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Lecture 6 (January 26, 2009) -
Rational functions

If  with deg  and deg .0 D œ T D ÎU D œ 8 œ T 7 œ U� � � � � � + 
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Fundamental Theorem of Algebra

If  is a complex polynomial of degree  then  has a root in  (  s.t.T D � ! T b −� � ‚ α ‚
T œ !� �α ). Hence, we can factor

T D œ D � 1 D� � � � � �α ,

where  is a polynomial of degree  deg . Inductively, we obtain a factorization1 T � "

T D œ - D � - −� � � �#
3œ"

8

α ‚
3

  ( ) .

The  of a root  of  is the number of 's which equal In fact,multiplicity α α αT Þ3 3

# deg e f� �: A œ T�"

for any ,where preimages are counted with multiplicities.A − ‚

Basic fact.   A rational function extends continuously to a function  where0 À Äs s‚ ‚

‚ ‚s œ ∪ ∞ 0 œ TÎU 0 D œ ∞ U D œ !e f � � � �. This extension for  is given by  if  and! !

0 ∞ œ 0 D V D œ 0 D Á !� � � � � � ˆ ‰lim
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We can also compute the multiplicity of as a zero, or a pole, or a preimage of . In0 + Î,8 7

conclusion, in ,  has exactly  zeroes and  poles, counted with multiplicity (with‚ 0 . .
. œ 0 œ 8ß7deg max ).e f
Examples.   If deg , then it is of the form0 œ "

0 D œ +ß ,ß -ß . − +. � ,- Á Þ� � +D
,
-D
.  with  and 0‚

It defines a homeomorphism of  to itself. (for example,  rotates the Riemann‚s 0 D œ "ÎD� �
sphere around the  axis).   What does  do to the Riemann sphere?B 0 D œ D"

#Exercise. � �
Ahlfors Ch 2. §1.4

What is the general form of a rational function  with   with ?  What0 0 D œ " aD D œ "k k k k� �
is the relation between 's set of zeroes and its set of poles?0
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Consider such a function with deg :  (rotation) or . We also saw" 0 D œ / D 0 D œ "ÎD� � � �3)

in class we can have  with .   Show this satisfies the above0 D œ + Á "� � k k+�D
"�+D Exercise.

condition.

For deg , take for example  for .� " D 8 � "8

Now, taking the product:

0 D œ / D� � #3 8

3œ"

5
+�D
"�+D

) ,

we claim this is such functions (classifying functions that preserve the unit circle,all 
0 D À D œ " œ D À D œ "� � e fe f k kk k ) ).

Partial fraction expansion

Start with . Our goal is to express  as a sum of rational functions,0 D œ T D ÎU D 0� � � � � �
where each sum has  pole:Ÿ "

0 D œ T D 
 V D� � � � � ��! 3

where  is a polynomial, and  are single-poled rat'l functions.T D V! 3� �
Examples.   (1) If  with . We then compute0 D œ œ 
 EßF −� � #D
" E F

D�" D�# D�" D�#� �� � ‚

E D � # 
 F D � " œ #D 
 "� � � � .

This implies  and  (by comparing coefficients of  and ).E œ �$ F œ & D D œ "" !

(2)  Let  (deg deg ). Then0 D œ T ! U� � #D
"
D�" D�#� �� �$

E F G H
D�" D�# D�# D�#


 
 
 EßFßGßH −� � � �# $  with .‚

If  when deg deg , then the polynomial term  has degree0 D œ T D ÎU D T � U T D� � � � � � � �!

deg deg . ThenT � U

0 D œ œ ED 
 F 
 
� � D 
# G H
D�" D�"D�"

$

# #� � � �

and this gives us four equations, and we can solve to show this

œ D 
 # 
 
% %
D�" D�"� �# .

