac{\chi_{i}(1)}{|G|} \sum_{g \in G} \chi_{i}\left(g^{-1}\right) g
$$

Proof. Write $z=z_{i}$ and $z=\sum \alpha_{g} g$. Recall

$$
\chi_{\mathrm{reg}}(g)= \begin{cases}0 & \text { if } g \neq 1 \\ |G| & \text { if } g=1\end{cases}
$$

Then Reg $=\bigoplus_{1}^{r} n_{i} M_{i} \Longrightarrow \chi_{\text {reg }}=\sum_{i=1}^{r} n_{i} \chi_{i}$. We then claim

$$
\chi_{\mathrm{reg}}\left(z g^{-1}\right)=\alpha_{g}|G| .
$$

Indeed,

$$
\chi_{\mathrm{reg}}\left(z g^{-1}\right)=\chi_{\mathrm{reg}}\left(\sum \alpha_{h} h g^{-1}\right)=\sum \alpha_{h} \chi_{\mathrm{reg}}\left(h g^{-1}\right)=|G| \alpha_{g} .
$$

Next, if φ is the representation on M_{j}, then

$$
\chi_{j}\left(z g^{-1}\right)=\operatorname{tr} \varphi_{j}\left(z g^{-1}\right)=\operatorname{tr} \varphi_{j}(z) \varphi_{j}\left(g^{-1}\right)
$$

If $j \neq i$, then $\varphi_{j}\left(z_{i}\right)=0$. Hence,

$$
\varphi_{j}\left(z g^{-1}\right)= \begin{cases}0 & j \neq i \\ \varphi_{i}\left(g^{-1}\right) & j=i\end{cases}
$$

so

$$
\chi_{j}\left(z g^{-1}\right)=\chi_{i}\left(g^{-1}\right) \delta_{i j} .
$$

Finally,

$$
\sum_{j=1}^{r} n_{j} \chi_{j}\left(g^{-1}\right) \delta_{i j}=\alpha_{g}|G| \Longrightarrow \alpha_{g}=\frac{1}{|G|} n_{i} \chi_{i}\left(g^{-1}\right)
$$

However, $\chi_{i}(1)=\operatorname{tr} \varphi_{i}(1)=n_{i}$. Then

$$
\alpha_{g}=\frac{1}{|G|} \chi_{i}(1) \chi_{i}\left(g^{-1}\right),
$$

so that

$$
z_{i}=\frac{1}{|G|} \sum_{i} \chi_{i}(1) \chi_{i}\left(g^{-1}\right) g
$$

Lecture 7 (January 28, 2009) -

Let K_{1}, \ldots, K_{s} be distinct conjugacy classes, with $X_{i}=\sum_{g \in K_{i}} g$. Then $\left\{X_{i}\right\}$ form a basis for class functions $Z(\mathbb{C} G)(\operatorname{dim} Z(\mathbb{C} G)=r$, the number of simple modules).

Corollary. $r=s$
Proof. First, the X_{i} 's are linearly independent. The next claim is that any element of $Z(\mathbb{C} G)$ is a linear combination of the X_{i} 's. Let $\sum \alpha_{g} g \in Z(\mathbb{C} G)$. This means that for all $h \in G, h \alpha h^{-1}=\alpha$. Hence, $h\left(\sum \alpha_{g} g\right) h^{-1}=\alpha \quad$ and $\sum \alpha_{h^{-1} g h} g=\sum \alpha_{g} g$. Hence, $\alpha_{h^{-1} g h}=\alpha_{g} \forall g \forall h$.
Take z_{1}, \ldots, z_{r}. Recall

$$
z_{i}=\frac{\chi_{i}(1)}{|G|} \sum_{g \in G} \chi_{i}\left(g^{-1}\right) g
$$

and notice

$$
\begin{aligned}
& z_{i} \delta_{i j}=z_{i} z_{j}=\frac{\chi_{i}(1)}{|G|} \frac{\chi_{j}(1)}{|G|} \sum_{g, h} \chi_{i}\left(g^{-1}\right) \chi_{j}\left(h^{-1}\right) g h \\
& \quad=\frac{\chi_{i}(1)}{|G|} \frac{\chi_{j}(1)}{|G|} \sum_{g \in G}\left(\sum_{x \in G} \chi_{i}\left(x y^{-1}\right) \chi_{j}\left(x^{-1}\right) y\right)
\end{aligned}
$$

Hence $g^{-1}=x y^{-1}, g=y x^{-1}, h^{-1}=x^{-1}, h=x$. But

$$
z_{i} \delta_{i j}=\delta_{i j} \sum_{y \in G} \frac{\chi_{i}(1)}{|G|} \chi_{i}\left(y^{-1}\right) y .
$$

Since the y are linearly independent elements, the corresponding coefficients must be equal:

$$
\delta_{i j} \frac{\chi_{i}(1)}{|G|} \chi_{i}\left(y^{-1}\right)=\frac{\chi_{i}(1)}{|G|} \frac{\chi_{j}(1)}{|G|} \sum_{x \in G} \chi_{i}\left(x y^{-1}\right) \chi_{j}\left(x^{-1}\right) .
$$

Hence,

$$
\delta_{i j} \frac{|G|}{\chi_{j}(1)} \chi_{i}\left(y^{-1}\right)=\sum_{x \in G} \chi_{i}\left(x y^{-1}\right) \delta_{i j} \frac{\chi_{i}(1)}{|G|} \chi_{i}\left(y^{-1}\right) \chi_{j}\left(x^{-1}\right) .
$$

Put $y=1$. Then

$$
|G| \left\lvert\, \delta_{i j} \frac{\chi_{i}(1)}{\chi_{j}(1)}=\frac{1}{|G|} \chi_{i}(x) \chi_{j}\left(x^{-1}\right)\right.
$$

Notice in either case ($i=j$ and $i \neq j$), the left hand side is just $\delta_{i j}$. Thus,

$$
\delta_{i j}=\frac{1}{|G|} \sum_{x \in G} \chi_{i}(x) \chi_{j}\left(x^{-1}\right) .
$$

Lemma. $\chi_{i}\left(x^{-1}\right)=\overline{\chi_{i}(x)}$ for χ a character of any representation.
Proof. Look at $\varphi(x)$. Let φ be the representation associated to χ and look at $\varphi(x)$. Then $\varphi(x)^{|G|}=\varphi\left(x^{|G|}\right)=1$. In fact, if $|x|=k$, then $\varphi(x)^{k}=\varphi\left(x^{k}\right)=\varphi(1)=1$. Hence, $\varphi(x)$ satisfies the equation $X^{k}-1=0$. Since the roots of $X^{k}-1$ are distinct, the minimal polynomial of $\varphi(x)$ which divides $X^{k}-1$ will have distinct roots and all will be roots of unity. Then $\varphi(x)$ must be diagonalizable,

$$
\varphi(x) \sim\left(\begin{array}{ccc}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{n}
\end{array}\right) \text { with }\left|\lambda_{i}\right|=1 .
$$

Then $\chi(x)=\sum \lambda_{i}$. Hence,

$$
\varphi^{-1}(x) \sim\left(\begin{array}{ccc}
\lambda_{1}^{-1} & & \\
& \ddots & \\
& & \lambda_{n}^{-1}
\end{array}\right)=\left(\begin{array}{ccc}
\overline{\lambda_{1}} & & \\
& \ddots & \\
& & \overline{\lambda_{n}}
\end{array}\right)
$$

so $\chi\left(x^{-1}\right)=\sum \overline{\lambda_{i}}=\overline{\sum \lambda_{i}}=\overline{\chi(x)}$. Thus,

$$
\delta_{i j}=\frac{1}{|G|} \sum \chi_{i}(x) \chi_{j}\left(x^{-1}\right)=\frac{1}{|G|} \sum \chi_{i}(x) \overline{\chi_{j}(x)}=\left(\chi_{i}, \chi_{j}\right) .
$$

Theorem. (First orthogonality relation) Let $\left(\chi_{1}, \chi_{j}\right)=\delta_{i j}$, e.g. $M=\bigoplus_{i=n}^{r} a_{i} M_{i}$ so that $\chi_{M}=\sum a_{i} \chi_{i}$. Then

$$
\left(\chi_{M}, \chi_{M}\right)=\left(\sum_{i} a_{i} \chi_{i}, \sum_{j} a_{j} \chi_{j}\right)=\sum_{i} \sum_{j} a_{i} a_{j}\left(\chi_{i}, \chi_{j}\right)=\sum_{i, j} a_{i} a_{j} \delta_{i j}=\sum_{i} a_{i}^{2} .
$$

Corollary. A representation M is irreducible if and only if $\left(\chi_{M}, \chi_{M}\right)=1$.
In other words, a regular representation

$$
\rho_{\mathrm{reg}}= \begin{cases}0 & g \neq 1 \\ |G| & g=1 .\end{cases}
$$

So $\langle\rho, \rho\rangle=\frac{1}{|G|} \sum_{g \in G} \rho(g) \overline{\rho(g)}=\frac{1}{|G|}|G||G|=|G|$.
Corollary. If θ is any class function,

$$
\theta(g)=\sum_{i}\left(\theta, \chi_{i}\right) \chi_{i}(g) .
$$

Theorem. (Second orthogonality relation)

$$
\sum \chi_{i}(x) \overline{\chi_{i}(y)}= \begin{cases}\left|C_{G}(x)\right| & x \sim y \\ 0 & \text { otherwise } .\end{cases}
$$

(1) A complex number $\alpha \in \mathbb{C}$ is called an algebraic integer if
(i) it satisfies a monic equation with integral coefficients.
(ii) $\mathbb{Z}[\alpha]$ is a finitely generated \mathbb{Z}-module.
(2) If a rational number is an algebraic integer, then it must be an integer. [i.e., if $\sum \lambda_{i}$ is a sum of algebraic integers equal to p / q, then $q=1$.]

Recall the collection of algebraic integers is a ring. Furthermore, if ψ is a character of some representation, then $\forall x \in G, \psi(x)$ is an algebraic integer. Then $\psi(x)=\sum \lambda_{i}$ (roots of unity).

Lecture 8 (January 30, 2009) - More Character Theory

Fact. If ψ is a character of a representation of G, then for all $x \in G, \psi(x)$ is an algebraic integer.

Notation. We will use the nonstandard notation $\overline{\mathbb{Z}}$ ot denote the integral closure of \mathbb{Z} in $\overline{\mathbb{Q}}$ (algebraic integers).

Proposition. [19.1.3 Dummit and Foote] Define complex-valued functions w_{i} on G by

$$
w_{i}(g)=\frac{\mid \text { conjugacy class of } g \mid \chi_{i}(g)}{\chi_{i}(1)} .
$$

Then the values $w_{i}(g) \in \overline{\mathbb{Z}}$ (are algebraic integers).

Proof. We claim that the values $w_{i}(g) \in \overline{\mathbb{Z}}$ (are algebraic integers). To see this, denote K_{1}, \ldots, K_{r} to be the conjugacy classes. We'll prove

$$
\sum_{g \in K_{j}} \varphi_{i}(g)=w_{i}(g) I
$$

for any $g \in K_{j}$ (where φ_{i} is the representation for χ_{i}). Let $X=\sum_{g \in K_{j}} \varphi_{i}(g)$. Then X commutes with everything in the image of φ_{i} because

$$
\varphi_{i}(h) X \varphi_{i}(h)^{-1}=\sum_{g \in K_{j}} \varphi_{i}(h) \varphi_{i}(g) \varphi_{i}(h)^{-1}=\sum_{g \in K_{j}} \varphi_{i}\left(h g h^{-1}\right)=\sum_{g \in K_{j}} \varphi_{i}(g)=X
$$

Hence, X commutes with everything, so $X \in Z\left(\varphi_{i}(G)\right)$. That is, $X=\alpha I$ for some α. Notice

$$
\chi_{i}(1) \alpha=\operatorname{tr} X=\sum_{g \in K_{j}} \operatorname{tr} \varphi_{i}(g)=\chi_{i}(g) \cdot\left|K_{j}\right|,
$$

so that $\alpha=\frac{\chi_{i}(g)\left|K_{j}\right|}{\chi_{i}(1)}$. Now let $g \in K_{s}$. Define

$$
a_{i j s}=\#\left\{\left(g_{i}, g_{j}\right) \mid g_{i} \in K_{j}, g_{j} \in K_{j}, g_{i} g_{j}=g\right\}
$$

First, notice $a_{i j s}$ is an integer (it is counting something). Furthermore, it is independent of $g \in K_{s}$. Too see, first note if $g^{\prime} \in K_{s}$, then $g^{\prime}=x g x^{-1}$ for some x. Then

$$
g=g_{i} g_{j} \Leftrightarrow x g x^{-1}=x g_{i} x^{-1} \cdot x g_{j} x^{-1}
$$

