Lecture 3 (January 16, 2009) - Sheaves and Maps of Sheaves

Maps of sheaves

Recall from last time that if we start with X a topological space and F a presheaf, we can define |F|, the etale space. Furthermore, sections of $|F| \xrightarrow{\pi} X$ form a sheaf $F^{\#}$. For all open sets $U \subset X$, $f \in F(U)$ induces a continuous map $U \to |F|$ and thence we have a map

$$F(U) \to F^{\#}(U)$$

$$\uparrow \qquad \uparrow$$

$$F(V) \to F^{\#}(V)$$

with $U \subset V$. Exercise. Check that this commutes (by using the definition of $F^{\#}$).

So we have a map of $F \to F^{\#}$ presheaves, where $F^{\#}$ is a sheaf.

Lemma. If F is a sheaf and $F^{\#}$, a sheaf of sections of |F|, is canonically isomorphic to F itself.

Proof. We need a definition: if $x \in X$ and F is a (pre)-sheaf over X, the stalk F_x of F at x is $\lim_{U \to T} F(U)$, i.e., $\prod_{U \to T} F(U) / \sim$, where if $x \in U \subset V$ and $f \in F(V)$, then $f \sim f|_U \in F(U)$, i.e., this is $\pi^{-1}(x)$ for $\pi : |F| \to X$, so $f \sim g$ if there is an $x \in W \subset F(U)$ $U \cap V$

Theorem. If G is any sheaf of sets and $\varphi : F \to G$ is a map of presheaves is a map of presheaves, it factors uniquely through $F^{\#}$.

$$F \xrightarrow{\varphi} G \\ \eta \backslash F^{\#} / \overline{\varphi}$$

Proof. First, let's show that φ induces a continuous map $|F| \xrightarrow{\varphi} |G|$. For every U, we have $\varphi_U : F(U) \to G(U)$. Hence,

$$|\varphi_U|: \varphi_U \times \mathrm{id}_U: F(U) \times U \to G(U) \times U.$$

Here we have to check that these maps are compatible with the equivalence relations defining |F|, |G|. But this follows from $F \to G$ being a map of presheaves. \Box

Lecture 4 (January 21, 2009) - Sheaves and Schemes

Recall from last time that giving a sheaf F is equivalent to giving |F|, an etale space. We have $U \hookrightarrow X$ with $|F| \xrightarrow{\pi} X$ and $U \xrightarrow{f} |F|$ (in here, $|F| \Leftrightarrow$ sections of π over U).

Maps of presheaves

This simply states for a map $F \xrightarrow{\phi} G$, then $\forall U \subset V$,

$$F(U) \xrightarrow{\phi_U} G(U)$$

$$\uparrow \qquad \uparrow$$

$$F(V) \xrightarrow{\phi_V} G(V).$$

If F and G are presheaves of abelian groups, then $\ker(\phi) : U \mapsto \ker \phi_U$, $\operatorname{coker}(\phi) : U \mapsto \operatorname{coker} \phi_U$, and $\operatorname{Im}(\phi) : U \mapsto \operatorname{Im}(\phi_U)$.

Recall that ker(ϕ) is by definition the pullback of fiber products:

$$\begin{array}{c} \ker \phi \to 0 \\ \downarrow \qquad \downarrow \\ A \xrightarrow{\phi} B \end{array}$$

Similarly (with \downarrow replaced with \uparrow , 0 and ker ϕ switched, and ker ϕ replaced with coker ϕ), we can characterize the cokernel if we take $0 \to Q$, coker $\phi \to Q$ and $B \xrightarrow{\beta} Q$.

Furthermore, (1) im $\phi \to B$ is injective, i.e., ker = 0. (2) if ϕ factors through any other subobject J of B, then im $\phi \subseteq J$. If $\phi : F \to G$ is a map of sheaves, what are ker ϕ , coker ϕ , and im ϕ in the category of sheaves? Well, (1) presheaf kernel of ϕ is already a sheaf and hence is the sheaf kernel, so ϕ is injective as a map of presheaves if and only if it is injective as a map of sheaves. <u>But</u> the presheaf cokernel need not be a sheaf. Rather, the sheaf cokernel is the sheafification of presheaf cokernel.

Sheaf cokernel of $\phi = 0 \Leftrightarrow \phi$ is an epimorphism in the category of sheaves $\Leftrightarrow |\phi| : |F| \to |G|$ is surjective $\Leftrightarrow \forall x \in X, \phi_x : F_x \to G_x$ is surjective.

Example. Let $X = \mathbb{C} \setminus \{0\}$ and let $\mathcal{O} =$ sheaf of holomorphic functions on X, and $\mathcal{O}^* =$ sheaf of non-vanishing functions on X. Take $\mathcal{O} \xrightarrow{\exp} \mathcal{O}^*$, with $U \subset \mathbb{C}^*$, $f \in \mathcal{O}(U) \mapsto \exp(f)$. This is surjective, i.e., $\forall x \in \mathbb{C}^*$ and for all open neighborhoods $x \in U \subset \mathbb{C}^*$ and $g \in \mathcal{O}^*(U)$. Further, $\exists nbhd V$ of x with $x \in V \subset U$ and $f \in \mathcal{O}(U)$ such that $\exp(f) = g$. If we take $U = \mathbb{C}^*$ and g = z, then $\neg \exists f$ on \mathbb{C}^* s.t. $\exp(f) = z$. In other words, $\mathcal{O}(\mathbb{C}^*) \xrightarrow{\exp} \mathcal{O}^*(\mathbb{C}^*)$ so $\mathcal{O} \to \mathcal{O}^*$ has non-zero cokernel as a map of presheavs. This is the starting point for sheaf cohomology.

