Robert Krzyzanowski Representation Thélmtes

Lecture 3 (January 16, 2009) - Maschke's Theorem
Examples

For any fieldF’ , remembe$, acts &t by permuting itidices of some bases
€1,y en. LetWy ={> cie;|> ¢ =0}.lfo € S,,we Wy, we claim thaf - w € W; .
Then o(3 cie;)) =) cider =) cie,;y SO that Y ¢ doesn't change. Take
Wy={>aei|lag=ar=...=a,} =F-{ey+ex+..+¢,}. Let c€S5,,a€cF.
Then

c-a-(e1+...+e,)=a-0-(e1+...+e,)
=a- (60(1) + ...+ ea(n)) =a-(eg+...+e,).

Recall twoG -representations &G -moduylgés and afkect equivalent if

there existd” E W which commutes with the actiod’of r F'6/.
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Theorem. LetG be a finite group witlkshar 7'/ |G| . Then any submodule rof&- -
module is a direct summand, i.e. ,Vif is A& -modaed(0#U CV is anFG -
submodule, then there exi$t5 suchthat U ¢ W  Fé&5 -medule

Corollary. If charF'[ |G

Proof. Iredducibility obviously implies indecomposabylitf it is not irreducible, then if
there existd/ # 0 , thenthere exi$ts suchthat U oW 0O .

Corollary. If charF'| |G| then everyF'G -module is injective.

, thenV isirreducible if and only if it is iedomposable.

Proof. (of Maschke's Theorem) The idea is to producéd’&frequivalent projection
m:V — U. Then FG -equivalent means if ¢ FG , theriz-v) =z -7(v) . Recall
projective meansr: V — U is surjective, an@r(V)) = n(V) . This last pan be
thought of as projection onto the Euclidean plaheve project once and then project
again, then that second action does nothing stnseaiready projected onto the plane.

Continuing, letW = kerr . We clailk =U oW .HeUNW ,thene ker
and v=mn(g) for somey «(V)=U ). Sor(y) =n(n(y)) =n(v) =0 so indeed
m(y) =v. Ifv eV, writev = (v—m(v)) + 7(v) and we say — w(v) € W = ker , and
m(v) € U. Then,n(v — m(v)) = n(v) — 7m(v) = w(v) — 7(v) = 0. So, we have shown
thatU N W = {0} and/ + W =V . This then implids =U & W

If 7 is FG-equivalent andv ¢ ker=W ande FG , then we wantshow
x-veW =Kkerr. Indeedr(z-v) =z -w(v) =2-0=0 s@ isinfaélG -stable.

We need to make an appropriate . Start with attrarpn, : V' — U, just a vector
space projection. Now, if € G gmog ‘v = u Vu € U Ekercise. convince yoursdif o
this]. Now, we let
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€

| geG

and we can do this because cligf |G| , or othery@8e Idwei0 in7's domain.
Exercise. Check thatr(u) = v and(m(u)) = m(u) O

Wedderburn's Theorem. Let R be a non-zero ring with identify not necedgari
commutative Then the following are equivalent:

(1) EveryR -module is injective.
(2) EveryR -module is projective.
(3) EveryR -module is completely reducible.

(4) Thering R considered as a leR -module is a dimnR =L, $® ... L, ,
where each.; is a simple module iwith= Re; for seme tisfgang

() ee; =0 forikj (i) e?=e; (i) Tei=1.
(5) Asrings,R is isomorphic to a direct product of matings over division rings,
R=R; x..xR,

with eachR; = M, (A;) withA; adivisionring and ea¢h  a twdesl ideal
in R. Further,r,n;, A;'s are up to isomorphism uniquelyedtetined.

Proof. Next timel!d

Lecture 4 (January 21, 2009) - Maschke's Theorem

Definition. LetR be aring and a module. Th@n s injeciivane of the following
holds:

(@) (R commutative) 16 — L — M — N — 0 is a short exact sequetiten
0 — Hom(N, Q) — Hom(M, Q) — Hom{L, Q) — 0
is exact.
(b) If 0 — L — M is exact, then
0—-L—-M
v
Q.
(c) IfQ is a submodule of any/ , théh is a dimainmand. [Maschke's Thm]

(d) If I is a left-sided ideal oR , then ayy -modulemomorphisn — (Q can be
extended tdk — @) . [Baer's criterion]

Definition. Let R be a ring and® a module. Théh is projectifvone of the
following holds:

(@) (R commutative) 10 — L — M — N — 0 is short exact then
0 — Hom(P,L) — Hom P, M) — Hom{P,N) — 0
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IS exact.
(b) P is a direct summand of a free module.
(c) M — N — 0 is exact, then
0—-L—-M
T/
P.
Corollary. (to Wedderburn's Theorerti)char F'f |G|, then
FG = M, (Ay) x ... x M, (A,)

with A4, ..., A, division rings.

Terminology. Such aring is called semi-simple.

Modules overM,,(A) A adivision ring)

Definition. (1) A non-zero element is called idempoteet if= e
(2) e1,e9 are orthogonal it - es = €3 -1 =0 .

(3) An idempotent is called primitive if it cannot beitten as a+b witha,b
orthogonal idempotents.

(Notice (a 4 b)* = a2 + b2 + ab + ba = a®> + b*> = a + b.)

(4) e is called primitive central idempotent if it carinbe written as a sum of two
orthognal idempotents i (R)

Proposition. LetR = M, (A) andl the identity matrix.
(&) The only two-sided ideals & able aRd
(b) The center ok i€ (R) = {al|a € Z(A)}
(c) e; = E; = matrix with all zeros except iii
(d)L; = Re; simple leftmoduless L; 2L, am@=L,$ .. L,
(e)If M is a simpleR -module, theW =~ L,

Lecture 5 (January 23, 2009) -

Recall our proposition from last time.
Lemma. ForR an abritrary non-zero ring,

(i) If M andN are simpld&? -modules, thendf M — N  is a +iowial R-module
homomorphism, thep is an isomorphism.

(i) If M is simple, then Hom (M, M) is a division ring.

Remarks Let E;; = (a,s) , with
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1 fr=i,s=3j

ars = by, ds; = {0 elsewhere.

(a) Ej;A is the matrix whoseé th row is equal to the diviof A and zero's elsewhere.

For example,
0 0 a b\ (0 0
1 0 c d) \a b))

(b) AE;; is the matrix whosg th column is equal tosthecolumn ofA and else zero's.
(c) E,yAE,; is theps entry im,, .
Exercise. Verify the above explicitly.

Let J be a two-sided ideal and létc J . Then if some&ye,, of A is non-zero,
then By AE,, € J . Thenk,, = -E, AE, € J . This meangp, s, E,, € J  implies
J = R. Next, letA € Z(R) . Thery;;A = AE;; . Thenif# j ,then; =0 . (verify!)

Next, Re; = RE;; . This is going to be ith column with O'seeswhere else. IA is
non-zero, thelRA = R - re; C Re; . We then claim thad = Re;  aff IS a zemn
enetry ofA , thernE;; = aipEipA € RA ,sothdle; CRA .Mc Re; antlZ0 ,then

RA = Re; so that it is simple.
It's trivial that L; =~ L; .

Let M be any simple module. Sinte: = mVm (>, e;)m=m  $0em=m .
Givenm,de; such thag,m # 0 . We can then write a niap—~ M . T sends

re; 5 resm. Ifr=1¢ A, thenp(e;) =em #0.

Additionally, thee; 's are primitive. We see thisfaows. Assume that; = a + b .
ThenRe; = Ra + Rb. We claimRa N Rb = {0} withra = sb . Then
ra=ra’=ra-a=sb-a=0.

Homework. Look up the Dummit and Foote theorem BoB- Ry X ... X R, I This
module will be a simple module.

Lecture 6 (January 26, 2009) - Introduction to Chaacters

Recall thatCG = M,, (C) x .... x M, (C) . Then the regular representation lvéll
mM; @ ... & n,.M,.
Furthermore)/,, (C) will ber; copies @ff; |, but it can aisorealized as
M, ® M} =C" @Cm™ =~ CH.

A regular representation will always 8o M; @ M} (the atled Peter-Weyl Theorem
for compact groups).
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Definition. A functiony : G — F is called a class functiongfgzg™!) = p(z) (dmbi
of conjugationyz Vg .