(with $x g_{i} x^{-1} \in K_{i}$ and $x g_{j} x^{-1} \in K_{j}$). Since w_{t} is a class function, $w_{t}\left(K_{1}\right)=w_{t}(g)$ for any $g \in K_{i}$. So, what is $w_{t}\left(K_{i}\right) w_{t}\left(K_{j}\right)$? Well,

$$
\begin{aligned}
w_{t}\left(K_{i}\right) w_{t}\left(K_{j}\right) I & =\sum_{g_{i} \in K_{i}} \varphi_{t}\left(g_{i}\right) \cdot \sum_{g_{j} \in K_{j}} \varphi_{t}\left(g_{j}\right)=\sum_{\substack{g_{i} \in K_{i} \\
g_{j} \in K_{j}}} \varphi_{t}\left(g_{i}\right) \varphi_{t}\left(g_{j}\right)=\sum_{\substack{g_{i} \in K_{i} \\
g_{j} \in K_{j}}} \varphi_{t}\left(g_{i} g_{j}\right) \\
& =\sum_{s=1}^{r} \sum_{g \in K_{s}} \sum_{g_{i} g_{j}=g} \varphi_{t}(g)=\sum_{s=1}^{r} \sum_{g \in K_{s}} \varphi_{t}(g) \sum_{g_{i} g_{j}=g} 1-\sum_{s=1}^{r} a_{i j s} \sum_{g \in K_{s}} \varphi_{t}(g) \\
& =\sum_{s=1}^{r} a_{i j s} w_{t}\left(K_{j}\right) .
\end{aligned}
$$

Hence, the ring generated by $\mathbb{Z}\left[w_{t}\left(K_{1}\right), \ldots, w_{t}\left(K_{r}\right)\right]$ is in fact finitely generated as a \mathbb{Z} module by $\omega_{t}\left(K_{1}\right), \ldots, w_{t}\left(K_{r}\right)$. Then $w_{t}\left(K_{i}\right)$ is an algebraic integer $\forall t, i$.
Corollary. For all $i, \chi_{i}(1)$ divides $|G|$.
Proof. With $g_{j} \in K_{j}$,

$$
\begin{aligned}
& \frac{|G|}{\chi_{i}(1)}=\frac{|G|}{\chi_{i}(1)}\left(\chi_{i}, \chi_{i}\right)=\frac{|G|}{\chi_{i}(1)} \frac{1}{|G|} \sum_{g} \chi_{i}(g) \overline{\chi_{i}(g)}=\frac{1}{\chi_{i}(1)} \sum_{g} \chi_{i}(g) \overline{\chi_{i}(g)} \\
& \left.\quad=\frac{1}{\chi_{i}(1)} \sum_{j=1}^{r} \sum_{g \in K_{j}} \chi_{i}(g) \overline{\chi_{i}(g)}=\frac{1}{\chi_{i}(1)} \sum_{j=1}^{r}\left|K_{j}\right| \chi_{i}\left(g_{j}\right) \overline{\chi_{i}\left(g_{j}\right)} \text { [for some } g_{j} \in K_{j}\right]
\end{aligned}
$$

$$
=\sum_{j=1}^{r} w_{i}\left(g_{j}\right) \overline{\chi_{i}\left(g_{j}\right)} .
$$

We saw that $w_{i}\left(g_{j}\right) \in \overline{\mathbb{Z}}$ and $\overline{\chi_{i}\left(g_{j}\right)}$ so the product must be in $\overline{\mathbb{Z}}$ and the sum of algebraic integers is also in $\overline{\mathbb{Z}}$. Hence, $|G| / \chi_{i}(1) \in \overline{\mathbb{Z}} \cap \mathbb{Q}=\mathbb{Z}$.

Induced representations

If $H \leq G$ and ρ is a representation of G on a vector space V, we can restrict $\left.\rho\right|_{H}: H \rightarrow \mathrm{GL}(V)$. This gives a functor $\mathcal{R}(G) \rightarrow \mathcal{R}(H)$. If φ is a representation of H and we have W a $\mathbb{C} H$-module, $V=W \otimes_{\mathbb{C} H} \mathbb{C} G$. Given (φ, W) a representation of H, we can define $\operatorname{Ind}_{H}^{G}(\varphi)=\{f: G \rightarrow W \mid f(h g)=\varphi(h) f(g)\}$. If we pick a set of representatives for G / H, then any such f is determined on G / H. Then in fact $\operatorname{Ind}_{H}^{G}(\varphi)$ is a G-representation, and $\gamma \in G,(\gamma f)(g)=f(g \gamma)$.

Fröbenius Reciprocity

Given a character χ of H, there is a representation φ, and we consider $\operatorname{Ind}_{H}^{G} \varphi$, which gives us $\operatorname{Ind}_{H}^{G} \chi$. Fröbenius reciprocity says the two inner products

$$
(\text { restrict } \psi, \chi)_{H}=(\psi, \text { induced } \chi)_{G} .
$$

Exercise. $\operatorname{Hom}_{\mathbb{C} H}(\operatorname{res} \pi, \varphi) \cong \operatorname{Hom}_{\mathbb{C} G}(\pi$, ind $\varphi)$.

Lecture 9 (February 2, 2009) - Representation of Compact Groups

We are now following the book by Varadarajan.
Definition. A topological group G is a topological space equipped with two continuous maps, $m: G \times G \rightarrow G$, and $i: G \rightarrow G$, so that the operation $x \cdot y:=m(x, y)$ turns G into a group with $x^{-1}=i(x)$.
Example. $G=\mathbb{R}$, with $m(x, y)=x+y$ and $i(x)=-x$.
Example. $G=\mathbb{R}^{\times}$with $m(x, y)=x y, i(x)=x^{-1}$.
Example. $G=S^{1}=\left\{z \in \mathbb{C}^{\times}| | z \mid=1\right\}$ with $m(z, w)=z w$ and $i(z)=z^{-1}$.
The groups \mathbb{R} and \mathbb{R}^{\times}are not compact, and S^{1} is compact. Furthermore,

$$
S O(3)=\left\{g \in G L_{3}(\mathbb{R}) \mid g^{T} g=1\right\}
$$

is compact. (Exercise. Check this!)
However, \mathbb{R} and \mathbb{R}^{\times}are locally compact, and we can indeed define locally compact groups to be exactly as above but a locally compact space (this does not see the group structure at all).

These topological roups satisfy the second axiom of countability (i.e., every point has a countable basis of open neighborhoods).

Theorem. (Haar, Von Neumann) Given a locally compact topological group G, there is a unique (up to scalar multiplication) Borel measure $d \mu_{\ell}$ such that for all sets A open, and all $x \in G, \mu_{\ell}(x A)=\mu_{\ell}(A)$. Similarly, there is a unique measure $d \mu_{r}$ such that $\mu_{r}(A x)=\mu_{r}(A)$. (In general, $\left.\mu_{r} \neq \mu_{\ell}\right)$

Example. Over \mathbb{R}, this just means $\mu_{\text {Leb }}(x+A)=\mu_{\text {Leb }}(A)$.
Proof. (of Theorem) If C is a compact set, then given $\varepsilon>0, \exists U$ open with \bar{U} compact and $C \subseteq U$ such that $\mu(U \backslash C)<\varepsilon$. If V is open with \bar{V} compact, then $\exists K \subseteq V$ with K compact, such that $\mu(V \backslash K)<\varepsilon$.
[A reference for this is Kelley-Srinivas(an?).] Suppose you have a group G acting on a topological space X and suppose X is locally compact. Then X carries a G-invariant measure if the action satisfies a certain "topological" property.

The uniqueness statement (in the above theorem) says if μ_{1}, μ_{2} are two regular, nontrivial Borel measures such that $\mu_{i}(x A)=\mu_{i}(A)$ for $i=1,2$ then $\forall x, A$, there is a constant $c>0$ such that $\mu_{1}=c \mu_{2}$.

Now let μ_{ℓ} be a left invariant measure. Define for $x \in G, \mu_{\ell}^{x}(A)=\mu_{\ell}(A x)$. Then $\forall y \in G, \mu_{\ell}^{x}(y A)=\mu_{\ell}(y A x)=\mu_{\ell}(A x)=\mu_{\ell}(A)$. There exists a scalar $\delta(x)$ such that $\mu_{\ell}^{x}=\delta(x) \mu_{\ell}$, with $\delta(x)>0$ and $\delta(x y)=\delta(x) \delta(y)$. Since μ_{ℓ} is regular, one can show that $\delta(x)$ is continuous.

In other words, let G be compact. Then since $\delta(x)$ is continuous, $c<\delta(x)<C$. Let $x \in G$ be such that $\delta(x) \neq 1$. Then if $\delta(x)>1, \delta\left(x^{N}\right) \rightarrow+\infty$ unless for some $N>0$, $x^{N}=1$. Similarly, if $\delta(x)<1$, apply the same to $\delta\left(x^{-1}\right)>1$. If for some $x \in G$, $\delta(x)>1$, then $\delta\left(x^{N}\right) \rightarrow+\infty$, which contradicts the fact that δ is bounded, unless $x^{N}=1$ for some N (it becomes periodic), in which case $\delta(x)^{N}=1$ so that $\delta(x)=1$ which contradicts $\delta(x)>1$.

If G is compact, $\delta(x)=1, \mu_{\ell}^{x}=\delta(x) \mu_{\ell}=\mu_{\ell}, \mu_{\ell}^{x}(A)=\mu_{\ell}(A)$ implies $\mu_{\ell}(A x)=$ $\mu_{\ell}(A) . \square \quad$ Corollary. μ_{ℓ} is also right-invariant.

If G is compact, we write $\mu=\mu_{r}=\mu_{\ell}$. Since $\mu(G)<+\infty$, we noramlize our measure so that $\mu(G)=1$. We can normalize our measure

$$
\mu^{\prime}(A)=\frac{1}{\mu(G)} \mu(A)
$$

Locally compact groups with $\mu_{r}=\mu_{\ell}$ are called unimodular, e.g., all compact groups, $G L_{n}(\mathbb{R}), S L_{n}(\mathbb{R}), S O_{n}(\mathbb{R})$, etc.
Next time, we will show that $\left\{\left(\begin{array}{cc}* & * \\ 0 & *\end{array}\right)\right\} \subseteq S L_{2}(\mathbb{R})$ is not unimodular.
Remark. Let F be any non-discrete locally compact topological field. Weil used this to classify δ_{\times}multiplicatively for all such F structures.

Lecture 11 (February 6, 2009) -

Assume the vector spaces we will be working on are all \mathbb{C}-vector spaces. If G is a compact group and $\pi: G \rightarrow G L(V)$ is a finite dimensional representation of G, we set $\theta_{\pi}(g)=\operatorname{tr} \pi(g)$. Furthermore, $\theta_{\pi}: G \rightarrow \mathbb{C}$ satisfies $\pi_{\pi}\left(y x y^{-1}\right)=\theta_{\pi}(x)$ and $\theta_{\pi}(1)=$ $\operatorname{dim} V=\operatorname{id}(\pi)$ (convince yourself of this!).
Exercise. Show that $\theta_{\pi} \cong \theta_{\pi^{\prime}}$ if and only if $\pi \cong \pi^{\prime}$. In other words, θ_{π} is a function of only the equivalence class of π (denote this by ω, so we can talk about θ_{ω}).
Exercise. Show that $\theta_{\pi \oplus \pi^{\prime}}=\theta_{\pi}+\theta_{\pi^{\prime}}$.
If χ, χ^{\prime} are two functions on G, then we defined

$$
\left(\chi, \chi^{\prime}\right):=\int_{G} \chi(g) \overline{\chi^{\prime}(g)} d g
$$

to be a measure that is normalized so that $\operatorname{vol} G=1$.
If ω, ω^{\prime} are two equivalence classes of irreducible unitary representations of G, then $\left(\theta_{\omega}, \theta_{\omega^{\prime}}\right)=\delta_{\omega \omega^{\prime}}$.

Definition. We let \widehat{G} denote the collection of classes of irreducible unitary representations.

If $\omega=\bigoplus_{1 \leq i \leq r} m_{i} \omega_{i}$ with $\omega_{1}, \ldots, \omega_{r} \in \widehat{G}$ distinct, then

$$
\left(\theta_{\omega}, \theta_{\omega}\right)=\left(\theta_{\oplus m_{i} \omega_{i}}, \theta_{\oplus m_{j} \omega_{j}}\right)=\sum_{i, j} m_{i} m_{j}\left(\theta_{\omega_{i}}, \theta_{w_{j}}\right)=\sum m_{i} m_{j} \delta_{i j}=\sum m_{i}^{2}
$$

Example. If we have an $n \times n$ matrix, then this will look like $\left(a_{i j}\right)$. What will $\left(a_{i j}\right) e_{k}$ look like (where e_{k} is the column vector with 1 only in the k th spot)? Well, it will be $\left(A e_{k}, e_{l}\right)=a_{l k}$ (we call these matrix coefficients). It essentially selects the k th column.