Lecture 12 (February 11, 2009) - Linear Fractional
Transformations

Linear Fractional Transformations

Theorem.   If a LFT  takes a circle  to a circle  (circle here means circle or a line --0 G G" #

i.e. a circle on the Riemann sphere), then  takes pairs of symmetric points  about0 Dß D� �‡
G 0 D ß 0 D G" #

‡ to symmetric points  about .� �� � � �
Note: Symmetric here for a line means symmetric about the line (image under reflection
across the line).



Robert Krzyzanowski              Algebraic Topology I Notes

3

The idea is for  distinct points on the circle , then the cross ratioD ß D ß D G" # $ "

\ D ß D ß D ß D œ \ D ß D ß D ß D� � � �" # $ " # $
‡ ,

because if the points are sent to 0  then the "circle" will be the line  and so .ß "ß∞ D œ D‘ ‡

Example.   p83 #6 in Ahlfors. Suppose a linear fractional transformation takes a pair of
concentric circles to concentric circles. Show that the ratios of the radii are the same.

Solution.  The idea is to show the center is taken to the center and  to  (so all we can∞ ∞
do is scale).

By pre-composing with an affine transformation ( ), we can assume the center is0 +D 
 ,
at , the inner radius is , and the outer radius is . Similarly, we can compose the! " V � "
image with some  and have center , inner radius , and outer radius . By+ D 
 , ! " W � "w w

further post-composing with  if necessary (if they switch), we may also assume thatWÎD
the inner circle is sent to the inner circle (circle of radius  goes to circle of radius ). We" "
then claim that  and . Well, the image of the circle of radius  is0 ! œ ! 0 ∞ œ ∞ "ÎV� � � �
the circle of radius . Continue reflecting circles, getting closer to , and they are sent"ÎW !
to circles with radii tending to . By continuity, . Similarly, reflecting on the! 0 ! œ !� �
Riemann sphere yields . Now, remember  (a LFT), and so0 ∞ œ ∞ 0 D œ� � � � +D
,

-D
.

0 ! œ ! 0 ∞ œ ∞ 0 D œ D 0 W œ W 0� � � � � � � � and  will imply  and  so that  is a rotation and+
.

so .V œ W

Look up .Schwartz Reflection Principle

Example.   p83 #7 in Ahlfors. Find a LFT which carries  and  to a pairk k ¸ ¸D œ " D � œ" "
% %

of concentric circles. What is the ratio of the radius?

Solution.  We can assume the inner circle has radius . We have to find an LFT sendingV
our circles to  and compute .e f e fk k k kD œ " ∪ D œ V V

Note  because the cross product is an invariant under\ �"ß !ß ß " œ \ �Vß�"ß "ß Vˆ ‰ � �"
#

LFT's. So, find LFT such that

�" È !ß ! È "ß "Î# È ∞ß " È crossproduct,

and one such that

�V È !ß�" È "ß " È ∞ßV È crossproduct.

The answer is .V œ # 
 $È
Example.   . Where is it conformal? What does it do?  Well, notice0 D œ D 
 œ� � " D 
"

D D

#

0 w� �D œ " � œ ! Í D œ „ ""
D#

We defined conformal as derivative does not vanish. So, this one is not. We can easily
see that if , then  (since )  Re  cos . In general,D œ / D 
 œ D 
 D D œ œ # D œ #3 " "

D D
) )

k k � � ˆ ‰ ˆ ‰D œ < DD œ < œ 0 D œ D 
 œ B 
 
 3 C �Ö Ö Ö# " D D
D < < < <

C C
# # # # .

This is an ellipse!
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Hence,  takes  or 0 Ï ! Ïƒ ‚e f ƒ ‚ by conformal homeomorphism to .Ï �#ß #c d
Lecture 16 (February 20, 2009) -

Let  be a closed curve in . The winding number is# ‚

( # ™ #� � 'ß D œ − D Â"
# 3 �D

.
1 3#

3  for .

We now look at Ahlfors's proof that  is constant on connected components of ( # ‚ #� �ß D Ï
(as a function of ). It suffices to show that  is constant along straight paths inD ß D( #� �
‚ #Ï . Consider the linear fractional transformation

D�D
D�D

!