Definition. If ¢ is a representation ¢ on a vector spécever 6, then we can define

Xo(9) = tro(g).

Example. For a regular representations(ofG, act€gn ¢g-by arh => ai(gh).
The basis vectors are precisgly},.. gH1 , then it sénd> h, so that the trace
will be preciselG| . lfg # 1 , the — gh # h (ever). So there Wdre anything on the
diagonal, and hence trace0 . Hence,

0 ifg#1
Xfeg(g):{|G| ifgil.

Example. ConsiderD,, acting oR> by

2 Ho
cos=t  sinEt 0 1
: LN " ando : ,
P (sm%r cosQ—”> ? <1 O)

and call this the "natural" class functions. Defing(p) = 2 cosi—jr andynafc) =0 .
Foranyy : G — GL(V), x, is a class function:

Xo(g9797Y) = tr p(gzg™) = tro(g)e(x)plg) ' = tro(z) = xu(2).
Fact. @1 ~ 2 & Xo, = Xy [P1(9) = Apalg) A1, tr pi(g) = tr Apa(g) A7 =
tr p2(g)]

ConsiderF’C . Thery, extends@d:

Xe (Do g 9) = > ag xp(9)-

Recall the group algebr@G  also actslon .f(& CG d¢anktof tr f) We write
CG = M, (C) x ... x M, (C) with M, ..., M, inequivalent. Every finite dimensional
representation

M=aM&®..Da-M, with a; > 0.

If we write
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a
\\

r
.

then we easily segey, = a1xa, + ... +arxa. - Let's writgg = xp, . On the othedhan
every sum will be the character of a representatimxt, let

ith
l
z=10,0,..01,0,..0]|,

with 1 € M, (C) (id matrix). Thenz; 's are linearly independeBiach charactey;
satisfies the following:x,(z;) =0 foi # j (b/c it acts by thero matrix on)/; ), and
x;j(zj) = nj. Hence, thgy, ..., x, are a dual basis to the independent,se, z,.

Xj(zi) = n;by; = L (zz) = 6;j = x; = n; z; (dual basis)
= x; 'S are linearly independent.

Then if M =B M&..®b.M,., then xyr =bix1+... +b.xr = a1x1 + ... + ar X
naturally means; = b; (for<i <r ).

Class functions

1 ifse O,
0 elsewhere.
independent class functions. We will show s later.

Let O4,...,0, be such thatfol(g):{ withyq, ..., x,  linearly

Letd, vy be class functions. Define
(0.9) = 22 0(9) ¥(9).
9eG
Proposition. Forz, ..., z, haveM,, (C) x ... x M,, (C) =2 CG . Then
= Y xilg g

geG

Proof. Writez =z, antk =) o, ¢ . Recall
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_JOo  ifg#1
xreglg) = { G| ifg=1
Then Reg= @] niM; = xreg = D niX; - We then claim
1=1
Xreg(29™") = g |G-
Indeed,
Xreg(297") = Xred D anhg™) = 3 an X reghg ') = |Glay.
Next, if o is the representation dd; , then
Xi(zg7") =trpi(zg™h) = tre(2)pi(g").
If j # i, theny;(2;) = 0. Hence,

) 0 ji
P = e =1,
S0
Xi(zg™") = xi(g™")dij.
Finally,

.
2 Xi(g71) 8ij = |G| = ay = grixi(g ™).
j:

However,y;(1) = trp;(1) = n; . Then

so that

Lecture 7 (January 28, 2009) -

Let K7, ..., K, be distinct conjugacy classes, wkh=>" g . Théh} fartmasis for
9gEK;

class functionZ (CG) (din¥(CG) =r , the number of simple mosiule
Corollary. r =s

Proof.  First, theX; 's are linearly independent. Thet méaim is that any element of
Z(CG@) is a linear combination of th¥; 's. el oyg9 € Z(CG) . This methat for all

he@, hah ™' =a. Hence, h(} ay9)h ' =a  and) a,-19=> a,9 . Hence,
Qp-tgy = 0y Vg Vh.

Takez,...., z, . Recall
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and notice

(1) x;(1 _
= L] (Z Xi(zy )Xz 1)1/)
geG \zeG
Henceg ! =2y ', g=yz ',h ! =27 h = 2. But
20 ij = ljz \G| X’L( 1)y-
yeG

Since they are linearly independent elements, tdreegponding coefficients must be
equal:

Hence,

Puty = 1. Then
G118 = Ao,
Notice in either casg = j arid# j ), the left hand sidassd;; . Thus,
5= Y xil@) xi(a ).

reG
Lemma. x;(z~!) = x;(x) for x a character of any representation.

Proof. Look atp(z) . Letp be the representation assatigte and look ap(z) . Then
go(x)'G‘ = ¢(2l%) = 1. In fact, if |z| =k, theny(z)* = (a%) = ¢(1) =1 . Hence,
o(r) satisfies the equatioX” —1 =0 . Since the rootsXgf — 1 astindt, the
minimal polynomial ofp(x) which divideX”* — 1  will have diisct roots and all will be
roots of unity. Therp(xz) must be diagonalizable,

Al
o(x) ~ with | ;| = 1.
An
Theny(z) = > \; . Hence,
At A
o (x) ~ = ]
A A
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8ij = g2 xi(@) xj(e™h) = g xal@)x (@) = (xis x))-

Theorem.  (First orthogonality relation) Letx:,x;) =6 , €8/ =P, , a;M; so
that x,s = > a;x; . Then

(Oxars xar) = (D2 @ixis 225 aixg) = 2230 @iai(Xis X5) = Dj @itjbij = D i a7 -
Corollary. A representatioV/ is irreducible if and only(i;, xar) = 1
In other words, a regular representation
0 g#1
ra={lor 521
So(p,p) = %QEZG/J(Q)@I @lGlIGl=Gl.

Corollary. If 6 is any class function,

0(g9) = >0, x:)xi(9)-

7

Theorem. (Second orthogonality relation

> i) xaly) = {IOOG@)\ e~y

otherwise.
(1) A complex numbett € C is called an algebraic ietag
(i) it satisfies a monic equation with integrakdficients.
(i) Z[a] is afinitely generated -module.

(2) If arational number is an algebraic integleen it must be an integer. [i.e. ) \; is
a sum of algebraic integers equapily |, theal ]

Recall the collection of algebraic integers is regriFurthermore, if) is a character of
some representation, théfx € G (x) is an algebraic intéfeen ¢ (x) = > \;
(roots of unity).

Lecture 8 (January 30, 2009) - More Character Theor

Fact. If ¢ is a character of a representatiorzof ntfee allz € G, () is an algebraic
integer.

Notation. We will use the nonstandard notatdn ot denlogeintegral closure &  in
Q (algebraic integers).
Proposition. [19.1.3 Dummit and Foot&)efine complex-valued functions 6h by

conjugacy class aof] x;
wi(g) _ |conjug yXi(l) Axilg)

Then the values;(g) € Z (are algebraic integers).
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Proof. We claim that the values;(g) € Z (are algebraic intggéfo see this, denote
K, ..., K, to be the conjugacy classes. We'll prove

> wilg) = wi(g) I

gEK]—
for anyg € K; (wherep; is the representation for ). Det= deKj vi(g) ThenX
commutes with everything in the imagegf because

pi(M) X pi(h) ™ =3 i) ei(9) i(h) " =3 @ilhgh™) =3 ilg) = X,

gEK gEKJ' gEKJ'
Hence,X commutes with everything, 30€ Z(¢;(G)) . Thats= ol r sfamea .
Notice

Xi(Da=trX =3 tro;(g) = xi(9) - |1Kjl,
9eK;

so thatn = Xf;@g”' .Now ley € K, . Define

aijs = #{(9i,9;) | 9i € K;, gj € Kj, 9i9; = g}.

First, noticea;;; is an integer (it is counting sonmegi. Furthermore, it is independent of
g € K,. Too see, first note if € K, ,thei=xgz~! forsome .Then

9=gig; & gz ' = zgix™ - zgx!