In general, if $\pi: G \rightarrow G L(V)$ is a unitary representation, a matrix coefficient of π is a function of the form

$$
\mathbf{f}_{v v^{\prime}}: x \mapsto\left(\pi(x) v, v^{\prime}\right)
$$

This follows from the identity

$$
\int_{G}\left(\pi(x) v_{1}, v_{1}^{\prime}\right)\left(\pi^{\prime}(x) v_{2}, v_{2}^{\prime}\right) d x=d(\pi)^{-1}\left(v_{1}, v_{2}\right)\left(v_{1}^{\prime}, v_{2}^{\prime}\right) \delta_{[\pi]\left[\pi^{\prime}\right]}
$$

where $d(\pi)$ is the dimension of the representation π. This is true as follows. First, think of $\left(\pi(x) v_{1}, v_{1}\right)$ as a function from $V \times V \rightarrow \mathbb{C}$. However, first let's consider $\left(v_{1}, v_{2}\right)$. This is a function

$$
\left(v_{1}, v_{2}\right) \stackrel{F}{\mapsto} \int_{G}\left(\pi(x) v_{1}, v_{1}^{\prime}\right)\left(\pi^{\prime}(x) v_{2}, v_{2}^{\prime}\right) d x
$$

We claim $F\left(\pi(y) v_{1}, \pi^{\prime}(y) v_{2}\right)=F\left(v_{1}, v_{2}\right)$. [Holly notes that v_{1}, v_{2} are fixed.] The identity then follows because

$$
\begin{gathered}
F_{v_{1}^{\prime}, v_{2}^{\prime}}\left(\pi(y) v_{1}, \pi^{\prime}(y) v_{2}\right)=\int_{G}\left(\pi(x) \pi(y) v_{1}, v_{1}^{\prime}\right)\left(\pi^{\prime}(x) \pi^{\prime}(y) v_{2}, v_{2}^{\prime}\right) d x= \\
\int_{G}\left(\pi(x y), v_{1}, v_{1}^{\prime}\right)\left(\pi^{\prime}(x y) v_{2}, v_{2}\right) d x=\int_{G}\left(\pi(x) v_{1}, v_{1}^{\prime}\right)\left(\pi^{\prime}(x) v_{2}, v_{2}^{\prime}\right) d x=F_{v_{1}^{\prime}, v_{2}^{\prime}}\left(v_{1}, v_{2}\right),
\end{gathered}
$$

where the penultimate equality follows from the fact this is a Haar measure, so that we can collapse accordingly. In other words, we have $V \times V \rightarrow \mathbb{C}$ inducing a map $V \rightarrow V^{*}$.

For fixed $v_{1}^{\prime}, v_{2}^{\prime}$, define a map $\psi_{v_{1}^{\prime}, v_{2}^{\prime}}: V \rightarrow V^{*}$ by $\psi_{v_{1}^{\prime}, v_{2}^{\prime}}\left(v_{1}\right)\left(v_{2}\right)=F_{v_{1}^{\prime}, v_{2}^{\prime}}\left(v_{1}, v_{2}\right)$ (note: Be careful with complex conjugation!). Notice $\psi_{v_{1}^{\prime}, v_{2}^{\prime}}$ is G-equivariant with G acting by π on V and $\left(\pi^{\prime}\right)^{*}$ on V^{*}. Since representations are unitary, $V \cong V^{*}$ and $\pi^{\prime} \cong\left(\pi^{\prime}\right)^{*}$ identified by the Hermitian product. Hence,

$$
\psi_{v_{1}^{\prime}, v_{2}^{\prime}} \in \operatorname{Hom}\left(V_{\pi}, V_{\pi^{\prime}}\right)
$$

which is a scalar by Schur's Lemma (possibly zero). That is, if $[\pi] \neq\left[\pi^{\prime}\right]$, then $\psi_{v_{1}^{\prime}, v_{2}^{\prime}} \equiv 0$.
On the other hand, if you have $[\pi]=\left[\pi^{\prime}\right]$, then there is a unique Hermitian pairing on V invariant under π. This means $F_{v_{1}^{\prime}, v_{2}^{\prime}}\left(v_{1}, v_{2}\right)=C \cdot\left(v_{1}, v_{2}\right)$, where C is some constant. Now, fix v_{1}, v_{2}. We claim that $\left(v_{1}^{\prime}, v_{2}^{\prime}\right) \mapsto F_{v_{1}^{\prime}, v_{2}^{\prime}}\left(v_{1}, v_{2}\right)$ is also G-equivariant. This is because Haar measure is right invariant. Indeed,

$$
\begin{aligned}
& F_{\pi(y) v_{1}^{\prime}, \pi(y) v_{2}^{\prime}}\left(v_{1}, v_{2}\right)=\int_{G}\left(\pi(x) v_{1}, \pi(y) v_{1}^{\prime}\right) \overline{\left(\pi(x) v_{2}, \pi(y) v_{2}^{\prime}\right)} d x \\
& \quad=\int_{G}\left(\pi\left(y^{-1}\right) \pi(x) v_{1}, \pi\left(y^{-1}\right) \pi(y) v_{1}^{\prime}\right) \overline{\left(\pi\left(y^{-1}\right) \pi(x) v_{2}, \pi\left(y^{-1}\right) \pi(y) v_{2}^{\prime}\right)} d x
\end{aligned}
$$

because Haar measure is invariant. Continuing,

$$
=\int_{G}\left(\pi\left(y^{-1} x\right) v_{1}, v_{1}^{\prime}\right) \overline{\left(\pi\left(y^{-1} x\right) v_{2}^{\prime}, v_{2}^{\prime}\right)} d x
$$

Now do a left change of variables. Hence, $F_{v_{1}^{\prime}, v_{2}^{\prime}}\left(v_{1}, v_{2}\right)=C \cdot\left(v_{1}^{\prime}, v_{2}^{\prime}\right)\left(v_{1}, v_{2}\right)$. Then we can just compute the constant which is independent of $v_{1}, v_{2}, v_{1}^{\prime}, v_{2}^{\prime}$. We have

$$
\int_{G}\left(\pi(x) v_{1}, v_{2}\right) \overline{\left(\pi(x) v_{1}^{\prime}, v_{2}^{\prime}\right)} d x
$$

Aaaand....why is this constant? Ramin will figure it out by Monday!
If $\left(e_{i}\right)$ (with $1 \leq i \leq d(\pi)$) is an orthonormal basis for the space of π, then

$$
f_{i j, \omega}: x \mapsto d(w)^{1 / 2}\left(\pi(x) e_{i}, e_{j}\right)
$$

will be an orthonormal basis for the space $A(\omega):=$ linear span of all matrix coefficients of π.

$$
\begin{aligned}
& -A(\omega) \perp A\left(\omega^{\prime}\right) \\
& -\operatorname{dim} A(\omega)<\infty \\
& -A(\omega) \subseteq L^{2}(G)
\end{aligned}
$$

By the Peter-Weyl Theorem, $L^{2}(G)=\overline{\bigoplus_{w \in \widehat{G}} A(\omega)}$ (the completion).

Lecture 12 (January 9, 2009) -

Essentially, we want to show that any irreducible invariant subspace of $L^{2}(G)$ is finite dimensional, and conversely (the completeness theorem).

You have an action G on $L^{2}(G)$, written

$$
(\rho(x) f)(y)=f(y x)
$$

Suppose we have an operator $K: L^{2}(G) \rightarrow L^{2}(G)$ with an "eigenspace" V. Then there is λ such that $f \in V$ gives $K f=\lambda f$. Then we claim V is also invariant under ρ if K and ρ commute (that is, $\rho(x) \circ K=K \circ \rho(x)$). Indeed, then if $f \in V$,

$$
\rho(x)(K f)=K \circ(\rho(x) f) .
$$

Then $\rho(x)(\lambda f)=K(\rho(x) f)$ yields $\lambda(\rho(x) f)=K(\rho(x) f)$, so that $\rho(x) f \in V$.
In this way, the goal of the Peter-Weyl Theorem is to show there are many such operators.

Compact self-adjoint operators (Review of functional analysis)

This material is found in the appendix of Varadarajan's book. Let V be a Banach space. Suppose $A: D(A) \rightarrow V$ is a linear operator, with $D(A) \subseteq V$ a dense subspace. A is a closed closed operator if its graph is closed in $V \oplus V$. The resolvant set

$$
\rho(A)=\left\{\lambda \in \mathbb{C}:(\lambda I-A)^{-1} \text { exists as a bounded operator }\right\} .
$$

In other words, $\lambda I-A$ is a bijection of $D(A)$ with dense image, and $(\lambda I-A)^{-1}$ extends to a bounded operator on V. Then we call the spectrum

$$
\sigma(A)=\mathbb{C} \backslash \rho(A)
$$

This is in fact a closed set. If A is a bounded operator, it's non-empty. If $\operatorname{dim} V<\infty$, we simply get eigenvalues.

Now, let H be a Hilbert space. Then we have an inner product for which the Banach space norm is given by $\|x\|=(x, x)^{1 / 2}$. A linear operator $A: H \rightarrow H$ is self-adjoint if $(A u, v)=(u, A v)$ for all $u, v \in H$.

Spectral theory of self-adjoint operators

Let X be a space and let B be a σ-algebra of subsets of X. Define $\int_{R} \lambda P_{\lambda} d \mu(\lambda)$ such that
(a) $P(\emptyset)=\emptyset$
(b) $P(X)=1$
(c) if $E=\bigcup_{n} E_{n}$, then $P(E) v=\sum_{n} P\left(E_{n}\right) v$.

Then we have spectral integrals

$$
A(f)=\int_{X} f(x) d P(x)
$$

Now we think of the $A(f)$'s as operators on H.
If X is second countable, then there is a smallest set C s.t. $P(C)=1$.
-supp of $P=0(A)$

- $P(E)$ is a spectral projection
- Images of $P(E)$ are spectral subspaces
- $\lambda_{0} \in \mathbb{R}$ is an eigenvalue if and only if $P\left(\left\{\lambda_{0}\right\}\right) \neq 0$.

Definition. An operator A is called compact if it maps sets with bounded norm to sets with compact closure.

Notice $\mathrm{K}(x, y)=\overline{K(y, x)}$. This tells us "what kind of groups" we should be looking for.

Lecture 13 (February 11, 2009) -

Let's consider the right regular action $(\rho(x) f)(y)=f(y x)$. The idea is to look for compact self-adjoint operators that commute with $\rho(x)$ for all $x \in G$.

Eigenspaces will be finite-dimensional. Furthermore, these eigenspaces are invariant under ρ. Take a kernel function $K(x, y)$ such that (1) $K(x, y)=\overline{K(y, x)}$. Furthermore, (2) $K(x g, y g)=K(x, y)$. The operator given by $A_{K} f(x)=\int_{G} K(x, y) f(y) d \varphi(y)$. Then by (1), A_{K} is self-adjoint, and by (2), A_{K} commutes with $\rho(x)$ for all x. Since G is compact, Supp $K(x, y)$ will be compact. Thus, A_{K} is a compact operator. Now,

$$
K(x, y)=K\left(x y^{-1}, y y^{-1}\right)=K\left(x y^{-1}, 1\right)
$$

Hence, there is a function a such that $K(x, y)=a\left(x y^{-1}\right)$. In order to get $K(x, y)=$ $\overline{K(y, x)}$, we need $a\left(x y^{-1}\right)=\overline{a\left(y x^{-1}\right)}$. Then set $x y^{-1}=z$ so $y x^{-1}=z^{-1}$, and then we can just try to get $a(z)=\overline{a\left(z^{-1}\right)}$. However, for any continuous function a on G satisfying $a(x)=\overline{a\left(x^{-1}\right)}$ we have an associated integral operator

$$
A_{a} f(x)=\int_{G} a\left(x y^{-1}\right) f(y) d y
$$

that is compact, self-adjoint, and commutes with ρ. Each eigenspace is finite-dimensional, except possibly the kernel of A_{a}. Every $f \in L^{2}(G)$ belongs to a stable finite dimensional representation of G unless $f \in \operatorname{ker} A_{a} \forall a$.
Lemma. If for all a as above, $A_{a} f=0$, then $f=0$.
Proof. Notice $\int_{G} a\left(x y^{-1}\right) f(y) d \mu(y)=0$. This is the convolution $a * f(x)=0$. Now, there exists a sequence a_{n} with $n \geq 1$ of functions such that
(1) a_{n} is real, continuous, ≥ 0.
(2) $\int a_{n}=1$.
(3) $a_{n}(x)=a_{n}\left(x^{-1}\right)$.
(4) $\operatorname{supp} a_{n} \rightarrow 0$.