Example. The fundamental group $\pi_1(\mathbb{C}^*) \cong H_1(\mathbb{C}^*, \mathbb{Z}) \cong \mathbb{Z}$, since we just take paths around the punctured disk (on the Argand diagram).

Definition. We can have an exact sequence of sheaves on *X*:

$$0 \to F \xrightarrow{i} G \xrightarrow{e} H \to 0$$

i.e., i is injective and is the kernel of e, e is surjective & is the cokernel of i (all in the category of sheaves). But for a given $U \subset X$ open,

$$0 \to F(U) \to G(U) \to H(U) \to "H^1(U,F)" \to \dots$$

where the last \rightarrow need not be surjective.

Schemes

A scheme is going to be a topological space X equipped with a sheaf of rings \mathcal{O}_X such that stalks $\mathcal{O}_{X,x}$ at each $x \in X$ are local rings ("locally ringed space").

Example. If M is a C^{∞} -manifold and $U \subset M$, let $C^{\infty}(U)$ be C^{∞} functions on U. Then if $x \in M$, $C_x^{\infty} =$ germs of C^{∞} functions on U. If we look at the maximal ideal $m_x \subset C_x^{\infty}$, then m_x/m_x^2 is related to the tangent space.

Affine schemes

If R is a commutative ring (always with 1), then $\operatorname{Spec}(R)^{\operatorname{sp}} = \operatorname{set} \operatorname{of} \operatorname{prime} \operatorname{ideals} \operatorname{in} R$, with the following topology: closed sets are $V(\mathfrak{a})$ with $\mathfrak{a} \subset R$ an ideal and $V(\mathfrak{a}) = \{\mathfrak{b} \mid \mathfrak{b} \text{ prime} \text{ and } \mathfrak{a} \subset \mathfrak{b}\}$. If $f \in R$, then $V(f) = \{\mathfrak{b} \mid f \in \mathfrak{b}\}$ "f vanishes at \mathfrak{b} ."

Lemma. (1) \mathfrak{a} and \mathfrak{b} are ideals with $V(\mathfrak{ab}) = V(\mathfrak{a}) \cup V(\mathfrak{b})$,

(2) $V(\sum a_i) = \bigcap V(\mathfrak{a}_i).$

(3) $V(\mathfrak{a}) \subset V(\mathfrak{b}) \Leftrightarrow \sqrt{\mathfrak{a}} \supset \sqrt{\mathfrak{b}}$ with the radical defined

$$\sqrt{\mathfrak{a}} = \{ f \in R \, | \, \exists n \in \mathbb{N} \, f^n \in \mathfrak{a} \}.$$

(4) \emptyset , X are closed with $\emptyset = V(R)$ and $X = V(\{0\})$.

Exercise. Show that $\sqrt{a} = \bigcap_{\substack{\mathfrak{b} \text{ prime} \\ \mathfrak{a} \subset \mathfrak{b}}} \mathfrak{b}$.

Lecture 5 (January 23, 2009) - $\operatorname{Spec}(R)$

Let *R* be a commutative ring. We write X = Spec(R) to be the set of prime ideals $\mathfrak{p} \subset R$. Then we have the Zariski topology. A set $U \subset X$ is open means if $U = X \setminus V(\mathfrak{a})$ with $\mathfrak{a} \subset R$ an ideal, then in particular for $f \in R$, $X_f = X \setminus V((f)) = \{\mathfrak{p} \mid f \notin \mathfrak{p}\}$ (where $f \notin \mathfrak{p}$ is equivalent to saying $f \not\mapsto 0$ in R/\mathfrak{p}).

Recall localization: if $S \subset R$ is a multiplicative set, then

$$S^{-1}R = \left\{ \frac{r}{s} \mid r \in R, s \in S \right\} / \frac{r}{s} \sim \frac{r'}{s'} \text{ if } \exists t \in S \text{ s.t. } ts'r = tsr'.$$

If $f \in R$, then $\frac{r}{f^n} \in R_f = \{f^n \mid n \in \mathbb{N}\}^{-1}R$. Recall that

 $\{\text{primes of } S^{-1}R\} \stackrel{1-1}{\longleftrightarrow} \{\text{primes of } R \text{ disjoint from } S\}.$

If $S \subset R \to S^{-1}R$ and $A^* \subset A$ with $R \xrightarrow{f} A$ a ring homomorphism $(f(s) \subset A^*)$, then it factors uniquely through localization, $S^{-1}R \xrightarrow{\overline{f}} A$. So, X_f is homeomorphic to $\operatorname{Spec}(R_f)$. If $\mathfrak{a} \subset S^{-1}R$ is an ideal with $V(\mathfrak{a}) = \{\mathfrak{p} \mid \mathfrak{p} \supset \mathfrak{a}\} \xrightarrow{1-1} \{\text{primes of } S^{-1}R / \mathfrak{a}\}$ with $R \to \{\text{primes of } S^{-1}R/\mathfrak{a}\}$ and $\{\text{primes of } S^{-1}R/\mathfrak{a}\} \to S^{-1}R/\mathfrak{p}.$

i.e., Primes in R containing $\ker(R\to S^{-1}R/\mathfrak{a})$ correspond with primes in $S^{-1}R$ containing a.