(with zg;z~! € K; andzg;z~! € K; ). Sincev; is a class functianK;) = w(g)  for
anyg € K; . So, what iso, (K;)w(K;) ? Well,

wi(Ka)wi(K) T =22 ¢i(9i) - 22 #i(95) = 22 ei(9i)ei(95) = 22 #i(9i95)

gi€K; gi€K; gi€K; gi€K;
g; € K]' g; € K]-
T T
=> 2 2elg =2 > wilg) 1—2%2 et(9)
s=1 geK, gigj=9 s=1 geK, 9i9;=9 s=1 geK,
,
= > aijswi(K;).
s=1

Hence, the ring generated Byw, (K1), ..., w (K, )] is in fact finitegngrated as 4 -
module byw;(K), ..., w:(K,) . Them,(K;) is an algebraic integer; O .

Corollary. For alli ,x;(1) dividesG| .
Proof. Withg; € Kj,

G G
L = L) = 55 REONOES-RIOND

= L T xl00e) = S hle)ils,) [for someg, € K, ]
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= lei(gj)Xi(gj)-
J=
We saw thatv;(g;) € Z angd;(g;) so the product must B8 in anduheof algebraic
integers is also il . Henc;|/x:(1) € ZNQ =27 O
Induced representations

If H <G andp is a representation ¢! on a vector spécenve can restrict
plg : H — GL(V). This gives a functoR(G) — R(H) . lp is a representat@nA
and we havéV &H -modulé =W ® cy CG . Givep, W) a representatidi,of
we can define Ifg(p) = {f:G — W | f(hg) = p(h)f(g)}. If we pick a set of
representatives fak/H , then any syth is determimg@/H . Then in fact Ir@(go) 5

aG -representation, ande G, (vf)(g9) = f(g97)
Frobenius Reciprocity

Given a charactey df |, there is a representaticand we consider 1§y, which
gives us Inf| x . Frobenius reciprocity says the tweirproducts

(restricty, x); = (¢, induced).. .
Exercise. Homgy(resr, ) = Homg(w, ind) .

Lecture 9 (February 2, 2009) - Representation of Gopact
Groups

We are now following the book by Varadarajan.

Definition. A topological groupz is a topological space equiggpéth two continuous
maps,m: G x G — G , and : G — G , so that the operationy = m(z,y) tutis
into a group withe ! = i(z) .

Example. G =R, withm(z,y) =2+ y andi(z) = —x .
Example. G = R* withm(z,y) = zy,i(x) = 2~ L.
Example. G = St = {z € C*| |z| = 1} withm(z,w) = zw andi(z) = 27! .
The groupR and* are not compact, &hd  is compacdhermore,
SO(3) ={g € GL3(R) | g"g =1}
is compact. KExercise. Check this!)

However,R an®* are locally compact, and we can indiésfthe locally compact
groups to be exactly as above but a locally comppate (this does not see the group
structure at all).

These topological roups satisfy the second axibooontability (i.e., every point has
a countable basis of open neighborhoods).

11
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Theorem. (Haar, Von Neumann)Given a locally compact topological grodp , there
is a unique (up to scalar multiplication) Borel nse@aed ., such that for all set4 open,
and all x € G ,uy(xA) = ue(A) . Similarly, there is a unique measuig, chsuhat
pr(Az) = p1,(A). (In generaly, # i )

Example. OverR , this just meangep(z + A) = pien(A)

Proof. (of Theorem) IfC' is a compact set, then given 0, 3U open withU'
compact andC C U such thattU \C)<e . W is open with compéogn
JK C V with K compact, such that(V \ K) < ¢

[A reference for this is Kelley-Srinivas(an?).]fwse you have a grodp acting on
a topological spac& and suppose s locally comJden X carries & -invariant
measure if the action satisfies a certain "top@aljiproperty.

The unigueness statement (in the above theorgm)ifsa, ;.o are two regular, non-
trivial Borel measures such that(zA) = u;(A) foe=1,2 theém, A , thsrea
constant > 0 such that = cus

Now let , be a left invariant measure. Define foe G pj(A) = p(Az). Then
Vy € G, 1j(yA) = w(yAz) = p(Az) = pe(A). There exists a scald(x)  such that
pi = 6(x)pe, with 6(x) >0 andé(zy) = 6(x)é(y) . Sincgy, is regular, one can show
thaté(x) is continuous.

In other words, leG be compact. Then sih¢ce) iginoous,c < 6(z) < C . Let
x € G be such that(x) # 1 . Thendfz) > 1, §(zV) — + oo unless for sove- 0
¥ = 1. Similarly, if 6(z) < 1, apply the same t6(z~!) >1 . If for somec G,
§(x) > 1, then§(z™) — + oo, which contradicts the fact that is bouhdenless
2N =1 for someN (it becomes periodic), in which cage)" =1 thié(z) =1
which contradict$(z) > 1 .

If G is compact)(x) =1, uf = 6(x) pe = e, 1y (A) = pe(A) implies py(Az) =
we(A). O  Corollary. p, is also right-invariant.

If G is compact, we writeu = pu, = iy . Sincg(G) < + 0o , we noramlizer ou
measure so that(G) =1 . We can normalize our measure

W(A) = sa(A).

Locally compact groups with, = p, are called unimodutag,, all compact groups,
GL,(R), SL,(R),SO,(R), etc.

Next time, we will show tha{ (8 I) } C SLy(R) is not unimodular.

Remark. LetF be any non-discrete locally compact topmakfield. Weil used this to
classifyd,, multiplicatively for all sucl” structures

Lecture 11 (February 6, 2009) -

12
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Assume the vector spaces we will be working onadlr&€-vector spaces. I is a
compact group and : G — GL(V) is a finite dimensional repregEm of G , we set
0.(g9) = tr m(g). Furthermoref, : G — C satisfies, (yzy ') = 0,(z) afd(l) =
dim V' = id(w) (convince yourself of this!).

Exercise. Show that), =~ 0, if and only if =~ 7’ . In other words, adunction of
only the equivalence classof (denote thissby weaan talk abowd,, ).

Exercise. Show that, ., = 0, + 0,
If x,x’ are two functions o , then we defined

G X) = Jax(9)x'(9) dg
to be a measure that is normalized so thativel 1

If w, " are two equivalence classes of irreducibleanyitepresentations ¢f , then
(9w7 ew/) - 6ww/-

Definition. We letG denote the collection of classes of inhle unitary represen-
tations.

If w= .., mw; Withw,...,w, € G distinct, then
(ew; gw) = (eemiwm eemjwj) = Z ;T (ewi; ewj) = Z mim; 6L_] - Z m?
2

Example. If we have am x n matrix, then this will look liKe;;). What will (a;;)e;,
look like (wheree; is the column vector with  only the k£ th spot)? Well, it will be
(Aeg, e;) = ay, (we call these matrix coefficients). It essenyiaklects thé th column.

In general, ifr : G — GL(V) is a unitary representation, a matoefficient ofr is
a function of the form

for :  — (m(x)v, ).
This follows from the identity
[ (m(@)vr, ) (7 () w2, vh)dx = d(m) " (01, v2) (V) V5) S]]
whered(r) is the dimension of the representation s ®hirue as follows. First, think of
(m(z)v1,v1) as a function fronfV x V' — C . However, first let's consifler, v,). This
is a function
(v1,v2) fG x)vy, V) (7 (x)ve, vh) d.

We claim F(m(y)vy, 7' (y)ve) = F(vy,v9) . [Holly notes thaty,v, are fixed.] The
identity then follows because

Foy o (m(y)vr, 7 (y)va) = [ (w(x)m(y)or, o) (7 (2)7 (y)va, v5) da =
Jo (m(zy), v, ) (7 (xy)ve, va) da = [, (w(x)v1, v]) (7' (2)v2, vh) dx = Fyy oy (v1,02),

where the penultimate equality follows from thetftdds is a Haar measure, so that we
can collapse accordingly. In other words, we hive V' — C inducing a mag/ — V* .

13
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For fixed vy, vy, define a mapy ., : V — V* by o (v1)(v2) = Fy o (v1,v2) néte
Be careful with complex conjugation!). Notige, .,  GSequivariant withG' acting by

on V and(x')" onV* . Since representations are unitiirgg V* nd @ (7/)"
identified by the Hermitian product. Hence,

77[)115 U S Hom(vﬂ'7 Vﬂ") )
which is a scalar by Schur's Lemma (possibly z&fbat is, if[7] # [7'] , then), ,, =0 .