This is called a delta/Dirac sequence. Construct a sequence satisfying (1), (2), and (4), call it b_{n}. Let $a_{n}(x)=\frac{1}{2}\left(b_{n}(x)+b_{n}\left(x^{-1}\right)\right)$. Hence,

$$
\int_{G} a_{n}(x) d \mu(x)=\frac{1}{2} \int_{G} b_{n}(x) d \mu(x)+\frac{1}{2} \int_{G} b_{n}\left(x^{-1}\right) d \mu(x) .
$$

We claim

$$
\int_{G} f\left(x^{-1}\right) d \mu(x)=\int_{G} f(x) d \mu(x)
$$

for any integrable f. Define a measure

$$
\mu^{\prime}(A)=\mu\left(\left\{a^{-1} \mid a \in A\right\}\right)
$$

We claim μ^{\prime} is left and right invariant.

$$
\begin{gathered}
\mu^{\prime}(r A)=\mu\left(\left\{(r a)^{-1} \mid a \in A\right\}\right)=\mu\left(\left\{a^{-1} v^{-1} \mid a \in A\right\}\right)=\mu\left(\left\{a^{-1} \mid a \in A\right\} r^{-1}\right)= \\
\mu\left(\left\{a^{-1} \mid a \in A\right\}\right)=\mu^{\prime}(A)
\end{gathered}
$$

which implies $\mu^{\prime}=c \mu$ so $\mu^{\prime}(G)=c \mu(G)$ implies $c=1$ and thus $\mu^{\prime}=\mu$. Now,

$$
\int_{G} f\left(x^{-1}\right) d \mu(x)=\int_{G} f(x) d \mu\left(x^{-1}\right)=\int_{G} f(x) d \mu^{\prime}(x)=\int_{G} f(x) d \mu(x) .
$$

Hence,

$$
\int a_{n}=\frac{1}{2}\left(\int b_{n}+\int b_{n}\right)=1
$$

Notice for all n, we are assuming $0=a_{n} * f \rightarrow f$ as $n \rightarrow \infty$. Thus $f=0$ in $L^{2}(G)$.
Theorem. (Peter-Weyl) The irregular representations of G are all finitely-dimensional and they separate the points of G. The irreducible characters form a basis for $L^{2}(G)^{\text {inv }}$ and $L^{2}(G)$ is the orthogonal direct sum of matrix coefficients.

$$
\begin{gathered}
L^{2}(G)^{\mathrm{inv}}=\bigoplus_{\omega \in \widehat{G}} \mathbb{C} \theta_{\omega} \\
L^{2}(G)=\bigoplus_{\omega \in \widehat{G}} A(\omega) \text { (matrix coeffs of } \omega \text {) }
\end{gathered}
$$

For any $\pi \in \omega \in \widehat{G},\left\{e_{i}\right\}_{1 \leq i \leq d(\omega)}$ an orthonormal basis for the space of π, let

$$
v_{i j, \omega}(x)=d(\omega)^{1 / 2}\left(\pi(x) e_{j}, e_{i}\right)
$$

Then $\left(v_{i j, w}\right)_{1 \leq i, j \leq d(\omega), \omega \in \widehat{G}}$ is an orthonormal basis for $L^{2}(G)$.

Lecture 15 (February 16, 2009) -

Lemma. If $\left\{e_{i}\right\}$ is an orthonormal basis for a vector space V and $A, B: V \rightarrow V$, then

$$
\sum_{i, j}\left(A e_{i}, e_{j}\right)\left(B e_{j}, e_{i}\right)=\operatorname{tr}(A B)
$$

Proof. This is obvious. Write the matrices of $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$ in terms of the basis $\left\{e_{i}\right\}$. Then

$$
\left(A e_{i}, e_{j}\right)=a_{i j} \text { and }\left(B e_{j}, e_{i}\right)=b_{j i}
$$

so that

$$
\sum_{i, j}\left(A e_{i}, e_{j}\right)\left(B e_{j}, e_{i}\right)=\sum_{i, j} a_{i j} b_{j i}=\sum_{i}\left(\sum_{j} a_{i j} b_{j i}\right)=\sum_{i}(A B)_{i i}=\operatorname{tr}(A B)
$$

Last time, we got the identity

$$
\sum_{\omega} \sum_{i, j}\left|\left(f, v_{i, j, \omega}\right)\right|^{2}=d(\omega) \operatorname{tr}\left(\pi\left(\bar{f}^{T}\right) \pi(\bar{f})\right)
$$

We claim $\operatorname{tr}\left(\pi\left(\bar{f}^{T}\right) \pi(\bar{f})\right)$ is equal to $\operatorname{tr}\left(\pi\left(f^{T} * f\right)\right)$, where $f(x)^{T}=\overline{f\left(x^{-1}\right)}$. Let f and g be two functions. Then let's see what $\pi(f) \pi((g) v)$ is. Recall

$$
\pi(g) v=\int_{G} g(x) \pi(x) v d x
$$

Then

$$
\begin{gathered}
\pi(f) \pi(g) v=\int_{G} f(y) \pi(y)\left(\int_{G} g(x) \pi(x) v d x\right) d y=\int_{G} \int_{G} f(y) g(x) \pi(y) \pi(x) v d x d y= \\
\int_{G} \int_{G} f(y) g(x) \pi(y x) v d x d y=\left[\text { send } y \text { to } y x^{-1}\right] \int_{G} \int_{G} f\left(y x^{-1}\right) g(x) \pi(y) v d x d y= \\
\int_{G}\left(\int_{G} f\left(y^{-1} x\right) g(x) d x\right) \pi(y) v d y=\int_{G}(f * g)(y) \pi(y) v d y
\end{gathered}
$$

with

$$
(f * g)(y)=\int_{G} f\left(y x^{-1}\right) g(x) d x
$$

Thus,

$$
\pi(f) \pi(g)=\pi(f * g)
$$

which implies

$$
\operatorname{tr}(\pi(f) \pi(g))=\operatorname{tr}(\pi(f * g))=\theta_{w}(f * g)
$$

Then we get

$$
\operatorname{tr}\left(\pi\left(\bar{f}^{T}\right) \pi(\bar{f})\right)=\operatorname{tr}\left(\pi\left(\bar{f}^{T} * \bar{f}\right)\right)
$$

We claim this equals $\operatorname{tr} \pi\left(f^{T} * f\right)$. Well, $\bar{f}^{T}(x)=\overline{\bar{f}\left(x^{-1}\right)}=f\left(x^{-1}\right)$. We verified last time that

$$
\pi\left(f^{T}\right)=\pi(f)^{\mathrm{adj}}
$$

We need to show the trace is a real number, since $\operatorname{tr}\left(A A^{\text {adj }}\right) \in \mathbb{R}$. Hence, it easily follows

$$
\|f\|^{2}=\sum_{\omega} \sum_{i, j}\left|\left(f, v_{i, j, \omega}\right)\right|=\sum_{\omega \in \widehat{G}} d(\omega) \theta_{\omega}\left(f^{T} * f\right)
$$

Lemma. $\|f\|^{2}=f^{T} * f(1)$.
Proof. Well,

$$
\left(f^{T} * f\right)(1)=\int_{G} f^{T}\left(1 \cdot x^{-1}\right) f(x) d x=\int_{G} \bar{f}(x) f(x) d x=\|f\|^{2}
$$

Hence,

$$
\left(f^{T} * f\right)(1)=\sum_{w \in \widehat{G}} d(\omega) \theta_{\omega}\left(f^{T} * f\right)
$$

So if we let $h=f^{T} * f$ we get the so-called positive functions. In other words, a positive function satisfies

$$
h(1)=\sum_{\omega \in \widehat{G}} d(\omega) \theta_{\omega}(h),
$$

and in fact $\theta_{\omega}(h)$ will be $c_{n} e^{i n \theta}$ for a constant c_{n}, reminding us of Fourier expansion (and this is where this originates from).

Lecture 17 (February 23, 2009) -

Last time we talked about tangent spaces. Given a differentiable manifold M and a point $x \in M$, we defined the tangent space $T_{x} M$ to be the collection of maps

$$
X: C^{\infty}(M) \rightarrow \mathbb{R}
$$

the behave like derivative, i.e., $X(f g)=f(x) X(g)+g(x) X(f)$, and they are also local at x in the sense that if $f=g$ in a neighborhood of x, then $X(f)=X(g)$.

If x_{1}, \ldots, x_{n} is a local coordinate system at x with a distinguished set of tangent vectors X_{1}, \ldots, X_{n}, then we can always write the derivative

$$
X(f)=\sum_{k=1}^{n} a_{k} X_{k}(f)
$$

with $X_{k}=\frac{\partial}{\partial x_{k}}$ in the Euclidean setting. We can then say $\operatorname{dim} T_{x} M=n$.

Differentials of smooth maps between manifolds

If M, N are manifolds, a function $\phi: M \rightarrow N$ is smooth if for all $x \in M$, there is a neighborhood

such that

$$
\psi_{V} \circ \phi \circ \phi_{U_{n}}^{-1}: \phi_{U}(U) \rightarrow \phi_{V}(V)
$$

with $\phi_{U}(U) \subseteq \mathbb{R}^{n}$ and $\phi_{V}(V) \subseteq \mathbb{R}^{m}$.
We can now define a differential of a smooth map. Given a ϕ smooth as above, we can define

$$
d_{x} \phi: T_{x} M \rightarrow T_{\phi(x)} N
$$

to be the function $d_{x} \phi(X)(g)=X(g \circ \phi)$ for $g \in C^{\infty}(N)$. This is clearly linear.
Example. Let $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a collection of functions $\left(\phi_{1}, \ldots, \phi_{m}\right)$. Then

$$
d_{x} \phi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}
$$

so this is simply a generalization of a Jacobian.

Chain rule

Consider $M \xrightarrow{\Phi} N \xrightarrow{\Psi} P$ with $x \in M$. Then $\Psi \circ \Phi: M \rightarrow P$ and

$$
d_{x}(\Psi \circ \Phi)=d_{\Phi(x)} \psi \circ d_{x} \Phi .
$$

Then

$$
T_{x} M \xrightarrow{d_{x} \Phi} T_{\Phi(x)} N \xrightarrow{d_{\Phi(x)} \psi} T_{\psi(\Phi(x))} P
$$

with $d_{x}(\Psi \circ \Phi): T_{x} M \rightarrow T_{\psi(\Phi(x))} P$.

Vector fields

A vector field is a map X that takes to each point $x \in M$ a tangent vector $X \in T M$ "in a smooth fashion." For each $x \in M, \quad X_{x} \in T_{x} M$ and as such, a map $C^{\infty}(M) \rightarrow \mathbb{R}$. So, do the following. Fix an $f \in C^{\infty}(M)$. Then we get a function $M \rightarrow \mathbb{R}$ given by $x \mapsto X_{x}(f)$. A vector field X is smooth if for all $f \in C^{\infty}(M), x \mapsto X_{n}(f)(M \rightarrow \mathbb{R})$ is smooth.

Given any coordinate chart U, x_{1}, \ldots, x_{n}, then a vector field can be described as

$$
X_{x}(f)=\sum a_{k} \frac{\partial f}{\partial x_{k}}
$$

as before (see blue above). We require $a_{k}(x)$ to be a smooth function.
For any $f \in C^{\infty}(M)$, we associate with it another function

$$
X(f) \in C^{\infty}(M) \text { given by } x \mapsto X_{f}(f)
$$

So we can think of a vector field as an R-linear map $X: C^{\infty}(M) \rightarrow C^{\infty}(N)$ that satisfies

$$
X(f g)=f X(g)+g X(f)
$$

That is, a vector field is a differential operator on $C^{\infty}(M)$.
The tangent bundle $T M$ of M is the union $\bigcup_{x \in M} T_{x} M$ topologized in such a way that for all smooth vector fields X, the map $x \mapsto X_{x}$ is continuous (and indeed smooth). In other words, we take the "simplest" / "nicest" topology. We want open sets to be all subsets such that if we have any of these maps $x \mapsto X_{x}$ and if we pull them back onto the manifold, we want those to be open.

If X, Y are vector fields and $X Y$ is not one, then

$$
\begin{gathered}
X Y(f g)=X(Y(f g))=X(f Y(g)+g Y(f))= \\
X(f) Y(g)+f X(Y(g))+X(g) Y(f)+g X(Y(f))= \\
f X Y(g)+g X Y(f)+X(f) Y(g)+X(g) Y(f)
\end{gathered}
$$

so if we consider

$$
\begin{gathered}
(X Y-Y X)(f g)=f X Y(g)+g X Y(f)+X(f) Y(g)+X(g) Y(f)- \\
f Y X(g)-g Y X(f)-X(f) Y(g)-X(g) Y(f)= \\
f(X Y-Y X)(g)+g(X Y-Y X)(f) .
\end{gathered}
$$

So if we define

$$
[X, Y]:=X Y-Y X
$$

then $[X, Y]$ is a vector field. This vector field satisfies the condition

$$
[X,[Y, Z]]+[Z,[X, Y]]+[Y,[Z, X]]=0
$$

the Jacobi identity. Furthermore, $[X, Y]=-[Y, X]$.
Definition. Let L be a real vector space. If L is equipped with a bilinear map

$$
[\cdot, \cdot]: L \times L \rightarrow L
$$

satisfying the Jacobi identity and is anti-symmetric, then it is called a Lie algebra.