For $U \subset X$ a general open set, $U = X \setminus V(\mathfrak{a})$, $V(\mathfrak{a}) = \bigcap_{f \in \mathfrak{a}} V((f))$ with $\mathfrak{a} = \sum_{f \in \mathfrak{a}} (f)$ so then $U = \bigcup_{f \in \mathfrak{a}} X_f$. Here, we think of $X_f = \{\mathfrak{p} \mid f \notin \mathfrak{p}\}$ - points where f "does not $f \in \mathfrak{a}$ vanish". Furthermore, $X_f \cap X_g = X_{fg}$. Hence, $fg \notin \mathfrak{p} \Leftrightarrow f \notin \mathfrak{p}$ and $g \notin \mathfrak{p}$. In other words, the X_f form a basis of the topology on X. To each X_f , we have the ring R_f , and if $X_f \supset X_g$. We have a ring homomorphism $\varphi : R_f \to R_g$. Why? Certainly have $R \to R_g$, so need that under this map f maps to a unit in R_g . If this is not the case, there is a maximal ideal $m \subset R_g$. Since $f/1 \in m$ that then implies $f \in \varphi^{-1}(m)$ would contradict $X_g \subset X_f$.

Now we have a presheaf defined on the X_f .

- (1) $X_f \mapsto R_f$
- (2) $X_f \supset X_g$, have the restriction $\frac{r}{f^n} \mapsto \frac{r}{f^n} \in G$.

We want to define "functions" on any open set $U \subset X$ such that $r_i \& r_j$ have the same image in R_{f_i}, R_{f_i} .

Definition. \mathcal{O}_X is the sheaf of sections of the étale space associated to $X_f \to R_f$, i.e., sections of $\coprod_{f \in R} X_f \times R_f / \sim$, where \sim is the equivalence relation generated by $\left(x, \frac{r}{f}\right) \sim \left(y, \frac{r'}{g}\right)$. If (1) $x \in X_f, y \in X_g$, (2) $x = y, X_f \subset X_g$, (3) $\frac{r'}{g} \mapsto \frac{r}{f}$ under $R_g \to R_f$. If $\mathfrak{p} \in X$, i.e. a prime ideal, $\mathcal{O}_{X,\mathfrak{p}}$, the stalk of \mathcal{O}_X at \mathfrak{p} , is defined as

$$\mathcal{O}_{X,\mathfrak{p}} = \lim_{p \in X_f} R_f$$
 (a direct limit)

with respect to inclusions $X_f \subset X_g$, i.e., $\frac{r_1}{f_1} \in R_{f_2}$ have some imagine in limit $\Leftrightarrow \exists \mathfrak{p} \in X_g \subset X_{f_1} \cap X_{f_2} = X_{f_1f_2}$ s.t. $\frac{r_1}{f_1} \& \frac{r_2}{f_2}$ have same image in Rng. So then the direct limit above just becomes

Lemma. The map $R \to \prod_{\mathfrak{p}} R_{\mathfrak{p}}$ is injective.

Proof. Ker $(R \to S^{-1}R) = \{r \in R \mid \exists s \in S, rs = 0\} = \{r \in R \mid S \cap Ann(r) \neq \emptyset\} =$ ideal $\{b \in R \mid ba = 0\}$. If $a \in R, a \neq 0$, then $\exists m$ a maximal ideal such that $Ann(a) \subset m$ (where $Ann(a) \cap (R \setminus m) = \emptyset$) $\equiv a \neq 0$ in R_m .

And, since if $f \in R$, $\mathfrak{p} \not\supseteq f$, $R_{\mathfrak{p}} = (R_f)_{\mathfrak{p}}$ (where \tilde{p} is corresponding prime in R_f). We get $R_f \to \prod_{f \notin \mathfrak{p}} R_{\mathfrak{p}}$ is injective. \Box

Lemma. If $X_f \subset X$ is one of our basic opens, the map $R_f \to \mathcal{O}_X(X_f)$ is an isomorphism.

Proof (in a simple case) We want to show $R \cong \mathcal{O}_X(X) \ni \alpha$ (where $\alpha : X \to |F|$). This implies \exists open cover $\{X_{f_i}\}$ of X and $\alpha_i \in R_{f_i}$ induce α and this cover can be taken to be

finite and we have $\exists g_i$ such that $\sum_{i=1}^n g_i f_i = 1$. Without loss of generality, (1) $\alpha_i = a_i/f_i$, (2) α_1 and α_2 have the same image in $R_{f_1f_2}$.