On the other hand, if you haye] = [#'] , then there isigusnHermitian pairing on
V invariant undetr . This mears, ,; (vi,v2) = C - (vy,v2) , Whéfe is sometaohs
Now, fix vy, ve. We claim that(v),v}) — Fy 1/2(’01,’02) is alsé: -equivariant. $his

because Haar measure is right invariant. Indeed,

Fﬂ(y)z 7 (y)vh 1)1, UQ fG Ul, y)v&)(%(.ﬂ)l&, 7T(y)1),2) dx

= Jo (7 (z)vs, (y*l)w(y)vﬁ)(w(y—1>7r<w>vz,w(y*)w(y)%) dz,
because Haar measure is invariant. Continuing,

= fG y 1:17 Ulavl)( (y*lx)vé,vé)dx.

Now do a left change of variables. Hengg,; (vi, v2) = C - (v}, v5)(v,v2) . Then we
can just compute the constant which is independient, v, v}, v5. We have

Jo (m(z)v1, v2) (m (@), v) da.
Aaaand....why is this constant? Ramin will figureut by Monday!

If (e;) (with 1 < ¢ < d(m)) is an orthonormal basis for the spacerpthen

Fijwo s d(w) P (n(2)es e))

will be an orthonormal basis for the spatiev) = lingamsof all matrix coefficients
of .

- A(w) L A(W)

-dimA(w) < o0

-A(w) C L*(G).
By the Peter-Weyl Theoren*(G) = @, sA(w)  (the completion).
Lecture 12 (January 9, 2009) -

Essentially, we want to show that any irreducibiieariant subspace af?(G) is
finite dimensional, and conversely (the completeriegorem).

You have an actiot¥  ob?(G) , written

(p(x)f)(y) = f(yz).

14
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Suppose we have an operafor: L?(G) — L*(G) with an "eigenspdcd@hen there
is A such thatf € V' give& f = Af . Then we claimh is also imrdrunderp ifK
andp commute (that ig(z) o K = K o p(z) ). Indeed, thefii€ V',

p(x)(Kf) =Ko (p(x)f).
Thenp(z)(Af) = K(p(x)[f) yields\(p(x)f) = K(p(z)f) ,so that(x)f € V

In this way, the goal of the Peter-Weyl Theorentasshow there are many such
operators.

Compact self-adjoint operators (Review of functionhanalysis)

This material is found in the appendix of Varadamg book. Lefi” be a Banach
space. Supposé : D(A) — V' is a linear operator, Witl) C V/ a osutzepaceA
is a closedlosed operator if its graph is closedin® V' . The resoiset

p(A) ={\ e C : (\I — A)"! exists as a bounded operator .

In other wordsAI — A is a bijection d#(A)  with dense imagnd( A — A)"' extends
to a bounded operator &1 . Then we call the spactru

a(A) = C\p(A).

This is in fact a closed set. f is a bounded afmey it's non-empty. If dinfV < co , we
simply get eigenvalues.

Now, letH be a Hilbert space. Then we have an ipneduct for which the Banach
space norm is given Hj|| = (z,2)"/* . Alinear operator H — H  is-adjbint if
(Au,v) = (u, Av) for allu,v € H.

Spectral theory of self-adjoint operators

Let X be a space and IBt be a -algebra of subkéfs Define [, X Py dju())
such that

@P0)=0 ®GGPX)=1 () iE=U,E,  theR(E)v=>"
Then we have spectral integrals
A(f) = [x flx) dP().
Now we think of theA(f) 's as operators Bn

P(E,))v .

n

If X' is second countable, then there is a smallEst'ss.t.P(C) =1 .
-supp ofP =0 (A)

- P(F) is a spectral projection

- Images ofP(E) are spectral subspaces

- Ao € Ris an eigenvalue if and only #({\o}) # 0

Definition. An operatorA is called compact if it maps sets witinded norm to sets
with compact closure.

15
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Notice K(x,y) = K (y,z). This tells us "what kind of groups" weositd be looking for.

Lecture 13 (February 11, 2009) -

Let's consider the right regular actiop(z) f)(y) = f(yz) . The ide#o look for
compact self-adjoint operators that commute with) or allz € G.

Eigenspaces will be finite-dimensional. Furthermdnese eigenspaces are invariant
underp . Take a kernel functidi(z,y)  such that K1)z, y) (y, ) tHFermore

(2) K(zg,y9) = K(z,y). The operator given by f(z) = [, K (y) de(y)
Then by (1),Ax is self-adjoint, and by (3« comnsw\tﬂth p(x) for aII:r Since&7 is
compact, Supg (z,y) will be compact. Thul, is a corpperator. Now,

K(z,y) = K(zy ' yy ") = K(zy ', 1).
Hence, there is a functiom such tH&fz,y) = a(zy~!) . In ordegdbK (x,y) =
K(y,x), we neeth(zy ) =a(yr~!) . Thensety ' =2 ga'=2"1 |, and then we
can just try to get(z) = a(z=') . However, for any continuousdtiona onG satisfying
a(z) = a(xz~!') we have an associated integral operator
fG (y) dy

that is compact, self-adjomt, and commutes vpltlh‘:ach eigenspace is finite-dimension-
al, except possibly the kernel of, . Evefyc L?(G) belorigsa stable finite
dimensional representation@f unlgss  kgWa

Lemma. If for all « as aboved,f =0 ,thef=10

Proof.  Notice [, a(zy~')f(y)du(y) =0 . This is the convolutiom«f(z) =0 . Now,
there exists a sequeneg  with> 1 of functions suah th

(1) a,, is real, continuous> 0
) [a,=1.

() an(z) = an(z™).

(4) suppa, — 0 .

This is called a delta/Dirac sequence. Construseguence satisfying (1), (2), and (4),

callitb,. Leta,(z) = §(b,(z) + by(z~1)) . Hence,

Ji 0n() dpu() = § fbu(a) dple) + § fobu(a) du(a).

We claim

Jo @) du(z) = [, f(z) du(z

for any integrablef . Define a measure

W(A) = p({a™"[a € A}).
We claimy/ is left and right invariant.

16



Robert Krzyzanowski Representation Thélmtes

W(rd) = p({(ra) *a € A}) = u(fa v ! o€ 4D = p{a[a e Apr ) =
pl{aa e A} = p(4)

which impliesy’ = cp sQ/(G) = cu(G) implies =1 and thus= 1 . Now,
Jo f@™)du(z) = [ f(@)du(a™) = [, f(2)dp/(z) = [, f(z) dp(z).
Hence,
Jan=5([ba + [b,) =1.
Notice for alln , we are assumifig=a, * f — f n@s-»oco .THus 0 Li0G) O .

Theorem. (Peter-Weyl) The irregular representationsCof e alt finitely-dimensional
and they separate the points@f . The irreducibiracters form a basis fér(G)"
andL?(G) is the orthogonal direct sum of matrix coédfits.

LX(G)™ =@ 5 Ch..
L*(G) = @, sA(w) (matrix coeffs ofv ).
Foranyr cwe G, {ei}1<icq(, anorthonormal basis for the space oft , le
viju(®) = d(W)P(r(2)ej ).

Then(v;;.,) is an orthonormal basis fbt(G) O.