Lecture 18 (February 25, 2009) -

Lie groups

A Lie group is a smooth manifold that's also a group. That is, we have \mathcal{M} with maps *: $\mathcal{M} \times \mathcal{M} \rightarrow \mathcal{M}$ with $i: \mathcal{M} \rightarrow \mathcal{M}$ such that both are smooth, and then $(\mathcal{M}, *, i)$.

Examples

$-\mathbb{R},+,-$

- $\mathbb{R}^{\times}, \times, x \mapsto \frac{1}{x}$
- $G L_{2}(\mathbb{R}) \subseteq \mathbb{R}^{4}$ (a (Zariski) open set in \mathbb{R}^{4}) so $G L_{2}(\mathbb{R})$ will be a manifold

Let's look at the last one in detail. What is matrix multiplication?

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right)=\left(\begin{array}{ll}
a e+b g & a f+b h \\
c e+d g & c f+d h
\end{array}\right)
$$

Inversion is

$$
\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right) \mapsto \frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right) \text { smooth. }
$$

Furthermore, $S L_{2}(\mathbb{R})$ is also a Lie group.

Lie algebra

From here on, we will let G mean a Lie group. If G is a Lie group, fix $g \in G$. Then there exists a map

$$
L_{g}: G \rightarrow G
$$

given by $h \mapsto g h$. This will be smooth. As such, it makes sense to talk about the derivative of this function. Thus, we have a map $d_{h} L_{g}: T_{h} G \rightarrow T_{g h} G$.

We say a vector field X on G is called invariant if $d_{h} L_{g}\left(X_{h}\right)=X_{g h}$ for all $g, h \in G$. On \mathbb{R}^{2}, for example, we can look at the constant vector field.

In general, if $u \in T_{e} G$, we define a vector field X^{u} on G by

$$
X_{g}^{u}:=d_{e} L_{g}(u)
$$

where e is the identity. We claim X^{u} is invariant. Hence, we need to check that

$$
d_{h} L_{g h h^{-1}}\left(X_{h}^{u}\right)=X_{g}^{u} .
$$

Now, we need to check

$$
\begin{gathered}
d_{h} L_{g h^{-1}} d_{e} L_{h}(u)=d_{e} L_{g}(u), \text { that is, } \\
G \xrightarrow{L_{h}} G \xrightarrow{L_{g h^{-1}}} G
\end{gathered}
$$

with the first G mapping to the last G by L_{g} (so $e \mapsto h \mapsto g$). But, checking that this is true is simply the chain rule.

Hence, there is a one-to-one correspondence betweeen invariant vector fields and $T_{e} G$.

Next, if X and Y are invariant vector fields, then so is $[X, Y]$. (check this explicitly just for "fun" :)) Let ψ be the map from $T_{e} G$ to invariant vector fields.

Definition. The Lie algebra of a Lie group G is $\mathfrak{g}=T_{e} G$ with Lie bracket

$$
[u, v]=\psi^{-1}\left(\left[X^{u}, X^{v}\right]\right)
$$

or what is the same, $\left[X^{u}, X^{v}\right]_{e}$.
Example. Let $G=(\mathbb{R},+)$. Then $L_{g}: x \mapsto x+g$. The derivative $d_{e} L_{g}$: identity. What is an invariant vector field? The tangent space on 0 is \mathbb{R}. So, it will be

$$
X_{h}^{u}=u
$$

with $u, h \in \mathbb{R}$. Now, let's look at what brackets are. If X and Y are two vector fields, and $f: \mathbb{R} \rightarrow \mathbb{R}$ is a smooth function, then

$$
X_{h} f=f^{\prime}(h) X_{h}
$$

"the value of X on f at the point h will be the derivative of f at h times X at h " (notice $X_{h} \in \mathbb{R}$). So, now,

$$
\begin{gathered}
(X Y-Y X) f=X Y f-Y X f=X(Y f)-Y(X f)= \\
X\left(Y \cdot f^{\prime}\right)-Y\left(X \cdot f^{\prime}\right)=X(Y) f^{\prime}+Y \cdot X\left(f^{\prime}\right)-Y(X) f^{\prime}-X \cdot Y\left(f^{\prime}\right)= \\
X(Y) f^{\prime}+Y \cdot X \cdot f^{\prime \prime}-Y(X) f^{\prime}-X \cdot Y \cdot f^{\prime \prime}=X(Y) f^{\prime}-Y(X) f^{\prime}= \\
(X(Y)-Y(X)) f^{\prime}=\left(X \cdot Y^{\prime}-Y \cdot X^{\prime}\right) f^{\prime} .
\end{gathered}
$$

For invariant ("constant") vector fields, their derivatives are going to be zero. Hence,

$$
[X, Y]=0
$$

for invariant vector fields. Hence, $\mathfrak{g}_{\mathbb{R}}=\{\mathbb{R},[X, Y]=0\}$.

Lecture 19 (February 27, 2009) -

Exponential map

If X is a vector field on any manifold and $\gamma:(a, b) \rightarrow \mathcal{M}$ is a smooth curve, then γ is called an integral curve for X if $\forall t \in(a, b), \frac{d \gamma}{d t}=X_{\gamma(t)}$.

Now, we can think of (a, b) as a 1 -dimensional manifold. Hence, for any $t \in(a, b)$, it makes sense to talk about

$$
d_{t} \gamma: d_{t}(a, b) \rightarrow T_{\gamma(t)} \mathcal{M}
$$

This is naturally a linear map. What is a linear map from $R \rightarrow V$ where V is a vector space? This is a choice of a vector $v \in V$. Then, $d_{t} \gamma$ gives you a vector, usually denoted by $d \gamma / d t$. Then

$$
\frac{d \gamma}{d t}(f)=\left.\frac{d f(\gamma(t))}{d t}\right|_{t_{0}} .
$$

Theorem 1. Given a vector field X and an $m \in \mathcal{M}$, there exists an $\varepsilon>0$ and a smooth curve $\gamma:(-\varepsilon, \varepsilon) \rightarrow M$ such that $\gamma(0)=m$ and γ is an integral curve for X.

Theorem 2. Given a vector field X and an $m \in \mathcal{M}$, if $\gamma_{1}: I_{1} \rightarrow \mathcal{M}$ and $\gamma_{2}: I_{2} \rightarrow \mathcal{M}$ are two solutions to the above differential equation (are integrals curves), then

$$
\gamma_{1}(0)=\gamma_{2}(0)=m
$$

implies $\gamma_{1}=\gamma_{2}$ on $I_{1} \cap I_{2}$.
If for all $m \in \mathcal{M}$, any integral curve as above for X can be extended to \mathbb{R}, then X is called complete. Fact. Any vector field on a compact manifold is complete.
Example. Take the upper half-plane on \mathbb{R}^{2} not including $y=0$. Let X be the constant vector fields with unit vectors pointing south. Then integral curves will be ones pointing straight down. However, this won't work, because we "run into a wall".

We define flow as follows. When we have a complete vector field X on \mathcal{M}, we have a notion of flow on \mathcal{M} : A family of maps $\Phi_{t}: \mathcal{M} \rightarrow \mathcal{M}$ for each real $t \in \mathbb{R}$ can then be given as $\Phi_{t}(m)=\gamma(t)$ where γ is the integral curve for X that satisfies $\gamma(0)=m$.
Fact. If G is a Lie group, then every left-invariant vector field is complete.
Definition. (exponential) Let G be a Lie group, and let $\mathfrak{g}=T_{e} G$. For each $v \in \mathfrak{g}$, let X^{v} be the associated invariant algebra and Φ_{t}^{v} the flow. Then let

$$
\exp : \mathfrak{g} \rightarrow G \text { with } \exp (v):=\Phi_{1}(e)
$$

Properties. (1) $\exp : \mathfrak{g} \rightarrow G$ is smooth.
(2) $d \exp _{0}: \mathfrak{g} \rightarrow \mathfrak{g}$ will be the identity.
(3) By the Implicit Function Theorem, exp is a local diffeomorphism.

Lemma. If $\Phi: G \rightarrow H$ is a Lie group homomorphism, then

$$
d \Phi_{e}: \mathfrak{g} \rightarrow \mathfrak{h}
$$

is a Lie algebra homomorphism, and the following diagram commutes:

Example. Let $G=G L_{n}(\mathbb{R})$. Then $\mathfrak{g}=M_{n \times n}(\mathbb{R})$ (n by n matrices). Then the map $\exp : \mathfrak{g} \rightarrow G$ is the classical exponential,

$$
\exp X=\sum_{n=0}^{\infty} \frac{\mathrm{X}^{n}}{n!}
$$

In particular, let H be a Lie subgroup of $G L_{n}(\mathbb{R})\left(\right.$ e.g. $S L_{n}(\mathbb{R})$). Let $\Phi: H \hookrightarrow G L_{n}(\mathbb{R})$ be the embedding. Then $d \Phi_{e}: \mathfrak{h} \hookrightarrow \mathfrak{g}$ will be an embedding. If $X \in \mathfrak{h}$, we want to know what $\exp X$ is. Well,

$$
\Phi_{e}\left(\exp _{H} X\right)=\exp _{G} X=\sum_{n=0}^{\infty} \frac{X^{n}}{n!} .
$$

Adjoint group

Given $g \in G$, we have a map (conjugation)

$$
\operatorname{ad}_{g}: G \rightarrow G \text { with } x \mapsto g x g^{-1} \text { and } e \mapsto e .
$$

Then $\operatorname{Ad}_{g}:=d_{e} \operatorname{ad}_{g}: T_{e} G \rightarrow T_{e} G$. Hence, $\operatorname{Ad}_{g}: \mathfrak{g} \rightarrow \mathfrak{g}$. Hence,

$$
g \in G \text { means } \operatorname{Ad}_{g} \in \text { End } \mathfrak{g},
$$

and in fact $\operatorname{Ad}_{g^{-1}}=\left(\operatorname{Ad}_{g}\right)^{-1}$, with $\operatorname{Ad}_{g} \in G L(\mathfrak{g})$. Then

$$
\text { Ad }: G \rightarrow G L(\mathfrak{g})
$$

so Ad is a representation of G onto its Lie algebra! This is called the adjoint representation. A group G is called of adjoint type if Ad is faithful.
Fact. Commutative groups are not adjoint.

Lecture 20 (March 2, 2009) -

Tensor algebra (tensor products and exterior products)

Let V and W be two real vector spaces. Let $F(V, W)$ be the free vector space generated by elements of the form $v \times w$, for $v \in V, w \in W$. Let $I(V, W)$ be the subvector space generated by elements of the form

$$
\begin{gathered}
\left(v_{1}+v_{2}, w\right)-\left(v_{1}, w\right)-\left(v_{2}, w\right) \\
\left(v, w_{1}+w_{2}\right)-\left(v, w_{1}\right)-\left(v, w_{2}\right), \\
(a v, w)-a(v, w) \\
(v, a w)-a(v, w)
\end{gathered}
$$

We let $V \otimes W=F(V, W) / I(V, W)$. Then we have maps

$$
V \times W \rightarrow F(V, W) \rightarrow V \otimes W \quad(\text { that is, }(u, v) \mapsto u \otimes v))
$$

with $\psi: V \times W \rightarrow V \otimes W$ the natural bilinear embedding. We can characterize tensor products by a universal property. If U is a vector space and φ is a bilinear mapping $\varphi: V \times W \rightarrow U$, then there is a unique linear map $\phi: V \otimes W \rightarrow U$ with $\varphi=\phi \circ \psi$.
Properties. (a) $V \otimes W \cong W \otimes V$.
(b) $V \otimes(W \otimes U) \cong(V \otimes W) \otimes U$.
(c) $V^{*} \otimes W \cong \operatorname{Hom}(V, W)$.

Exercise. Prove these. (Later edit by Robert: Well, I guess there is nothing to prove except part (c))

Let $\varphi \in V^{*} \otimes W$. How would we associate a $\tilde{\varphi} \in \operatorname{Hom}(V, W)$? Well, we don't. We define a map

$$
V^{*} \times W \rightarrow \operatorname{Hom}(V, W) \quad\left(v^{*}, w\right)(v) \mapsto v^{*}(v) w
$$

Then using the above property of tensor products, we get $V^{*} \times W \rightarrow V^{*} \otimes W$ so get can take $V^{*} \otimes W \rightarrow \operatorname{Hom}(V, W)$.