(Justification: Consider X = Spec R, which is quasi-compact. Notice $\text{Spec } R = \bigcup U_i = X \setminus V(\mathfrak{a}_i) \Leftrightarrow \bigcap V(\mathfrak{a}_i) = \emptyset \Leftrightarrow \sum \mathfrak{a}_i = R \Leftrightarrow \exists \alpha_i \in \mathfrak{a}_i \sum \alpha_i = 1 \text{ and this is a finite sum} \Rightarrow \exists \text{ finite subset of } \{\mathfrak{a}_i\} \text{ s.t. } X = \bigcup_i U_i.$)

Now, set $a = \sum g_i a_i \in R$. Then $f_j a = \sum g_i a_i f_j = \sum g_i f_i a_j = (1)a_j$. This implies $\frac{a}{1} = \frac{a_j}{f_i} \in R_{f_j}$. i.e., the α_i determine a unique $a \in R$ and $R \xrightarrow{\sim} \mathcal{O}_X(X)$.

Lecture 6 (January 26, 2009) - Locally Ring Topological Spaces, and Schemes

Answering homework questions

 $\operatorname{Spec}(R) = \left(\operatorname{Spec}(R)^{\operatorname{space}}, \mathcal{O}_{\operatorname{spec}(R) \operatorname{[sheaf of rings]}}\right)$. Then $X_f = \operatorname{Spec}(f^{-1}R) \rightsquigarrow f^{-1}R$. Then Basic Opens \subset All opens

by taking $X_f \mapsto f^{-1}R$.

Spec R

Let $R \to \operatorname{Spec}(R)$ be a locally ringed topological space, i.e., $\mathcal{O}_{\operatorname{spec}(R)}$ is a sheaf of rings such that all stalks are local rings (a stalk at \mathfrak{P} is $R_{\mathfrak{P}}$).

If (X, \mathcal{O}_X) and (Y, \mathcal{O}_Y) are locally ringed topological spaces, then a morphism $\varphi : (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ of locally ringed topological spaces consists of

- (1) a continuous map $\varphi : X \to Y$,
- (2) a homomorphism of sheaves of rings $\varphi^{\#} : \mathcal{O}_{Y} \to \varphi_{*}\mathcal{O}_{X}$.

If \mathcal{F} is a (pre)sheaf on X, with $\varphi_*\mathcal{F}: U \mapsto \mathcal{F}(g^{-1}(U))$ ($U \subset Y$) (Exercise. If \mathcal{F} is a sheaf then so is $\varphi_*\mathcal{F}$.) So $\varphi^{\#}$ is equivalent to: $\forall U \subset Y$, a ring homomorphism

$$\varphi_U^{\#}: \mathcal{O}_Y(U) \to \mathcal{O}_X(\varphi^{-1}(U)).$$

compatible with restriction maps. For all $x \in X$, this induces maps

$$\varphi^{\#}: \mathcal{O}_{Y,\varphi(x)} \to \mathcal{O}_{X,x}$$

s.t. $(\varphi^{\#})^{-1}(\mathfrak{m}_x) = \mathfrak{m}_{\varphi(x)}.$

Then $x \in \varphi^{-1}(U)$ if and only if $\varphi(x) \in U$.

$$\mathcal{O}_Y(U) \to \mathcal{O}_X(\varphi^{-1}(U)) \to \mathcal{O}_{X,x}.$$

 $[\mathcal{O}_{Y,f(x)} = \lim_{U \ni f(x)} \mathcal{O}_Y(U)]$

[For local rings $(R, \mathfrak{m}), (S, \mathfrak{n})$ a local homomorphism ψ between them is one such that $\psi^{-1}(n) = \mathfrak{m}$.]

Theorem. To give a ring homomorphism $f : A \to B$ is equivalent to giving a morphism of locally ringed spaces,

$$\operatorname{Spec}(B) \to \operatorname{Spec}(A).$$

Proof. Given $f : A \to B$, we get $\text{Spec}(f) : X = \text{Spec}(B) \to Y = \text{Spec}(A)$ such that if $\mathfrak{p} \subset B$ is prime, then $\text{Spec}(f)(\mathfrak{p}) = f^{-1}(\mathfrak{p}) = \ker(A \to B/\mathfrak{p})$.

[Exercise. The inverse image of an open set is open [so that img of closed set is closed]. Hence, you can do this for just the basis of the topology, i.e., one of these X_f 's. Then if $g \in A$, we have $\text{Spec}(f)^{-1}(Y_g)$.]

Recall the relationship between Y_q and primes!

$$X_{f(g)}: g^{-1}A \to f(g)^{-1}B.$$

For $\mathfrak{p} \in B$ prime, the induced local homomorphism $A_{f^{-1}(\mathfrak{p})} \to B_{\mathfrak{p}}$.