1<i,j<d(w)weCG

Lecture 15 (February 16, 2009) -

Lemma. If {¢;} is an orthonormal basis for a vector spaée ahd3:V — V, then
> j(Aei,ej)(Bej, ;) = tr(AB).
Proof. This is obvious. Write the matrices df= (a;;)  aBd= (b;;) témms of the
basis{e;} . Then
(Ae;, e;) = a;; and(Bej, e;) = bj; ,
so that

Z (Aei, ej)(Bej, 61') = Z Qjj bﬂ = ZL (ZJ Qjj bﬂ) = Z (AB)“ = tr(AB) O

i,J

Last time, we got the identity

SSNf i)l = d(w) tr(x(F) ().

w 1,]
We claim tr(vr(fT)w(f)) is equal to tre(f7 « f)) , whepdz)" = f(z~1) .LEt apd
be two functions. Then let's see whéf )7 ((g)v) is. Recall
m(g)v = [, 9(z) 7(x)vd.
Then

17
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n(f)m(g)v = fG y m(y) (Jo 9@)m(@)vda) dy = [, [ F(y) 9(x) m(y)m(2) vde dy =
foG m(yz ) flfdy = [sendy toyz ™t . [ flyz)g(x) m(y) vde dy =
fa(fa (y~'z) g(z) dw)m(y)vdy = fG(f*g)(y)ﬁ(y) vdy,
with
(fx9)(y) = |, f( (x)dz.
Thus,

m(f)m(g) = 7(f*g)

which implies

Then we get

tr(’n'(?T)W(?>) = tr(ﬁ(fT *?))
We claim this equals tr(f7* f) . Wellf' (z) = f(z-1) = f(z~') . We verified last
time that

7(fT) = ()%

We need to show the trace is a real number, sifigedf?) € R. Hence, it easily follows

I = S 1(f s vig)| = 3 d(w) 0u(f7 % f).
w ] welG
Lemma. [|f||* = f7« f(1).
Proof. Well,

(ST )A) = fo [T 2 ) f(z)do = [, f(z) f(2)dz = ||f]].
Hence,
(fT+ H(1) = £ d(w) 0.7+ f).O
weG

Soif we leth = fT«f we get the so-callpdsitive functions . In other woalpositive
function satisfies

h(1) =32 d(w) b,(h),

we@

and in fact,(h) will be;,e™® for a constant , remindingafig-ourier expansion (and
this is where this originates from).

Lecture 17 (February 23, 2009) -

Last time we talked about tangent spaces. Giveffeaeahtiable manifold\/ and a point
x € M, we defined the tangent spdce\/ to be the collecionaps
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X:C®%(M)—R

the behave like derivative, i.eX(fg) = f(x)X(g) + g(z)X(f) , and they ase &bcal
atz in the sense thatff=¢ in a neighborhood of enti(f) = X(g) .

If x1,...,z, IS a local coordinate system at with a distirsfped set of tangent
vectorsXy, ..., X,, , then we can always write the derivative

X(f) =i arn X (f)
with X, = 8% in the Euclidean setting. We can then say’tiif = n.

Differentials of smooth maps between manifolds

If M, N are manifolds, a function : M — N is smooth if for alke M, there is a

neighborhood

%

Yy odogy' :ou(U) — oy (V)
with ¢ (U) C R"™ andgy (V) C R™ .

We can now define a differential of a smooth mapwe® a¢ smooth as above, we
can define

such that

dp¢ : Ty M — Ty )N
to be the function,¢(X)(g) = X(go ¢) fog € C>*(N) . This s clearly linear.
Example. Let¢ : R" — R™ be a collection of functior{®, ..., ¢,,) . Then
dy¢ : R" — R™
so this is simply a generalization of a Jacobian.

Chain rule

19



Robert Krzyzanowski Representation Thélmtes

ConsiderM 2 N 2 P withce M . Thelo®: M — P and
dx(\lj o (I)) = d<I>(x)77D o dxq)
Then

d, do 1/1

with dx(\l/ o (I)> LM — Tz/)(@(x))P-
Vector fields

A vector field is a mapX that takes to each peiat M a tangent vectaX € TM
"in a smooth fashion." For eache M X, € T,M  and as suchapC*(M) — R..
So, do the following. Fix arf € C*°(M) . Then we get a fuotil/ — R given by
x — X,(f). A vector fieldX is smooth if for alf € C*(M) z+— X, (f) M — R )is
smooth.

Given any coordinate chait, x4, ...,z, ,then a vector field loa described as
( ) Zak a,A
as before (see blue above). We requjrer) to be atdnfionction.

For anyf € C*>(M) , we associate with it another function

X(f) € C®(M) given byz — X(f) .
So we can think of a vector field as & -linear map C*(M) — C*(N) that
satisfies
X(fg) = fX(9) +9X(f)
That is, a vector field is a differential operaborC>° (M) .

The tangent bundlg'M o/ is the unibf..,, T M topologizeduch a way
that for all smooth vector fields , the map— X, is toawous (and indeed smooth).
In other words, we take the "simplest" / "nicestpdlogy. We want open sets to be all
subsets such that if we have any of these mapsX, if aredpull them back onto the
manifold, we want those to be open.

If X,Y are vector fields an&XY is not one, then

XY(fg) = X(Y(fg) = X(fY(9) +9Y(f)) =
X(f)Y(g) + fX(Y(9) + X(9)Y(f) +9X(Y(f)) =
fXY(g9) +gXY(f) + X(f)Y(g9) + X(9)Y(f)

so if we consider

(XY =YX)(fg) = fXY(9) +gXY(f) + X(f)Y(9) + X(9)Y(f) —
fYX(g) — gV X(f) — X(f)Y(g9) — X(9)Y(f) =
f(XY =Y X)(9) + 9g(XY =Y X)(f).

So if we define
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[X,Y]:=XY -YX
then[X, Y] is a vector field. This vector field satisfiae condition
(X, [Y,Z]|+ [Z,[X,Y]]|+ [Y,[Z,X]] =0,
the Jacobi identity. Furthermorey, Y] = —[Y, X]
Definition. LetL be a real vector space.llf is equipped withli@mear map
[, ]:LxL—1L
satisfying the Jacobi identity and is anti-symnegtitien it is called a Lie algebra.

Lecture 18 (February 25, 2009) -
Lie groups

A Lie group is a smooth manifold that's also a grothat is, we hava1  with maps
*: M x M — Mwithi: M — M such that both are smooth, and thé, x, 7)

Examples

- R’ + , —
-R*, X,z %

- GLy(R) C R* (a (Zariski) open set iR* ) €8L,(R)  will be a manifol

Let's look at the last one in detail. What is matniultiplication?

a b e f\ _ [(ae+bg af+Dbh
¢c d)\g h) \cet+dg cf+dh

a b 1 d —b
(C d>.—>m(_c a)smooth.

FurthermoreSL,(R) is also a Lie group.

Inversion is

Lie algebra

From here on, we will let7 mean a Lie groupGlf aikie group, fixg € G . Then there
exists a map

Ly:G—G

given by h +— gh . This will be smooth. As such, it makense to talk about the
derivative of this function. Thus, we have a map, : 7, G — T;,G

We say a vector field{ o is called invariantdifL,(X;) = X, for all
g,h € G. OnR?, for example, we can look at the constantorefield.

In general, ifu € T,G , we define a vector field* 6h by
Xy = doLy(u),
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wheree is the identity. We claii* is invariant. ldenwe need to check that
dp Ly (X)) = Xy
Now, we need to check
dpLgy-1 de Ly (uw) = deLg(u), that is,

Lyt
G L, g,

with the firstG mapping to the last Wy, (se— h+— g ). Bohecking that this is
true is simply the chain rule.

Hence, there is a one-to-one correspondence batwaeariant vector fields and
T.G.

Next, if X andY are invariant vector fields, thenis@X, Y]. (check this explicitly
just for "fun" :) ) Letyy be the map froffiG  to invanit vector fields.

Definition. The Lie algebra of a Lie grodp gs=7.G  with Lie tkat
[u, v] = 7 ([X", X)),
or what is the saméX*", X"],

Example. LetG = (R, +). ThenL,: x — x4 ¢ . The derivativé L, : identity. What
is an invariant vector field? The tangent spacé @R. So, it will be

Xp=u
with u, h € R. Now, let's look at what brackets areXif dan are two vector fields, and
f : R — R is a smooth function, then
Xnf = f'(h)Xn

"the value ofX ory atthe poiht will be the detiva of f ath timesX atk " (notice
X, € R). So, now,

(XY —YX)f=XYf-YXf=X(Yf)-Y(Xf)=
XY f)=Y(X-f)=XY)f'+Y - X(f) =Y(X)f = X-Y(f) =
XWf'+Y X" =Y(X)f =XV f"=XV)f =Y (X) [ =
(XY) =YX f =XV =Y - X)f.

For invariant ("constant) vector fields, their tatives are going to be zero. Hence,
[X,Y]=0
for invariant vector fields. Hencgg = {R, [X,Y] = 0}
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Lecture 19 (February 27, 2009) -

Exponential map
If X is a vector field on any manifold and: (a,b) — M is a sitiocurve, theny
is called an integral curve fof ¥t € (a,b) ‘f,l—z = X,

Now, we can think ofa,b) ask -dimensional manifoleénie, for any € (a,b) , it
makes sense to talk about

dyy @ di(a,b) — Ty M.