"
.

Then log  is well-defined and analytic for all . Further,P D œ D Â D ß D� � c dˆ ‰D�D
D�D ! "

!

"

P D œ �w " "
D�D D�D� �

! "

so that

' Š ‹
#

" "
D�D D�D! "

� œ !.

If  is a closed loop on a domain of , then# P

# 3 ß D œ .D œ .D œ # 3 ß D1 ( # 1 ( #� � � �' '! "
" "

D�D D�D# #! "
.

Lemma.   If  lies in the unbounded connected component of , then .D Ï ß D œ !‚ # ( #� �
Proof.   Choose a disk  containing . Then if you take a , then the function H D Â H# !

"
D�D!

is analytic on , and hence by Cauchy's Theorem,H

'
#

.D
D�D!

œ !.

This is the same as saying . By the previous lemma,  for all  in( # ( #� � � �ß D œ ! ß D œ ! D!

the unbounded component. �

Then the goal is to show Cauchy's Integral Formula: if  is analytic on a disk  and0 H
# # is a closed curve on  with , thenH D Â!

( #� � � � 'ß D 0 D œ .D! !
"

# 3 D�D
0 D

1 #
� �

!
.

Theorem 5.   [Ahlfors] Let  be analytic on a disk, except possibly at finitely many points0
' ' '" # 8ß ß ÞÞÞß − H. Assume

lim
DÄ

4
'4
� � � �D � 0 D œ !' .

Then  for any closed loop  in .' e f
#
0 œ ! HÏ ß ÞÞÞß# ' '" 8

Proof.   (sketch)  It suffices to consider integrals over rectangles. Because  if '
`V0 œ ! 0

has no singularities on  (a rectangle), we can consider the following special case. Let V V
be a square centered at one of the 's (singularities). We have'4

J D œ 0� � '
D

D

!
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with . D − HÏ ß ÞÞÞße f' '" 8 �

For , note  . Hence,D − `Vß 0 D Ÿ Ÿ Ÿ † % † #j Ÿ )k k� � ¹ ¹' '&
' 'k k k k

k k
D�D D� D� j`V `V

.D ".D

! 4 4

we can make the integral arbitrarily small,

¸ ¸' '� � k k k k� �`V 0 D .D Ÿ 0 D .D Ÿ † )`V & .

Thus,  for any rectange with boundary avoiding .'
`V 40 œ ! '

Cauchy Integral Formula

Fix  in the disk  and . Consider  on . Then  is analytic# #H D − J D œ H J!
0 D �0 D

D�D� � � � � �!
!

in , andHÏ De f!
lim
DÄD

!
!

� � � �D � D J D œ !.

By Theorem 5,

' ' ' '� �
# #
J .D œ .D œ .D � 0 D .0 D �0 D 0 D

D�D D�D D�D!
.D� � � � � �!

! ! !

Then . 0 D D œ .D� � � � '! " !
"

# 3 D�D
0 D

( #
1 #

� �
!

�

Example.  Exercise 2.2 #2 is to compute

'k kD œ#
.D

D 
"# .

We write . Hence," E F
D 
" D
3 D�3 D
3 D�3

3Î# �3Î#
# œ 
 œ 


' 'k k k kD œ# D œ#
.D 3 .D 3

D 
" # D
3 ## œ � ' � � � �k kD œ#
.D 3 3
D�3 # #œ # 3 � # 3 œ !1 1 .

Theorem.   If  is analytic on a disk  centered at , and suppose  is a circle aroundJ H D! #

D 0 H!
8. Then all derivatives  are analytic on , and satisfy� �

0 D œ .� � � �
� �

8
!

8x
# 3

0

�D
� � '

1 #
'

' !
8
" '

for any  inside  (notice ).D ß D œ "# ( #� �
Lemma.    Let  be a continuous function defined on some curve . Then: #

J D œ .D� � ' : '
'
� �
�D

is analytic.