On the other hand, given $\varphi : X = \operatorname{Spec}(B) \to Y = \operatorname{Spec}(A)$, we get a ring hom

$$\varphi^{\#}: A = \mathcal{O}_Y(Y) \to \mathcal{O}_X(g^{-1}(Y)) = \mathcal{O}_X(X) = B.$$

These two functions are mutually inverse (we claim): start with $f: A \to B$. Then since $\varphi_{\operatorname{Spec}(A)}(\operatorname{Spec}(A)) = A$, the induced map $\operatorname{Spec}(f)^{\#}: A \to B$ is equal to f. Given $\varphi: \operatorname{Spec}(B) \to \operatorname{Spec}(A)$, we get a ring homomorphism $\varphi^{\#}: A \to B$ and claim $\operatorname{Spec}(\varphi^{\#}) = g$. Suppose $\mathfrak{p} \in \operatorname{Spec}(B)$. Then $\varphi(B) \in \operatorname{Spec}(A)$.

$$\mathcal{O}_{Y}(Y) = A \xrightarrow{\varphi^{\#}} B = \mathcal{O}_{X}(X)$$
$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$
$$\mathcal{O}_{Y,\varphi_{B}} = A_{\varphi(B)} \xrightarrow{\varphi^{\#}_{\mathfrak{p}}} B_{\mathfrak{p}} = \mathcal{O}_{X,\mathfrak{p}},$$

where the subscripts of the rings (bottom row) mean localization. Since $\varphi_{\mathfrak{p}}^{\#}$ is a local homomorphism, $\varphi_{\mathfrak{p}}^{-1}(\mathfrak{p} B_{\mathfrak{p}}) = (\mathfrak{a} A_{\mathfrak{a}}) \Longrightarrow \mathfrak{p} = \mathfrak{a}$. \Box

This gives us an equivalence

$$\{\text{Rings}\} \longleftrightarrow \{\text{Affine schemes}\}^{\text{op}}$$
$$R \longleftrightarrow \text{Spec}(R).$$

Definition. A scheme is a locally ringed topological space (X, \mathcal{O}_X) such that X has an open cover $X = \bigcup_{\alpha} U_{\alpha}$ such that each $(U_{\alpha}, \mathcal{O}_X |_{U_{\alpha}})$ is an affine scheme.

Examples. [of affine schemes] (1) Consider $\text{Spec}(\mathbb{Z})$. This is just prime ideals (i.e., (p) for p a prime number). For $n \in \mathbb{Z}$, $V((n)) = \{\text{prime ideals } \mathfrak{p}, n \in \mathfrak{p}\}$. Then if $n \neq 0$, then this is a finite set of prime divisors of n. If n = 0, then it's just everything. The point (0) is not closed, rather, $\overline{\{(0)\}} = \text{Spec}(\mathbb{Z})$ is a "generic point" (i.e., a single point in this topological space whose Zariski closure is the whole space).

Lecture 6 (January 26, 2009) - More Schemes

Schemes

Recall these are (X, \mathcal{O}_X) locally ringed spaces with an open cover $X = \bigcup_i U_i =$ Spec $(R_i) \implies \supset$ Spec $(g^{-1}R_i)$, with each $(U, \mathcal{O}_X|U_i)$ by affine schemes.

Definition. Morphisms between schemes. A morphism $f : (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ with $(X, \mathcal{O}_X) \supset f^{-1}(U)$ and $U = \operatorname{Spec}(R) \subset (Y, \mathcal{O}_Y)$, and

with $f^{-1}(U) = \bigcup_j V_j = \operatorname{Spec}(S_j)$. We thus get a map of locally ringed spaces,

$$V_j = \operatorname{Spec}(S_j) \to \operatorname{Spec}(R) = U.$$

Hence, we have ring homomorphism $R \to S_j$. Then $X = \bigcup \operatorname{Spec}(S_j) = V_j$, and $Y = \bigcup U_i = \bigcup \operatorname{Spec}(R_i)$ s.t. $\forall j, f(V_j) \subset U_i$ for some $i, S_j \leftarrow R_i$. We want maps that coincide on $V_{j_1} \cap V_{j_2} = \bigcup W_k = \operatorname{Spec}(A_k)$, i.e.

$$R_i \to S_{j_r} \to W_k$$

commutes (r = 1, 2).

Examples. (1) If $f: X \to \text{Spec}(A)$, where A is some ring (e.g., a field). Then for all affine opens, $U \subset X, U = \text{Spec}(R)$, we have a ring homomorphism $f^*: A \to R$, and if $U_1 \subset U_2$, then $\text{Spec}(R_1) \subset \text{Spec}(R_2) \to \text{Spec}(R)$, so $R_1 \leftarrow R_2 \leftarrow A$. This is equivalent to saying that \mathcal{O}_X is a sheaf of A-algebras (i.e., $\forall U \subset X$ open, we have a ring homomorphism $A \to \mathcal{O}_X(U)$ compatible with restriction.

(2) Have $f: T = \operatorname{Spec}(A) \to X = \bigcup_i \operatorname{Spec}(S_i) = \bigcup U_i$. Then $f^{-1}(U) \subset \operatorname{Spec}(A)$ is open with $f^{-1}(U) = \bigcup_{\text{some collection of } f \in A} T_f$, so we have $f^{-1}A \leftarrow S_i$.

If k is a field, for simplicity let k algebraically closed, then $\mathbb{A}_{k,t}^1 = \operatorname{Spec}(k[t])$.