This is naturally a linear map. What is a linearpnfiiom R — V' whereV/ is a vector
space? This is a choice of a vector V' . Thén, gyeessa vector, usually denoted
by d~/dt. Then

dl(f) _ df(y(1)

dt dt

tol
Theorem 1. Given a vector field{ and am € M , there existssan 0 arsthooth
curvey : (—e,e) — M such thaf(0) =m ang is an integral curve for

Theorem 2. Given a vector field andame M 4 : 1, - M and: [, — M
are two solutions to the above differential equatfare integrals curves), then

71(0) =72(0) =m
impliesy; =y, onl; N I, .

If for all m € M, any integral curve as above f&r canex¢ended tR , theX s
called completeFact. Any vector field on a compact riwhth is complete.

Example. Take the upper half-plane @&  not including: 0  t Kebe the constant
vector fields with unit vectors pointing south. Thiategral curves will be ones pointing
straight down. However, this won't work, because'wa into a wall”.

We define flow as follows. When we have a completetor fieldX onM , we have
a notion of flow onM : A family of map®,; : M — M for eachale € R can then be
given asP;(m) = ~v(t) where is the integral curve for théisBas~(0) =m.

Fact. If G is a Lie group, then every left-invariant vectield is complete.

Definition. (exponentiallet G be a Lie group, and lgt=7.G . For eache g , let
X" be the associated invariant algebra abgl  the fldohen let

exp :g — G with exgov) := ®(e) .
Properties. (1) exp: g — G is smooth.
(2) d exp : g — g will be the identity.
(3) By the Implicit Function Theorem, exp is a Ibdd&feomorphism.
Lemma. If ®: G — H is a Lie group homomorphism, then
d®.:g—b
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is a Lie algebra homomorphism, and the followinggdam commutes:
d®,
g—b
exp | | exp

G — H.
K

Example. Let G = GL,(R). Theng = M,.,(R) % byr matrices). Then the map
exp: g — G is the classical exponential,

expX =S %,
n=0

n!

In particular, letH be a Lie subgroup@f.,,(R) ( eXL,(R) )te H— GL,(R)
be the embedding. Thet®, : h — g  will be an embedding ¥ h we want to know
what expX is. Well,

P, (expyX) = exp; X = > X0 .
n=0

n!

Adjoint group
Giveng € GG, we have a map (conjugation)
ad,: G — G withz— gzg! and—e .
Then Aqd :=d.ag : .G — T.G . Hence, Ad g — g . Hence,
g€ G means Ade End ,
and in fact Ag = ( A¢)~" , with Ad € GL(g) . Then
Ad: G — GL(g),

so Ad is a representation 6f onto its Lie algefrais is called thedjoint represen-
tation. A groupG is called of adjoint type if Ad is faith.

Fact. Commutative groups are not adjoint.

Lecture 20 (March 2, 2009) -

Tensor algebra (tensor products and exterior produts)

Let V andW be two real vector spaces. &6/, W) be the frector space
generated by elements of the fornx w o V,we W . L&, W) Hoee qub-
vector space generated by elements of the form

(Ul + U27w) - (Ul,w) - (U27w>7
(v, w1 + ws) — (v, w1) — (v, W),
((Z’U,U)) - a(v,w),
(v, aw) — a(v,w).

WeletV @ W = F(V,W)/I(V,W) . Then we have maps
VxW—FV,W)=-VeW (thatis,(u,v) —u®uv))
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with ¢ : V x W — V @ W the natural bilinear embedding. We can charae tensor
products by a universal property.Uf is a vectpace andy is a bilinear mapping
p:V xW — U, thenthereis anique linearmap VoW — U  with= ¢ o)

Properties. (VoW =WV .
BVaWelU)2(VeW)U.
@V*@W ~ HomV ,W).

Exercise. Prove these. (Later edit by Robert: Well, | gubsse is nothing to prove
except part (c))

Letp € V* ® W. How would we associatezac ~ HOMm W)  ? Well, we date.
define a map

V¥x W — Hom(V, W) (v, w)(v) — v*(v)w.

Then using the above property of tensor productsgetV* x W — V* @ W so get can
takeV* @ W — Hon{V, W) .

Exercise. Do the above computations and show the map estitwe.
In particular, dimVV @ W = dim HorfV*, W) = dimv* - dimV = dirlr - did/

Notation. We will call

V. 9VeV'e. V"
rd S
(r, s)-tensors.

Definition. The wedge product
k-times
NV =To.aV/ L)
where
I, (V') = {sub-vector spaces generated by symbpls ... ® v s.t. foeset j, v; = v;}

So in A°V,v®@uv=0. For example, i\’V, (v+w)® (v+w)=0 , but we can
multiply, so

VRV W+ wRXUV+wRuw=vw+wv=_0.

Hence,y ® w = —w ® v . In order to avoid confusion, NV, we wihote the image
of v ® ... ® v bywvy A ... Avi. This, in particular, implies that

VI N AV =—v2 Avi ANvg A ... AN V.
If o € S, thenv,y A ... Avgp) = S (vy A ... Avg) . Because of this, there is a well-
defined isomorphisn(/\kv) =~ AFV* . The pairing is defined akfes:
If &,...,& € V*andvy,...,v. € V', we define
(fl VANRA §k)(vl VANRA Uk) = det(fi(vj)) ,
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and note this is well-defined. Note that this isodjobecause elements of the form
v1 A ... A v, form a set of generators fN“V

Remark If {e,...,e,} is a basis fob , then the collectignA ... Ae;, , with< ... <
1, forms a basis fo;\’“V .

f we A"V, and ve A'V, thenuAv=(—1)"vAu .Exercise. Prove by
induction.
N.B. If k > n, then\*V =0 . lfk =n , thep\"V =1 .

Let M be am -dimensional manifold. Let
N TM = N(TM)"

reM
We'll call a map

w: M — N'T*M

a differential form of degreé¢ iz € M ,w(z) € N"(I, M) ("stands abow").
Second, for all vector field&, ..., X;, , we want the funotiol — R given by

= w(z) (Xi(x) Ao A Xi(x))

to be smooth. And, as usual, you gNéT*M the stresttinat make all differentiable
forms smooth.

If (U,¢) is a coordinate chart oM , and,...,y,,  a coordinattesy, then take
{0/0y;} as a basis fof, M . The dual basis will be denotedday}. So a differential
form locally looks like:

]

s

11 <

fil 77777 i dyi1 VANAN dyik-
k

The above smoothness requirements then becomesghieements that the real-valued
functionsf; _; are smooth. Then

1 ifi,=j
, 0 9 ) = ) = p—Jp
(dyi, A ... /\dyk)(ayh A A f‘)yfk) : Sd%t,q < k(éngq) {0 otherwise.

So, we can "pick out” functions one at a time udimg superization of the Kronecker
delta.C]

Lecture 21 (March 4, 2009) -

Let w € A¥(M) with w ak -alternating multilinear form on thpage of vector fields.
Then we can evaluate

W(X1, .y X)) (M) = w(m)(X1(m), ..., Xg(m)) M — R).
Exterior derivatives

If feC>®M), f: M — R, we have an associateld f : .M — R . Effectively,
we can think ofif : TM — R . IfX is any vector field, we caefide the value
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for anyx € M . Hence, we can think @f  as a one-form\dnthat is,df € AY(M) . It
is then standard to think 6f>°(M) = A°(M)  (the zero-forms).The

d: A%M) — AYM).
For eacht , there is a unique mapA* (M) — *AM)  suchdRat 0 ishat

Ak(./\/l) iAkH(M) iAI”Q(M)

with d(f) = df. In local coordinates, this is given by tididwing:
d(f dai, Adag, A Aday) = S 20 day Aday, A A da,.
i=1
Properties. (a) If w = n in a neighborhood of a poipt , théwn = dn  ineaghborhood
of p (so it's local).
(b) If w1 € A7(M> andwg is any form, thedil(wl A LUQ) =dwi A dws + (—1)%01 A dws.
Pullbacks

If v and w are two vector spaces ovVRr , then a rfiag” — W ndudes a map
f*: W* — V*. What doesg*(W*) do? It's supposed to b&in . So, gould be able
to takef*(w*)(v) forallkb € V' . Well, we can just define

fr(w)(v) = w*(f(v)).