Exercise. Do the above computations and show the map is invertible.
In particular, $\operatorname{dim} V \otimes W=\operatorname{dim} \operatorname{Hom}\left(V^{*}, W\right)=\operatorname{dim} V^{*} \cdot \operatorname{dim} W=\operatorname{dim} V \cdot \operatorname{dim} W$.
Notation. We will call

$$
\underbrace{V \otimes \ldots \otimes V}_{r} \otimes \underbrace{V^{*} \otimes \ldots \otimes V^{*}}_{s}
$$

(r, s)-tensors.
Definition. The wedge product

$$
\Lambda^{k} V=\overbrace{V \otimes \ldots \otimes V}^{k \text {-times }} / I_{k}(V) .
$$

where

$$
I_{k}(V)=\left\{\text { sub-vector spaces generated by symbols } v_{1} \otimes \ldots \otimes v_{k} \text { s.t. for some } i \neq j, v_{i}=v_{j}\right\}
$$

So in $\bigwedge^{2} V, v \otimes v=0$. For example, in $\bigwedge^{2} V,(v+w) \otimes(v+w)=0$, but we can multiply, so

$$
v \otimes v+v \otimes w+w \otimes v+w \otimes w=v \otimes w+w \otimes v=0
$$

Hence, $v \otimes w=-w \otimes v$. In order to avoid confusion, in $\bigwedge^{k} V$, we will denote the image of $v_{1} \otimes \ldots \otimes v_{k}$ by $v_{1} \wedge \ldots \wedge v_{k}$. This, in particular, implies that

$$
v_{1} \wedge \ldots \wedge v_{k}=-v_{2} \wedge v_{1} \wedge v_{3} \wedge \ldots \wedge v_{k} .
$$

If $\sigma \in S_{k}$, then $v_{\sigma(1)} \wedge \ldots \wedge v_{\sigma(n)}=\operatorname{sgn} \sigma\left(v_{1} \wedge \ldots \wedge v_{k}\right)$. Because of this, there is a welldefined isomorphism $\left(\bigwedge^{k} V\right)^{*} \cong \bigwedge^{k} V^{*}$. The pairing is defined as follows:

If $\xi_{1}, \ldots, \xi_{k} \in V^{*}$ and $v_{1}, \ldots, v_{k} \in V$, we define

$$
\left(\xi_{1} \wedge \ldots \wedge \xi_{k}\right)\left(v_{1} \wedge \ldots \wedge v_{k}\right)=\operatorname{det}\left(\xi_{i}\left(v_{j}\right)\right)
$$

and note this is well-defined. Note that this is good, because elements of the form $v_{1} \wedge \ldots \wedge v_{k}$ form a set of generators for $\wedge^{k} V$.
Remark. If $\left\{e_{1}, \ldots, e_{n}\right\}$ is a basis for V, then the collection $e_{i_{1}} \wedge \ldots \wedge e_{i_{k}}$, with $i_{1}<\ldots<$ i_{k} forms a basis for $\bigwedge^{k} V$.

If $u \in \Lambda^{k} V$, and $v \in \bigwedge^{\ell} V$, then $u \wedge v=(-1)^{k \ell} v \wedge u$. Exercise. Prove by induction.
N.B. If $k>n$, then $\bigwedge^{k} V=0$. If $k=n$, then $\bigwedge^{n} V=1$.

Let \mathcal{M} be an n-dimensional manifold. Let

$$
\bigwedge^{k} T^{*} M=\bigcup_{x \in \mathcal{M}} \bigwedge^{k}\left(T_{x} \mathcal{M}\right)^{*}
$$

We'll call a map

$$
\omega: \mathcal{M} \rightarrow \bigwedge^{k} T^{*} \mathcal{M}
$$

a differential form of degree k if $\forall x \in \mathcal{M}, \omega(x) \in \bigwedge^{k}\left(T_{x} \mathcal{M}\right)^{*}$ ("stands above x "). Second, for all vector fields X_{1}, \ldots, X_{k}, we want the function $\mathcal{M} \rightarrow \mathbb{R}$ given by

$$
x \mapsto \omega(x)\left(X_{1}(x) \wedge \ldots \wedge X_{k}(x)\right)
$$

to be smooth. And, as usual, you give $\bigwedge^{k} T^{*} M$ the structures that make all differentiable forms smooth.

If (U, φ) is a coordinate chart on \mathcal{M}, and y_{1}, \ldots, y_{m} a coordinate system, then take $\left\{\partial / \partial y_{i}\right\}$ as a basis for $T_{x} \mathcal{M}$. The dual basis will be denoted by $\left\{d y_{i}\right\}$. So a differential form locally looks like:

$$
\omega=\sum_{i_{1}<\ldots<i_{k}} f_{i_{1}, \ldots, i_{k}} d y_{i_{1}} \wedge \ldots \wedge d y_{i_{k}} .
$$

The above smoothness requirements then becomes the requirements that the real-valued functions $f_{i_{1}, \ldots, i_{k}}$ are smooth. Then

$$
\left(d y_{i_{1}} \wedge \ldots \wedge d_{y_{k}}\right)\left(\frac{\partial}{\partial y_{j_{1}}} \wedge \ldots \wedge \frac{\partial}{\partial y_{j_{k}}}\right)=\operatorname{det}, \quad\left(\delta_{1} \leq p, q \leq k \text { (} i_{p} j_{q}\right)= \begin{cases}1 & \text { if } i_{p}=j_{p} \\ 0 & \text { otherwise } .\end{cases}
$$

So, we can "pick out" functions one at a time using this superization of the Kronecker delta.

Lecture 21 (March 4, 2009) -

Let $\omega \in A^{k}(\mathcal{M})$ with ω a k-alternating multilinear form on the space of vector fields. Then we can evaluate

$$
\omega\left(X_{1}, \ldots, X_{k}\right)(m):=\omega(m)\left(X_{1}(m), \ldots, X_{k}(m)\right) \quad(\mathcal{M} \rightarrow \mathbb{R})
$$

Exterior derivatives

If $f \in C^{\infty}(\mathcal{M}), f: \mathcal{M} \rightarrow \mathbb{R}$, we have an associated $d_{x} f: T_{x} \mathcal{M} \rightarrow \mathbb{R}$. Effectively, we can think of $d f: T M \rightarrow \mathbb{R}$. If X is any vector field, we can define the value

$$
d f(X)(x)=d_{x} f\left(X_{x}\right) \in \mathbb{R}
$$

for any $x \in \mathcal{M}$. Hence, we can think of $d f$ as a one-form on \mathcal{M}, that is, $d f \in A^{1}(\mathcal{M})$. It is then standard to think of $C^{\infty}(\mathcal{M})=A^{0}(\mathcal{M})$ (the zero-forms). Then

$$
d: A^{0}(\mathcal{M}) \rightarrow A^{1}(\mathcal{M})
$$

For each k, there is a unique map $d: A^{k}(\mathcal{M}) \rightarrow \mathrm{A}^{k+1}(\mathcal{M})$ such that $d^{2}=0$, that is,

$$
A^{k}(\mathcal{M}) \xrightarrow{d} A^{k+1}(\mathcal{M}) \xrightarrow{d} A^{k+2}(\mathcal{M})
$$

with $d(f)=d f$. In local coordinates, this is given by the following:

$$
d\left(f d x_{i_{1}} \wedge d x_{i_{2}} \wedge \ldots \wedge d x_{i_{k}} .\right)=\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}} d x_{i} \wedge d x_{i_{1}} \wedge \ldots \wedge d x_{i_{k}} .
$$

Properties. (a) If $\omega=\eta$ in a neighborhood of a point p, then $d \omega=d \eta$ in a neighborhood of p (so it's local).
(b) If $\omega_{1} \in A^{r}(\mathcal{M})$ and ω_{2} is any form, then $d\left(\omega_{1} \wedge \omega_{2}\right)=d \omega_{1} \wedge d \omega_{2}+(-1)^{r} \omega_{1} \wedge d \omega_{2}$.

Pullbacks

If v and w are two vector spaces over \mathbb{R}, then a map $f: V \rightarrow W$ induces a map $f^{*}: W^{*} \rightarrow V^{*}$. What does $f^{*}\left(W^{*}\right)$ do? It's supposed to be in V^{*}. So, you should be able to take $f^{*}\left(w^{*}\right)(v)$ for all $v \in V$. Well, we can just define

$$
f^{*}\left(w^{*}\right)(v)=w^{*}(f(v)) .
$$

If $\varphi: \mathcal{M} \rightarrow \mathcal{N}$ is a map of differentiable manifolds, for any k we'll define a map $\delta \varphi: A^{k}(\mathcal{N}) \rightarrow A^{k}(\mathcal{M})$. For any x, there is a map

$$
d_{x} \varphi: T_{x} \mathcal{M} \rightarrow T_{\varphi(x)} \mathcal{N} \quad\left(d_{x} \varphi\right)^{*}:\left(T_{\varphi(x)} \mathcal{N}\right)^{*} \rightarrow\left(T_{x} \mathcal{M}\right)^{*}
$$

This introduces a map

$$
\bigwedge^{k}\left(d_{x} \varphi\right)^{*}: \bigwedge^{k}\left(T_{\varphi(x)} \mathcal{N}\right)^{*} \rightarrow \bigwedge^{k}\left(T_{x} \mathcal{M}\right)^{*}
$$

Classically, we would do this as follows.

We have $\psi_{V} \circ \varphi \circ \psi_{U}^{-1}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ given by $\left(x_{1}, \ldots, x_{m}\right) \mapsto\left(h_{1}(x), \ldots, h_{n}(x)\right)$ and a differential form

$$
\begin{gathered}
\omega=\sum_{i_{1}, \ldots, i_{k}} f_{i_{1} \ldots i_{k}} d y_{i_{1}} \wedge \ldots \wedge d y_{i_{k}} \\
\omega \mapsto \sum_{i_{1}, \ldots, i_{k}} f_{i_{1} \ldots i_{k}}\left(h_{1}(x), \ldots, h_{n}(x)\right) d\left(h_{i_{1}}(x)\right) \wedge \ldots \wedge d\left(h_{i_{k}}(x)\right)
\end{gathered}
$$

where $d\left(h_{i_{r}}\right)=\sum_{j=1}^{m} \frac{\partial h_{i_{r}}}{\partial x_{j}} d x_{j}$.
Example. Consider the map $\mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ given by $(x, y) \mapsto\left(x y^{2}, x^{3}, y^{2}\right)$. Call these $\left(x_{1}, y_{1}, z_{1}\right)$ and consider the two-form

$$
x_{1} d x_{1} \wedge d y_{1}+y_{1} z_{1} d x_{1} \wedge d z_{1}+z_{1}^{3} d y_{1} \wedge d z_{1}
$$

Now we want to pullback

$$
\begin{equation*}
\left(x y^{2}\right) d\left(x y^{2}\right) \wedge d\left(x^{3}\right)+x^{3} y^{2} d\left(x y^{2}\right) \wedge d\left(y^{2}\right)+y^{6} d\left(x^{3}\right) \wedge d\left(y^{2}\right) \tag{*}
\end{equation*}
$$

Now,

$$
d\left(x y^{2}\right)=y^{2} d x+2 x y d y, d\left(y^{2}\right)=2 y d y, \text { and } d\left(x^{3}\right)=3 x^{2} d x
$$

So,

$$
\begin{gathered}
d\left(x y^{2}\right) \wedge d\left(x^{3}\right)=\left(y^{2} d x \wedge 3 x^{2} d x\right)+\left(2 x y d y \wedge 3 x^{2} d x\right)=-6 x^{3} y d x \wedge d y \\
d\left(x y^{2}\right) \wedge d\left(y^{2}\right)=2 y^{3} d x \wedge d y, \text { and } \\
d\left(x^{3}\right) \wedge d\left(y^{2}\right)=6 x^{2} y d x \wedge d y
\end{gathered}
$$

Hence, (*) becomes

$$
\begin{gathered}
\left(x y^{2}\right)\left(-6 x^{3} y\right) d x \wedge d y+\left(x^{3} y^{2}\right)\left(2 y^{3}\right) d x \wedge d y+\left(y^{6}\right)\left(6 x^{2} y\right) d x \wedge d y= \\
\left(-6 x^{4} y^{3}+2 x^{3} y^{5}+6 x^{2} y^{7}\right) d x \wedge d y
\end{gathered}
$$

Thus, that is the pullback of the above differential form.
Properties. (a) δ and d commute. That is, $\delta(d \psi(\omega))=\delta \psi(d \omega)$.
(b) $\delta \psi(\omega)\left(X_{1}, \ldots, X_{k}\right)(m)=\omega_{\psi(m)}\left(d_{m} \psi\left(X_{1, m}\right), \ldots, d_{m} \psi\left(X_{k, m}\right)\right)$ with $m \in \mathcal{M}$, where the $X_{i, m}$ notation means to evaluate X_{1} at m.