(a) Consider $\{(t-a) | a \in k\}$. Each (t-a) is closed. Further, $\overline{\{(0)\}}$ is everything. Finally, proper closed subsets are $V(\mathfrak{a})$, with $\mathfrak{a} \neq 0$. Hence this is just

$$V((\mathfrak{a})) = V((f)) = \{(p_i) \mid p_i \text{ is irreducible factor of } f\}$$

= finite set of points: $t - a_i$ if a_i 's are zeroes of f .

If $X \to \operatorname{Spec}(k)$ is a scheme over k, then $X_1 \xrightarrow{g} X_2$ with $X_1 \xrightarrow{f_1} S$ and $X_2 \xrightarrow{f_2} S$ (on a category \mathcal{C} over S), then $(x_1, f_1) \to (x_2, f_2)$ with $g: X_1 \to X_2$ such that $f_2g = f_1$. Then for every k-algebra R, look at maps of schemes over k, $\operatorname{Spec}(R) \to X$. We write X(R) for this set, and we call this the "R-valued points of X (over k)."

R-valued points v.s. points of the scheme

Let $\mathbb{A}_{k}^{1}(R)$ for R a k-algebra be such that homomorphisms of k-algebras: $k[t] \to R$. Note that $\mathbb{A}_{k}^{1}(R) \equiv$ Hom of k-algebras $k[t] \to R$ $(f \leftrightarrow f(t)) \equiv R$. So if R = k itself, $\mathbb{A}_{k}^{1}(k) \cong k$.

If k is not algebraically closed, e.g. $k = \mathbb{R}$ or $k = \Gamma_p$, the points $\mathbb{A}^1_k \cong$ generic point \cup set of monic irreducible polynomials in k[t].

While (1) $\mathbb{A}_k^1(k) = k$ (corresponds to linear polys $\{t - a \mid a \in k\}$). (2) If K/k is a finite extension, then $\mathbb{A}_k^1(k) \cong k$ with $(\varphi : k[t] \to k) \to \varphi(t)$. If K/k is finite, then $\ker(\varphi) = (p(t))$, with p an irreducible monic polynomial. Further, k[t]/p(t) is a field (and in fact $k \subset k[t]/p(t)$). If $\varphi : \operatorname{Spec}(k) \to X$, k a field, then to get a continuous map we need $(*, k) \mapsto x \in X$, and if $x \in \operatorname{Spec}(A) \subset X$, then we need $A \xrightarrow{\varphi^*} k$ with $\ker(\varphi^*)$ a prime ideal in A equal to x. (So we have maps $X(k) \to$ points of X). In the general situation, $X(k) \to X^{\operatorname{sp}}$ (as a top space) with $(\varphi : \operatorname{Spec}(k \to x) \mapsto x \in X$ ($K \leftarrow k(x)$). Then $X(k) \leftrightarrow (x \in X, k(x) \hookrightarrow k)$. For the affine line,

 $K = \mathbb{A}^1(k) \rightarrow$ set of monic irreducibles in k[t]

and $\mathbb{A}^1(k) \longleftrightarrow (K \hookleftarrow k[t]/p(t)) = k((p)).$

What if [K:k] > 1? e.g.in $k = \mathbb{R}$ and $K = \mathbb{C}$,

$$\mathbb{A}^{1}_{\mathbb{R}} = \operatorname{Spec} \mathbb{R}[t] = \{0\} \cup \{(t-a) \mid a \in \mathbb{R}\} \cup \{\operatorname{monic irred quadratic}\}.$$

Then $\mathbb{A}^1_{\mathbb{R}}(\mathbb{R}) \leftrightarrow \{(t-a) \mid a \in \mathbb{R}\}\$ and $\mathbb{C} \leftrightarrow \mathbb{A}^1_{\mathbb{R}}(\mathbb{C}) = \mathbb{C}$ -valued points of $A^1_{\mathbb{R}}$. Further, $t \mapsto \alpha \ (q = (t-\alpha)(t-\overline{\alpha})), \ \mathbb{C} \succeq \mathbb{K}((q)).$

Grothendieck's EGA: Want to study solutions of polynomial equations over a field or ring *k*:

$$f_1(t_1, ..., t_n) = 0$$

 \vdots
 $f_m(t_1, ..., t_n) = 0.$

Consider the functor

k-algebras \rightarrow Sets.

$$R \mapsto \text{set of } n\text{-tuples } (r_1, ..., r_n) \in R^n$$

satisfying the equations

$$\equiv k[t_1, ..., t_n]/(f_1, ..., f_m) \to R$$

which is equivalent to giving a homomorphism of k-algebras. But that is equivalent to giving $\text{Spec}(\) \leftarrow \text{Spec}(\mathbb{R})$.

Lecture 8 (January 30, 2009) -

Given a scheme X and R a ring, we have X(R) = R-valued points of X =morphisms $\text{Spec}(R) \to X$. e.g., If $X = \mathbb{A}^n_{\mathbb{Z}} = \text{Spec}(\mathbb{Z}[t_1, ..., t_n])$ and X(R) =

Then X = Spec(A) and $X(R) = \text{ring hom } A \to R$.