If o: M — N is a map of differentiable manifolds, for arky we'll define a map
S : AF(N) — A*¥(M). For anyzx , there is a map

dyp : TyM — Tgo(m)N (dx(p>* : (Tgo(x)N>* - (TCEM)*
This introduces a map

Classically, we would do this as follows.
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We haveyy o p o' : R™ — R™ given byry, ..., x,,) — (hi(z),..., hy(x)) anda
differential form

w=Y" fi i dyi, A ... \dy;,

Z’],...,Z’k

w30 S (@), s hn(2)) d(hi, (2)) Ao A d(hi ()

whered(h; ) = S, 2 dxj .

Example. Consider the mag? — R® given by, y) — (zy?, 23,5%) . Call these
(x1,y1, z1) and consider the two-form

x1dry Adyy + yi1z1 doy Adz + 23 dyy A dz.
Now we want to pullback
(zy®)d(zy?) Ad(2®) + 2y d(zy?) Ad(y?) +y°d(a®) Ad(y?). (%)
Now,
d(zy?) = y? dx + 2zy dy, d(y?) = 2y dy, andd(z?) = 3z* dx .
So,
d(zy?) Ad(z?) = (y*dx A 3x2dz) + (2zy dy A 32°dx) = —623y dx A dy,
d(zy?) A d(y?) = 2y> dz A dy, and
d(z®) A d(y?) = 62y dx A dy.
Hence, (*) becomes

(2y?)(—62%y) dx A dy + (23y?)(2y%)dx A dy + (y°)(62%y)dx A dy =
(—6z%y® + 2239° + 62%y")dx A dy.
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Thus, that is the pullback of the above differdrftam. 1
Properties. (a)é andl commute. That §dy(w)) = 61(dw)

(0) 09 (w) (X1, -y X&) (M) = W) (A (X1m), +vs (X)) With m € M, where
the X; ,,, notation means to evaluafe nat

Lie groups
We call a formw orG left-invariant if
lyw=w
[the pullback of the left invariant] for ajl € G

Fact 1. If wis a left-invarian& -form irG and;, ..., X; are leftMariant vector fields
onG thenu(Xy,..., X}) is constant.

Fact 2. If a 1-formw , and two vector field§,Y  are left anant, then
dw(X,Y) = —w([X,Y]).

Proof. Exercise. Hint: Prove thatdf ispa -form on amfold M, andYy, ...,Y, are
vector fields, then

D . ~
dw(Yy, ..., Y,) = Z(—l)lYiw(Yb, LY Yp) +
=0

Z(_l)]—ww([y;a Yj]? Yba ey 7?7ﬁ7 ey /i/ja ey Y}l)

i<j
Then use Fact 11

One other fact. lp : G — H is a Lie group homomorphisnenttp sends invariant
forms to invariant forms. Simple:

why?
6Ly 0p(w) =06(po Ly)w oy §(Ly(g) 0 p)w = 60 §(Lyy )w = dp(w).

Lecture 23 (March 9, 2009) -

Integration on chains

For eachp > 1 , leA? = {(ay,...,ay) € R?|> a; <1, each >0} .H#=0 ,we
denoteA’ = {0} . IfM is a manifold, a differentiable sirayyb-chain simplexr o\
isamap : A — M which extends to a smooth map from ehbeidiood ofA? toM .

A p-chain inM isc = > a;0; , where the; 's ape -simplices, #mla; € R. We
define a collection of mapg’ : A? — AP*1 for<i<p+1 .Fpe=0 ,we have

kJ(0) =0 and k)(0)=1.

Forp > 1, we want to define a may’ — APt . So, let's send

, p
kb (ai,...,ap) = (1 — Zlai, ap, ...,ap)
1=

29



Robert Krzyzanowski Representation Thélmtes

kf(al, ...,ap) = (al, ...,ai,l,O, a;, ...,a,p)
fort1 <i<p+1.

If ois ap-simplexinM g > 1 ), we define its th fade{ ¢ < p to)be the simplex
oj =00 kffl, with

p—1

INSLEUNEAV]
We define the boundary of
p .
do=> (—1)'c
=0
If we have @ -chaia = ) ajo; ,thedo =) a;00;
Example. Letp =2. Then

ki : Al =[0,1] — A% with a — (1 —a,a) @)
ki: A — A% with a+— (0,a) @)
ki: A — A% with a~ (a,0) ¢%).

Then

A% = (—1)°0" + (=1)' 0! 4 (=1)%02.
[Draw a picture. :) ]
Example. Letp = 3. Then

]{?% : (al, CLQ) (1 — a1 — ag,ay, CLQ)
ki« (a1, a2) = (0,a1,a2)
k3 : (a1,a2) — (a1,0,as)
)

k2 (a1, az) = (a1, az,0).
Theorem. 000 =0.
Proof. Easy exercise.

If p =0, we want to integrate differential -forms @n hains, andv is & -form,
i.e., afunctionf w=w(o( P .lIp>1 , theff w= [,, 6o(w) ,because

oA =M «— o:U—M [UCR).
f o= ajo,thenf w:=30a;[ w

Stokes's Theorem (First version) Ifo is ap -chaing > 1 ) in a differentiable manifold
M andw is a smoottp — 1) -form defined on a neighborhdati®@image of , then

fagw = fg dw.

Corollary (Fundamental Theorem of Calculus) Setp =1 and\ =R .

Lecture 27 (March 20, 2009) -
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The torus is a Lie group isomorphic ®"/Z* (homeomarpio S* x ... x S (&
times)).

Definition. A subgroupgl” of a compact Lie grotp is called aimaktorus if there is
no subgrou@” > T wheré” is a torus.

A maximal torus always exists. There exists a caeupeter subgroup @, so it must be
compact.T D = . IfT" does not exist, then id (identity)aignaximal torus. Then také
and look for7” such thal’ > 7" , with difff > difi . Hencesthéarch stops. Hence,
it exists.

Example. Look atSU(2) . IfG actson asét transitively, then
X =~ G/{stab of any poirt .

Moreover, ifG is Lie andX is a topological spacedaction is continuous, thep:
above is a homeomorphisnExercise )

Naturally, SU(2) acts o ((x1,y1), (z2,y2)) = 7172 + 1%z . Hence it preserves sets
of vectors such thdt, v) = 1
(67 'U) = {(17791) ‘ 171 + ylm = ]-}

But herezq,y; are complex numbers. Hence this is arepfedim3 (ourX ). It is easy
to check this action is transitive. Take f.r.t$hand find stabilizer.

(=)= )IE )G 2=

This meansaa +bb =1, ac+bd = 0,ca+db = 0,cc +dd = 1,ad —bc = 1. The

" = (0" conditions are equivalent. We can determine themguely. Let's find stabilizer:
stabilizer of(1,0) is the identity. The stabilizer leavinvariant orthogonal complement
to (1,0) which is1 -dimensional. Stabilizer SU(n —1) . BSU(1) ={1} , #te
stabilizer here is just the identity, so it is eqiént toS? :SU(2) =~ S? .

What are the maximal tori here? We can find attleas torus: diagonal matrices
a 0
0 o ')’
wherea € S" = {z: |z| =1} . Then

— a 0
(5 )

anda@ = |a|* = 1. The dimension of this toruslis , and of treug is3 .
Exercise: Show this torus is maximal.

Another example: consider matrices of the form

o D)6 )= )

Conjugation gives different subgroup.
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Main Theorem. All maximal tori in a compact Lie group are conjiga
Definition. Weyl subgroup of tord8 iy + G |gTg ' =T}
Proposition. Weyl group is finite
Example. A subgroup of a compact group does not have twbgact. Consider
{627”'”\/5 In € Z} c St
Everywhere denseEkercise. )
We claim Autl™ = GL(n,Z) . Indeed,
0—-72" - R"—=T" — 0.

Therefore, if we have a map: 7" — T™  then we have a ®Rap- 7" d wancan
factor through intd/™ . Now we need to check preseroperation. Why is it thgt
also preserves operation?