Lie groups

We call a form ω on G left-invariant if

$$
\delta \mathbf{L}_{g} \omega=\omega
$$

[the pullback of the left invariant] for all $g \in G$.
Fact 1. If ω is a left-invariant k-form in G and X_{1}, \ldots, X_{k} are left-invariant vector fields on G then $\omega\left(X_{1}, \ldots, X_{k}\right)$ is constant.

Fact 2. If a 1-form ω, and two vector fields X, Y are left invariant, then

$$
d \omega(X, Y)=-\omega([X, Y])
$$

Proof. Exercise. Hint: Prove that if ω is a p-form on a manifold \mathcal{M}, and Y_{0}, \ldots, Y_{p} are vector fields, then

$$
\begin{gathered}
d \omega\left(Y_{0}, \ldots, Y_{p}\right)=\sum_{i=0}^{p}(-1)^{i} Y_{i} \omega\left(Y_{0}, \ldots, \widehat{Y}_{i}, \ldots, Y_{p}\right)+ \\
\sum_{i<j}(-1)^{i+j} \omega\left(\left[Y_{i}, Y_{j}\right], Y_{0}, \ldots,, \widehat{Y}_{i}, \ldots, \widehat{Y}_{j}, \ldots, Y_{p}\right)
\end{gathered}
$$

Then use Fact 1.
One other fact. If $\varphi: G \rightarrow H$ is a Lie group homomorphism, then $\delta \varphi$ sends invariant forms to invariant forms. Simple:

$$
\delta L_{g} \delta \varphi(\omega)=\delta\left(\varphi \circ L_{g}\right) \stackrel{w h y ?}{=} \delta\left(L_{\varphi(g)} \circ \varphi\right) \omega=\delta \varphi \delta\left(L_{\varphi(g)}\right) \omega=\delta \varphi(\omega)
$$

Lecture 23 (March 9, 2009) -

Integration on chains

For each $p \geq 1$, let $\Delta^{p}=\left\{\left(a_{1}, \ldots, a_{p}\right) \in \mathbb{R}^{p} \mid \sum a_{i} \leq 1\right.$, each $\left.a_{i} \geq 0\right\}$. If $p=0$, we denote $\Delta^{0}=\{0\}$. If \mathcal{M} is a manifold, a differentiable singular p-chain simplex σ in \mathcal{M} is a map $\sigma: \Delta^{p} \rightarrow \mathcal{M}$ which extends to a smooth map from a neighborhood of Δ^{p} to \mathcal{M}.

A p-chain in \mathcal{M} is $c=\sum a_{i} \sigma_{i}$, where the σ_{i} 's are p-simplices, and the $a_{i} \in \mathbb{R}$. We define a collection of maps $k_{i}^{p}: \Delta^{p} \rightarrow \Delta^{p+1}$ for $0 \leq i \leq p+1$. For $p=0$, we have

$$
k_{0}^{0}(0)=0 \quad \text { and } \quad k_{1}^{0}(0)=1 .
$$

For $p \geq 1$, we want to define a map $\Delta^{p} \rightarrow \Delta^{p+1}$. So, let's send

$$
k_{0}^{p}\left(a_{1}, \ldots, a_{p}\right)=\left(1-\sum_{i=1}^{p} a_{i}, a_{1}, \ldots, a_{p}\right)
$$

$$
k_{i}^{p}\left(a_{1}, \ldots, a_{p}\right)=\left(a_{1}, \ldots, a_{i-1}, 0, a_{i}, \ldots, a_{p}\right)
$$

for $1 \leq i \leq p+1$.
If σ is a p-simplex in $\mathcal{M}(p \geq 1)$, we define its i th face $(0 \leq i \leq p)$ to be the simplex $\sigma_{i}=\sigma \circ k_{i}^{p-1}$, with

$$
\Delta^{p-1} \xrightarrow{k_{i}^{p-1}} \Delta^{p} \xrightarrow{\sigma} \mathcal{M} .
$$

We define the boundary of σ

$$
\partial \sigma=\sum_{i=0}^{p}(-1)^{i} \sigma^{i} .
$$

If we have a p-chain $\sigma=\sum a_{j} \sigma_{j}$, then $\partial \sigma=\sum a_{j} \partial \sigma_{j}$.
Example. Let $p=2$. Then

$$
\begin{gathered}
k_{0}^{1}: \Delta^{1}=[0,1] \rightarrow \Delta^{2} \quad \text { with } a \mapsto(1-a, a)\left(\sigma^{0}\right) \\
k_{1}^{1}: \Delta^{1} \rightarrow \Delta^{2} \quad \text { with } a \mapsto(0, a)\left(\sigma^{1}\right) \\
k_{2}^{1}: \Delta^{1} \rightarrow \Delta^{2} \quad \text { with } \quad a \mapsto(a, 0) \quad\left(\sigma^{2}\right) .
\end{gathered}
$$

Then

$$
\partial \Delta^{2}=(-1)^{0} \sigma^{0}+(-1)^{1} \sigma^{1}+(-1)^{2} \sigma^{2} .
$$

[Draw a picture. :)]
Example. Let $p=3$. Then

$$
\begin{gathered}
k_{0}^{2}:\left(a_{1}, a_{2}\right) \mapsto\left(1-a_{1}-a_{2}, a_{1}, a_{2}\right) \\
k_{1}^{2}:\left(a_{1}, a_{2}\right) \mapsto\left(0, a_{1}, a_{2}\right) \\
k_{2}^{2}:\left(a_{1}, a_{2}\right) \mapsto\left(a_{1}, 0, a_{2}\right) \\
k_{3}^{2}:\left(a_{1}, a_{2}\right) \mapsto\left(a_{1}, a_{2}, 0\right) .
\end{gathered}
$$

Theorem. $\partial \circ \partial=0$.
Proof. Easy exercise.
If $p=0$, we want to integrate differential p-forms on p-chains, and ω is a 0 -form, i.e., a function $\int_{\sigma} \omega=\omega(\sigma(0))$. If $p \geq 1$, then $\int_{\sigma} \omega=\int_{\Delta^{p}} \delta \sigma(\omega)$, because

$$
\sigma: \Delta^{p} \rightarrow M \quad \sigma: U \rightarrow \mathcal{M}\left(U \subseteq \mathbb{R}^{4}\right)
$$

If $\sigma=\sum a_{i} \sigma_{i}$, then $\int_{\sigma} \omega:=\sum a_{i} \int_{\sigma_{i}} \omega$.
Stokes's Theorem (First version). If σ is a p-chain ($p \geq 1$) in a differentiable manifold \mathcal{M} and ω is a smooth ($p-1$)-form defined on a neighborhood of the image of σ, then $\int_{\partial \sigma} \omega=\int_{\sigma} d \omega$.
Corollary (Fundamental Theorem of Calculus). Set $p=1$ and $\mathcal{M}=\mathbb{R}$.
Lecture 27 (March 20, 2009) -

The torus is a Lie group isomorphic to $\mathbb{R}^{k} / \mathbb{Z}^{k}$ (homeomorphic to $S^{1} \times \ldots \times S^{1}(k$ times)).
Definition. A subgroup T of a compact Lie group G is called a maximal torus if there is no subgroup $T^{\prime} \supset T$ where T^{\prime} is a torus.

A maximal torus always exists. There exists a one-parameter subgroup in G, so it must be compact. $T \supset *$. If T does not exist, then id (identity) is a maximal torus. Then take T and look for T^{\prime} such that $T^{\prime} \supset T$, with $\operatorname{dim} T^{\prime}>\operatorname{dim} T$. Hence, this search stops. Hence, it exists.

Example. Look at $S U(2)$. If G acts on a set X transitively, then

$$
X \cong G /\{\text { stab of any point }\}
$$

Moreover, if G is Lie and X is a topological space, and action is continuous, then \cong above is a homeomorphism. (Exercise)
Naturally, $S U(2)$ acts on $\mathbb{C}^{2}:\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=x_{1} \overline{x_{2}}+y_{1} \overline{y_{2}}$. Hence it preserves sets of vectors such that $(\bar{v}, v)=1$.

$$
(\bar{v}, v)=\left\{\left(x, y_{1}\right) \mid x_{1} \overline{x_{1}}+y_{1} \overline{y_{1}}=1\right\} .
$$

But here x_{1}, y_{1} are complex numbers. Hence this is a sphere of $\operatorname{dim} 3$ (our X). It is easy to check this action is transitive. Take f.r.t on S^{3} and find stabilizer.

$$
\left(A \bar{A}^{T}=1\right)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \left\lvert\,\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{cc}
\bar{a} & \bar{c} \\
\bar{b} & \bar{d}
\end{array}\right)=1\right.\right\} .
$$

This means $a \bar{a}+b \bar{b}=1, a \bar{c}+b \bar{d}=0, c \bar{a}+d \bar{b}=0, c \bar{c}+d \bar{d}=1, a d-b c=1$. The $"=0 "$ conditions are equivalent. We can determine them uniquely. Let's find stabilizer: stabilizer of $(1,0)$ is the identity. The stabilizer leaves invariant orthogonal complement to $(1,0)$ which is 1 -dimensional. Stabilizer is $S U(n-1)$. But $S U(1)=\{1\}$, so the stabilizer here is just the identity, so it is equivalent to $S^{3}: S U(2) \cong S^{3}$.

What are the maximal tori here? We can find at least one torus: diagonal matrices

$$
\left(\begin{array}{cc}
\alpha & 0 \\
0 & \alpha^{-1}
\end{array}\right),
$$

where $\alpha \in S^{n}=\{z:|z|=1\}$. Then

$$
\bar{A}=\left(\begin{array}{cc}
\bar{\alpha} & 0 \\
0 & \bar{\alpha}^{-1}
\end{array}\right)
$$

and $\alpha \bar{\alpha}=|\alpha|^{2}=1$. The dimension of this torus is 1 , and of the group is 3 .
Exercise: Show this torus is maximal.
Another example: consider matrices of the form

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
\alpha & 0 \\
0 & \alpha^{-1}
\end{array}\right)\left(\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
\alpha & \alpha+\alpha^{-1} \\
0 & \alpha
\end{array}\right) .
$$

Conjugation gives different subgroup.

Main Theorem. All maximal tori in a compact Lie group are conjugate.
Definition. Weyl subgroup of torus T is $\left\{g+G \mid g T g^{-1}=T\right\}$.
Proposition. Weyl group is finite.
Example. A subgroup of a compact group does not have to be compact. Consider

$$
\left\{e^{2 \pi i n \sqrt{2}} \mid n \in \mathbb{Z}\right\} \subset S^{1}
$$

Everywhere dense. (Exercise.)
We claim Aut $T^{n}=G L(n, \mathbb{Z})$. Indeed,

$$
0 \rightarrow \mathbb{Z}^{n} \rightarrow \mathbb{R}^{n} \rightarrow T^{n} \rightarrow 0
$$

Therefore, if we have a map $\varphi: T^{n} \rightarrow T^{m}$ then we have a map $\mathbb{R}^{n} \rightarrow T^{n}$ and we can factor through into T^{m}. Now we need to check φ preserves operation. Why is it that $\tilde{\varphi}$ also preserves operation?

Proof. [of finiteness of Weyl group] Let N be normalizer and N_{0} a connected component. First notice N is a closed subgroup $\left(g T g^{-1}=T\right)$. This implies compact, and so $\left.N\right|_{N_{0}}$ is discrete, compact (and so finite). We want to show that $N_{0}=T$. We have

$$
N \rightarrow \operatorname{Aut} T=G L_{n}(\mathbb{Z})
$$

with $N_{0} \rightarrow$ id, i.e., any element of N_{0} commutes with all elements in $T, N_{0} \supseteq T$. If we show that N_{0} is torus then we are done. If $\alpha: \mathbb{R} \rightarrow N_{0}$ is a 1-parameter subgroup of N_{0}, then $\alpha(\mathbb{R})$ is connected subgroup containing $T \Longrightarrow \alpha(\mathbb{R}) \subset T$.

Lecture 28 (March 30, 2009) -

Maximal tori and Weyl groups

A torus is a Lie group isomorphic to $\mathbb{R}^{k} / \mathbb{Z}^{k}$ (in fact, any k-dim lattice Λ will do). Then the torus will be isomorphic to $\prod_{k} S^{1}$. If G is a Lie group, then a subgroup $T \leq G$ is called a maximal torus if it is a torus that is maximal (not contained in any other torus).

$$
\left\{\left.\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right) \right\rvert\, x \in \mathbb{R}\right\}
$$

has no maximal tori, and neither does \mathbb{R}^{\times}.
Algebraic Geometry Definition. A torus ovedr a field k is a k-form of \mathbb{G}_{m}. (i.e., this will be $(G / k)(\bar{k})=\bar{k}^{\times}$, so for example for S^{1}, this just says $S^{1}=\left\{x^{2}+y^{2}=1\right\}$.)