 $X(R) = \text{Ring Homs } \mathbb{Z}[t_1, ..., t_n] \to R \equiv R^n(\varphi \mapsto (\varphi(t_1), ..., \varphi(t_n))).$ Recognize that $R \to X(R)$ is a functor from rings to sets.

If $f: R \rightarrow S$ is a ring homomorphism, this induces a map

$$\begin{array}{c} X(R) \to X(S) \\ (\varphi: \operatorname{Spec} R \to X) \mapsto (\varphi \circ \operatorname{Spec}(f)). \end{array}$$

Question. Given a functor from rings to sets (or if k is a field, k-algebras \rightarrow sets), we can ask if there is a scheme X s.t. F(R) = X(R). We say "F is represented by X."

For example, we could take $F : R \to R^{\times}$ (the group of units). In fact, this is represented by the affine scheme:

A homomorphism
$$\mathbb{Z}[x, y]/(xy = 1) \to R$$
 is the same as giving elements $r = \varphi(x), s = \varphi(y)$ s.t $rs = \varphi(xy) = 1$ (i.e. giving a unit $r \in R^*$).

That is, $\mathbb{Z}[x, \frac{1}{x}]$, or $\{x^n \mid n \in \mathbb{N}\}^{-1}\mathbb{Z}[x]$.

We have shown that $R \to R^{\times}$ is represented by $\operatorname{Spec}(\mathbb{Z}[t, t^{-1}])$, denoted \mathbb{G}_m . We have a group operation, $\mu : R^{\times} \times R^{\times} \to R^{\times}, 1_R \in R^{\times}$, and some axioms, like, $\forall r, s, t \in R^{\times}, \mu(r, \mu(s, t)) = \mu(\mu(r, s), t)$.

How can we get such an operation μ ? If X, Y are two affine schemes, "Spec(A)" and "Spec(B)", then $X(R) \times Y(R)$ = pairs of homomorphisms $(A \to R, B \to R)$, which is the same as giving a homomorphism $(A \otimes B \to R)$: Spec $A \times$ Spec B = Spec $A \otimes B$. For example,

$$\mathbb{A}^{n}_{\mathbb{Z}} \times \mathbb{A}^{m}_{\mathbb{Z}} \cong \mathbb{A}^{n+m}_{\mathbb{Z}} \text{ because}$$

$$\operatorname{Spec}(\mathbb{Z}[t_{1},...,t_{n}]) \times \operatorname{Spec}([\mathbb{Z}[u_{1},...,u_{m}]]) = \operatorname{Spec}(\mathbb{Z}[t_{i}] \otimes \mathbb{Z}[u_{i}]) = \operatorname{Spec}(\mathbb{Z}[t_{i},u_{i}]).$$

Exercise. Verify the previous statement.

Example. The functor $R \to R^{\times} \times R^{\times}$ is represented by Spec($\mathbb{Z}[t, t^{-1}] \otimes \mathbb{Z}[u, u^{-1}]$). The map $\mu : R^{\times} \times R^{\times} \to R^{\times}$ is a natural transformation. (Verify this!)

$$\begin{split} \operatorname{Spec}(\mathbb{Z}[t, u, t^{-1}, u^{-1}]) & \stackrel{x \longmapsto tu}{\longleftarrow} \operatorname{Spec}(\mathbb{Z}[x, x^{-1}]) \\ & \downarrow \quad (\text{by } t \mapsto r, u \mapsto s \text{ w/ } r, s \in R^{\times}) \\ & R \end{split}$$

With $\operatorname{Spec}(\mathbb{Z}[x, x^{-1}]) \to R \ (x \mapsto rs)$. Hence, we have

$$\mathbb{Z}[t, u, t^{-1}, u^{-1}] \leftarrow \mathbb{Z}[x, x^{-1}] \ \mu : \mathbb{G}_m^t imes \mathbb{G}_m^n o \mathbb{G}_m^x,$$

with 1 : Spec $\mathbb{Z} \to \mathbb{G}_m$ with $t \mapsto 1$. We can also give an associative law:

$$\begin{array}{ccc} \mathbb{G}_m \times \mathbb{G}_m \times \mathbb{G}_m \xrightarrow{1 \times \mu} \mathbb{G}_m \times \mathbb{G}_m \\ \downarrow \mu \times 1 & \downarrow \mu \\ \mathbb{G}_m \times \mathbb{G}_m & \xrightarrow{\mu} & \mathbb{G}_m. \end{array}$$

In general, a group scheme is a scheme G, together with maps

$$\mu: G \times G \to G, \, 1: \operatorname{Spec} \mathbb{Z} \to G$$

such that the associative law, identity, inverses hold (with identity given by

Spec
$$\mathbb{Z} \times \mathbb{G}^{(1,\mathrm{id})} \to \mathbb{G} \times \mathbb{G} \xrightarrow{\mu} \mathbb{G}$$
).

Exercise. What is the correct diagram to express the existence of inverses?