Proof. [of finiteness of Weyl group] LetN  be normalizand N, a connected
component. First notic& is a closed subgraffy(! =7  hjs implies compact, and
SO N |y, is discrete, compact (and so finite). We warshiow thatV, = 7" . We have

N = AutT = GL,(Z)

with Ny — id, i.e., any element d¥, commutes with areents ifl’, Ny O T . If we
show thatV, is torus then we are donex fR — N Is a aipepter subgroup af,
thena(R) is connected subgroup contairiing=- a(R) C T’

Lecture 28 (March 30, 2009) -

Maximal tori and Weyl groups

A torus is a Lie group isomorphic ®*/Z*  (in fact, amgim lattice A will do).
Then the torus will be isomorphic {q, S' .Gf is a Igeoup, then a subgrodp < G
is called a maximal torus if it is a torus thatriaximal (not contained in any other torus).
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o 1)<}

has no maximal tori, and neither dd&s

Algebraic Geometry Definition. A torus ovedr a field is& -form 6f, (i.e., this
will be (G/k)(k) =k, so for example fa§! |, this just says= {22 +y2 =1} )

Definition. For a Lie groupG' and a maximal tords , define tloemalizer to be
N={geG|gTg' =T}

Further, letW = N /T, called the Weyl group

Theorem. W is finite.

Main Lemma. LetG be a compact, connected Lie group, and’let a beaximal torus.
Thenthe mag: G/T x T — G given Wy, t) — gtg~'.

Noticeg: G x T'— G is given by(g, ) — gtg~' . This map has mapping deg¥ée In
particular,q is surjective.

Definition. (Mapping degree) Let/, N be compact, connected t@tkn-dimensional
manifolds, and lef : M — N . Then there exists @8gc Z (mapgegree) such that
foralla € A"(N),

[y [fa=(degf) [y «.
If deg f # 0, thenf is surjective.

Lecture 29 (April 1, 2009) -

Main Lemma. If G is compact, connected, affld a maximal toru§ jrithen the map
q:G/TxT—G
(T,t) — gtg™!
has mapping degre@/| £ 0 — ¢ s surjective.

Definition. (Mapping degree) Let/, N be compact, connected tikn-dimensional
manifolds, and lef : M — N . Then there exists @8gc Z (mapgewee) such that
foralla € A"(N),

fM f*Oé = (degf) fN a .
If deg f # 0, thenf is surjective.

We need to know™* deg (pullback of this different@in). NoticeG acts og using the
following: g € G

c(g):G—G z+ grg '

Clearly,c(g)e = e. Therd.c(g) : T.G — T.G .Hencg— Ad) (recallAgd:g—g )
is a representation of the compact grasip  on thiefidimensional vector spage
Hence there exists an inner product (metrig) ovaiiant under Ad.
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(u,v) = [ (7(g)u, m(g)v), dg.
Writeg =t @ t+. SetL(G/T) =t . So what we are really saying is that
g=1t® L(G/T).

If we take Ad 1, this will act trivially ort sinc& sicommutative (but nontrivially on
L(G/T)). Hence, we obtain a map Ag¢ :7 — Al{G/T)) . Then we have
differential formsd(¢7T'), dt , andg . On the other hand, weeha projection

m:G— G/T,
which introduces a mafy7 : g — T.7(G/T) . Notice thlatr(t) =0 . We can write
dem 1t ® L(G/T) — Tur(G/T),
sod.m induces amap(G/T) = T.r(G/T) .if= did akd= din ,then
m:G—G/T

gives us a pullback™ d(¢gT) € A" *(G) . [Btw all of this is in BroKefhere is an
orthogonal projection prg — ¢ alonf(G/T) . Considet gt . Waedt, € A" t*
(with e € T'). Then we can take

pridt, € AF g*.

Extend this to & -invariant differential form @n f adegreek , denotedt (abuse of
notation!). We can consider

7 (dgT) N dt.

Both of those aré&’ -invariant, and their wedge @s-mvariantn -form. As such, it would
bec-dg. Infactdg = 7*(dgT) A dt .Exercise . Show the integral of leftlis ndaright
is1. We know thelt partis . So just show the pulkef 7 is as well.)

On the other handy /T x T has a differential form givernhe following:
pri d(gT’) A pr; di
where

a/r Carxr BT

Thus
LG/TxT)=Tw(G/T) &t = LG/T) &t =g,
where the leftmost thing has identifl’,e) . Thepy ) = dg.
q:G/TxG— G
q*dg =detq- .
We define det by this equation. Question is: whétetq) (g7, t) ?

Proposition. (detg)(¢T,t) = det Adyrt™' — Eg/r) wherdg,r is the identity on
L(G/T).
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Proof. The formsig,d(g1") are left invariant und@t dt s leftaniant undefl’ . Then
GxT—-GxT—-G—G

~

(2,9) 2 (2, ty) & (g () (g2) " 22 (gt~1g7") (ga) ) (go) .

with a = (g,t) (wherel, and, mean "left translation by " dfeft translation byb ",
respectively). Notice

(gt 'g ") (g7)(ty)(gz) " = gt 'wtyr~'g = c(g)(c(t Hayz™"),

wherec(g) : G — G is conjugation. So the poirte) — (e,e) . We claim ithettq is
the determinant of the differential of this magred point(e, e) restricted to the subspace
LG/T)etCgat.O

Lecture 30 (April 3, 2009) -
We have amap : G — G/T whefé is a maximal torus. Then
dg=7m"d(gT) Ndt

on T, we havedt € A*T , wheré = diff . We can evaludétec A"t* .We had
t C g. This gives us a projection mgp_ t , orthogonal mtope. As such,

5t — gt
gives a map
Ao AT — Alge
Then we get
A6 (dt.) € N'g.

Extend this to a left-invariant differential fornf degreek onG . Another differential
formis

o = prid(gT) A pr; dt
where

r 5

ar et BT
Sodg isonG andv iso&/T xT . Now, we have a magz/T xT — G wlsch i
given by q(gT,t) = gtg~!. So we can pullbagkdg and this will beop-degree
differential form, and we have a top-degree diffi¢igd form o already, and since the
space of top-degree differential forms is 1-dimenal, we have
q*dg = (detq)a .

We start by writing a map

GxT—G

L/
G/TxT,.
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Then the exact map {8, y) — (gz, ty) — (9z)(ty)(gz) "' — (gt "9~ ) (g2)(ty)(gz) "
which is(z,y) — c(g)(c(t Dz -y-z71)

Exercise. GivenG x G — G by(hq, hy) — hihs , verify
deop:g@g—g (X,)Y)—X+Y,

Then with this exercise, we know the derivativéafy) — c(t 1)z -y -z tis
(X,Y) — Adg/r(t71) X +Y — X, then

(;() _ <AdG/T(t_1) — Egr ET)

detq = det/r) ( Adyr(tY) — ¢/7)

cosfd  sind
—sind co9

SO

wheret is of the form = <

Lemma. If ¢ € T is such tha{t) is denseii , then
(i) ¢~1(¢) has|W| points, and

(ii) detq > 0 at each of these.

Weyl Integration Formula

Let G be compact connected d@fid a maximal torustak®f continuous o' . Then

Ju £(9) dg = i f; [det(Bayr — Aduyr(t)) fo 1 (ot ™) dg] dt

We have

q:G/TxT—G L R given by (¢T,t) — gtg~' .
In general, when we integrate over conjugacy cksse
Joyr flgtg™") dg,
the integral i$) unless the conjugacy class isafimal dimension.

For now letG = U(n) ,andleD Cc G be the diagonal group. Then

A ]

is a maximal torus, anfd =~ S! x ... x S n( -copies). In this cake, Weyl groupi?/
will be isomorphic t0S,, (permutation group en lesde and the action will be by
permuting the diagonal entries. 4f is a conjuga@ss inG , since we know every
element ofG is diagonalizable since it is compa&t,know thaty N D # () . In fact, this
will be a singleW -orbit inD . Ift € yn D , then we claif -t C~yND { you
remember,W = N(T')/T (the normalizer & , moduld ). The whwydts is that
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(n,t) — ntn~!, which means thaitn=! € v . Then-t€~yND (since we assume we
are working with things that are normalizing theus). Now if f is a class function @i
then fp := f|p means thaf anfh, determine each otherf;So Il bevia function
which is W -invariant onD (with no further restriati®). The idea is that if we have a
representatiom aff , this will have a charagtgr icWiis a class function. Theg:|p
Secondy|p will b mjx; .
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