Definition. For a Lie group G and a maximal torus T, define the normalizer to be

$$
N=\left\{g \in G \mid g T g^{-1}=T\right\} .
$$

Further, let $W=N / T$, called the Weyl group.
Theorem. W is finite.
Main Lemma. Let G be a compact, connected Lie group, and let T be a maximal torus. Then the map $g: G / T \times T \rightarrow G$ given by $(g, t) \mapsto g t g^{-1}$.
Notice $\tilde{g}: G \times T \rightarrow G$ is given by $(g, t) \mapsto g t g^{-1}$. This map has mapping degree $|W|$. In particular, q is surjective.
Definition. (Mapping degree) Let M, N be compact, connected oriented n-dimensional manifolds, and let $f: M \rightarrow N$. Then there exists $\operatorname{deg}(f) \in \mathbb{Z}$ (mapping degree) such that for all $\alpha \in A^{n}(N)$,

$$
\int_{M} f^{*} \alpha=(\operatorname{deg} f) \int_{N} \alpha
$$

If $\operatorname{deg} f \neq 0$, then f is surjective.

Lecture 29 (April 1, 2009) -

Main Lemma. If G is compact, connected, and T a maximal torus in G, then the map

$$
\begin{gathered}
q: G / T \times T \rightarrow G \\
(g T, t) \mapsto g t g^{-1}
\end{gathered}
$$

has mapping degree $|W| \neq 0 \Longrightarrow q$ is surjective.
Definition. (Mapping degree) Let M, N be compact, connected oriented n-dimensional manifolds, and let $f: M \rightarrow N$. Then there exists $\operatorname{deg}(f) \in \mathbb{Z}$ (mapping degree) such that for all $\alpha \in A^{n}(N)$,

$$
\int_{M} f^{*} \alpha=(\operatorname{deg} f) \int_{N} \alpha
$$

If $\operatorname{deg} f \neq 0$, then f is surjective.
We need to know q^{*} deg (pullback of this differential form). Notice G acts on \mathfrak{g} using the following: $g \in G$

$$
c(g): G \rightarrow G \quad x \mapsto g x g^{-1} .
$$

Clearly, $c(g) e=e$. Then $d_{e} c(g): T_{e} G \rightarrow T_{e} G$. Hence $g \mapsto \operatorname{Ad}(g)($ recall $\operatorname{Ad}(g): \mathfrak{g} \rightarrow \mathfrak{g})$ is a representation of the compact group G on the finite dimensional vector space \mathfrak{g}. Hence there exists an inner product (metric) or \mathfrak{g} invariant under Ad.

$$
(u, v)=\int_{G}(\pi(g) u, \pi(g) v)_{0} d g .
$$

Write $\mathfrak{g}=t \oplus t^{\perp}$. Set $L(G / T)=t^{\perp}$. So what we are really saying is that

$$
\mathfrak{g}=t \oplus L(G / T)
$$

If we take $\left.\mathrm{Ad}\right|_{T}$, this will act trivially on t since T is commutative (but nontrivially on $L(G / T)$). Hence, we obtain a map $\operatorname{Ad}_{G / T}: T \rightarrow \operatorname{Aut}(L(G / T))$. Then we have differential forms $d(g T), d t$, and $d g$. On the other hand, we have a projection

$$
\pi: G \rightarrow G / T
$$

which introduces a map $d_{e} \pi: \mathfrak{g} \rightarrow T_{e T}(G / T)$. Notice that $d_{e} \pi(t)=0$. We can write

$$
d_{e} \pi: t \oplus L(G / T) \rightarrow T_{e T}(G / T),
$$

so $d_{e} \pi$ induces a map $L(G / T) \cong T_{e T}(G / T)$. If $n=\operatorname{dim} G$ and $k=\operatorname{dim} T$, then

$$
\pi: G \rightarrow G / T
$$

gives us a pullback $\pi^{*} d(g T) \in A^{n-k}(G)$. [Btw all of this is in Broker.] There is an orthogonal projection pr : $\mathfrak{g} \rightarrow t$ along $L(G / T)$. Consider $\mathrm{pr}^{*} d t$. We have $d t_{e} \in \Lambda^{k} t^{*}$ (with $e \in T$). Then we can take

$$
\operatorname{pr}^{*} d t_{e} \in \Lambda^{k} \mathfrak{g}^{*}
$$

Extend this to a G-invariant differential form on G of degree k, denoted $d t$ (abuse of notation!). We can consider

$$
\pi^{*}(d g T) \wedge d t
$$

Both of those are G-invariant, and their wedge is a G-invariant n-form. As such, it would be $c \cdot d g$. In fact, $d g=\pi^{*}(d g T) \wedge d t$. (Exercise. Show the integral of left is 1 , and right is 1 . We know the $d t$ part is 1 . So just show the pullback of π is as well.)

On the other hand, $G / T \times T$ has a differential form given by the following:

$$
\operatorname{pr}_{1}^{*} d(g T) \wedge \operatorname{pr}_{2}^{*} d t
$$

where

$$
G / T \stackrel{\mathrm{pr}_{1}}{\leftarrow} G / T \times T \xrightarrow{\mathrm{pr}_{2}} T .
$$

Thus

$$
L(G / T \times T)=T_{e T}(G / T) \oplus t \cong L(G / T) \oplus t=\mathfrak{g}
$$

where the leftmost thing has identity $(e T, e)$. Then $\alpha_{(e T, e)}=d g_{e}$.

$$
\begin{gathered}
q: G / T \times G \rightarrow G \\
q^{*} d g=\operatorname{det} q \cdot \alpha .
\end{gathered}
$$

We define $\operatorname{det} q$ by this equation. Question is: what is $(\operatorname{det} q)(g T, t)$?
Proposition. $(\operatorname{det} q)(g T, t)=\operatorname{det}\left(\operatorname{Ad}_{G / T} t^{-1}-E_{G / T}\right)$ where $E_{G / T}$ is the identity on $L(G / T)$.

Proof. The forms $d g, d(g T)$ are left invariant under $G, d t$ is left invariant under T. Then

$$
\begin{gathered}
G \times T \rightarrow G \times T \rightarrow G \rightarrow G \\
(x, y) \stackrel{l_{a}}{\mapsto}(x, t y) \stackrel{\tilde{q}}{\mapsto}(g x)(t y)(g x)^{-1} \stackrel{l_{b}}{\mapsto}\left(g t^{-1} g^{-1}\right)(g x)(t y)(g x)^{-1} .
\end{gathered}
$$

with $a=(g, t)$ (where l_{a} and l_{b} mean "left translation by a " and "left translation by b ", respectively). Notice

$$
\left(g t^{-1} g^{-1}\right)(g x)(t y)(g x)^{-1}=g t^{-1} x t y x^{-1} g=c(g)\left(c\left(t^{-1}\right) x y x^{-1}\right),
$$

where $c(g): G \rightarrow G$ is conjugation. So the point $(e, e) \mapsto(e, e)$. We claim that det q is the determinant of the differential of this map at the point (e, e) restricted to the subspace $L(G / T) \oplus t \subseteq \mathfrak{g} \oplus t$.

Lecture 30 (April 3, 2009) -

We have a map $\pi: G \rightarrow G / T$ where T is a maximal torus. Then

$$
d g=\pi^{*} d(g T) \wedge d t
$$

on T, we have $d t \in A^{k} T$, where $k=\operatorname{dim} T$. We can evaluate $d t_{e} \in \Lambda^{k} \mathfrak{t}^{*}$. We had $\mathfrak{t} \subseteq \mathfrak{g}$. This gives us a projection map $\mathfrak{g} \subseteq \mathfrak{t}$, orthogonal projection. As such,

$$
\delta^{*}: \mathfrak{t}^{*} \rightarrow \mathfrak{g}^{*}
$$

gives a map

$$
\bigwedge^{k} \delta^{*}: \bigwedge^{k} \mathfrak{t}^{*} \rightarrow \bigwedge^{k} \mathfrak{g}^{*}
$$

Then we get

$$
\bigwedge^{k} \delta^{*}\left(d t_{e}\right) \in \bigwedge^{k} \mathfrak{g}^{*}
$$

Extend this to a left-invariant differential form of degree k on G. Another differential form is

$$
\alpha=\operatorname{pr}_{1}^{*} d(g T) \wedge \operatorname{pr}_{2}^{*} d t
$$

where

$$
G / T \stackrel{\mathrm{pr}_{1}}{\leftarrow} G / T \times T \xrightarrow{\mathrm{pr}_{2}} T .
$$

So $d g$ is on G and α is on $G / T \times T$. Now, we have a map $q: G / T \times T \rightarrow G$ which is given by $q(g T, t)=g t g^{-1}$. So we can pullback $q^{*} d g$ and this will be a top-degree differential form, and we have a top-degree differential form α already, and since the space of top-degree differential forms is 1 -dimensional, we have

$$
q^{*} d g=(\operatorname{det} q) \alpha
$$

We start by writing a map

$$
\begin{gathered}
G \times T \rightarrow G \\
\downarrow \nearrow \\
G / T \times T .
\end{gathered}
$$

Then the exact map is $(x, y) \mapsto(g x, t y) \mapsto(g x)(t y)(g x)^{-1} \mapsto\left(g t^{-1} g^{-1}\right)(g x)(t y)(g x)^{-1}$ which is $(x, y) \mapsto c(g)\left(c\left(t^{-1}\right) x \cdot y \cdot x^{-1}\right)$
Exercise. Given $G \times G \rightarrow G$ by $\left(h_{1}, h_{2}\right) \mapsto h_{1} h_{2}$, verify

$$
d_{(e, e)} \mu: \mathfrak{g} \oplus \mathfrak{g} \rightarrow \mathfrak{g} \quad(X, Y) \mapsto X+Y
$$

Then with this exercise, we know the derivative of $(x, y) \mapsto c\left(t^{-1}\right) x \cdot y \cdot x^{-1}$ is

$$
\begin{aligned}
& (X, Y) \mapsto \operatorname{Ad}_{G / T}\left(t^{-1}\right) X+Y-X, \text { then } \\
& \binom{X}{Y} \mapsto\left(\begin{array}{cc}
\operatorname{Ad}_{G / T}\left(t^{-1}\right)-E_{G / T} & \\
& E_{T}
\end{array}\right)
\end{aligned}
$$

so

$$
\begin{gathered}
\operatorname{det} q=\operatorname{det}_{L(G / T)}\left(\operatorname{Ad}_{G / T}\left(t^{-1}\right)-G / T\right), \\
\text { where } t \text { is of the form } t=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right) .
\end{gathered}
$$

Lemma. If $t \in T$ is such that $\langle t\rangle$ is dense in T, then
(i) $q^{-1}(t)$ has $|W|$ points, and
(ii) $\operatorname{det} q>0$ at each of these.

Weyl Integration Formula

Let G be compact connected and T a maximal torus, and take f continuous on G. Then

$$
\int_{G} f(g) d g=\frac{1}{|W|} \int_{T}\left[\operatorname{det}\left(E_{G / T}-\operatorname{Ad}_{G / T}\left(t^{-1}\right)\right) \int_{G / T} f\left(g t g^{-1}\right) d g\right] d t
$$

We have

$$
q: G / T \times T \rightarrow G \stackrel{f}{\rightarrow} \mathbb{R} \text { given by }(g T, t) \mapsto g t g^{-1}
$$

In general, when we integrate over conjugacy classes

$$
\int_{G / T} f\left(g t g^{-1}\right) d g,
$$

the integral is 0 unless the conjugacy class is of maximal dimension.
For now, let $G=U(n)$, and let $D \subset G$ be the diagonal group. Then

$$
D=\left\{\left(\begin{array}{lll}
t_{1} & & \\
& \ddots & \\
& & t_{n}
\end{array}\right) ;\left|t_{i}\right|=1\right\}
$$

is a maximal torus, and $D \cong S^{1} \times \ldots \times S^{1}$ (n-copies). In this case, the Weyl group W will be isomorphic to S_{n} (permutation group on n letters), and the action will be by permuting the diagonal entries. If γ is a conjugacy class in G, since we know every element of G is diagonalizable since it is compact, we know that $\gamma \cap D \neq \emptyset$. In fact, this will be a single W-orbit in D. If $t \in \gamma \cap D$, then we claim $W \cdot t \subseteq \gamma \cap D$. If you remember, $W=N(T) / T$ (the normalizer of T, modulo T). The way it acts is that
$(n, t) \mapsto n t n^{-1}$, which means that $n t n^{-1} \in \gamma$. Then $w \cdot t \in \gamma \cap D$ (since we assume we are working with things that are normalizing the torus). Now if f is a class function on G, then $f_{D}:=\left.f\right|_{D}$ means that f and f_{D} determine each other. So f_{D} will be a function which is W-invariant on D (with no further restrictions). The idea is that if we have a representation π of G, this will have a character χ_{π} which is a class function. Then $\left.\chi_{\pi}\right|_{D}$. Second, $\left.\pi\right|_{D}$ will be $\sum m_{j} x_{j}$.