It is denoted \mathbb{G}_m for multiplicativity. You can also have \mathbb{G}_a as an additive group $(R \to R)$ (indeed, we can give $\mathbb{G}_a = \operatorname{Spec}(\mathbb{Z}[x])$ by $\sigma : \mathbb{G}_a \times \mathbb{G}_a \to \mathbb{G}_a$ through $x \mapsto x \otimes 1 + 1 \otimes x$).

An elliptic curve is an example of a group scheme!

Example. If E/\mathbb{C} is an elliptic curve, then the addition law on E corresponds to E being a group scheme over \mathbb{C} : $E \times E \to \mathbb{C}$.

Example. If R is a ring, a finitely generated projective module P over R is one a direct summand of a free module ($\exists Q \text{ s.t. } P \oplus Q$ is free). Fix an integer $n \ge 2$. If R is a local ring, then any finitely generated projective module is free (P is projective iff $\forall p$ prime ideals in R, the localization P_p is free). Then that implies there exists a function $\text{Spec}(R) \to \mathbb{N}$ which takes $x \mapsto \text{Rank}(P_x)$. (**Exercise.** Figure out why this is related to Cartier divisors (Henri claims it is)). Now, (with $n \ge 2$) we can look at the set of projective rank 1 quotients of R^n : $R^n \to P = Q$ (P proj of rank 1), with $R^n \to Q$ as well (where the bold arrows \to represent surjection).

Fact. If $f: R \to S$ is a ring homomorphism, then $(R^n \to P) \mapsto (S^n \to S \otimes_R P)$ gives a functor from rings to sets. This is represented by: $\mathbb{P}^{n-1}_{\mathbb{Z}}$. (next time, we will see two different ways of constructing projective space, and we will see why the previous is true)

Lecture 9 (February 2, 2009) -

How do we express the inverse property of groups with a diagram? We have the fiber product

$$\begin{array}{c} P \to \operatorname{Spec}(k) \\ \downarrow \qquad \downarrow e \\ G \times G \xrightarrow{}{\mu} G \end{array}.$$

Then take $P \xrightarrow{\varphi} G$ with $G \times G \xrightarrow{\pi_1} P$, and the condition is that φ is an isomorphism.

Projective modules & projective spaces

If R is a commutative ring with unity, an R-module P is projective if and only if there is an R-module Q such that $P \oplus Q$ is free.

Lemma. Suppose R is a local ring with maximal ideal \mathfrak{m} , residue field k, and P is a finitely generated projective R-module. Then R is free.

Proof. Since P is finitely generated, this implies that there is a surjective map $R^n \xrightarrow{\varphi} P$, and $R^n \cong P \oplus Q$ with $Q = \ker(\varphi)$.

$$\begin{array}{c} R^n \xrightarrow{\varphi} P \\ \iota \searrow \downarrow \\ P. \end{array}$$

If we let $\pi = \iota \circ \varphi : \mathbb{R}^n \to \mathbb{R}^n$ so $\operatorname{im}(\pi) = \iota(P)$, then (notice $\pi^2 = \pi$)

$$k^n = k \otimes_R R^n \cong (k \otimes_R P) \oplus (k \otimes_R Q).$$

Call $k \otimes_R P = \overline{p}$ and $k \otimes_R Q = \overline{q}$. Then \overline{p} and \overline{q} are f.d. k vector spaces of dimension m and n (respectively).

Since $R \to k$ is surjective and P is projective, P is flat (see commutative algebra). That is, $P \to k \otimes P$. Choose bases $\alpha_1, ..., \alpha_m$ of $P \otimes k$ and $\alpha_{m+1}, ..., \alpha_n$ of $Q \otimes k$, and elements $\overline{\alpha}_1, ..., \overline{\alpha}_m \in P, \overline{\alpha}_{m+1}, ..., \overline{\alpha}_n \in Q$ mapping to these basis elements. Hence, we have a map

$$R^{n} \xrightarrow{A} R^{n}$$
$$e_{i} \mapsto \overline{\alpha}_{i}$$
$$A(R^{n}) \subset P, \ A(R^{n-m}) \subset Q.$$

The matrix X of A in $M_n(R)$ has image in $M_n(k)$, the matrix of the map

$$k^n o k^n = (k \otimes P) \oplus (k \otimes Q)$$

 $e_i \mapsto \alpha_i,$

which is an isomorphism. Hence, the image \overline{X} of X in $M_n(k)$ is invertible if and only if $\det(\overline{X}) \in k^* \Leftrightarrow \det(X) \notin \mathfrak{m} \Leftrightarrow \det(X) \in R^* \Leftrightarrow X \in GL_n(R)$. Hence, this matrix being invertible implies A is an isomorphism. Hence, $R^m \to P$ is an isomorphism.

If we look at the proof, suppose that R is no longer local. Then P is still finitely generated projective as an R-module, and $\mathfrak{p} \in \operatorname{Spec}(R)$ is a prime ideal. By the lemma, $P_{\mathfrak{p}} = R_{\mathfrak{p}} \otimes_R P = (R \setminus p)^{-1}\mathfrak{p}$ is free. Thus, there exist elements, $\alpha_1, ..., \alpha_m \in P_{\mathfrak{p}}$ which form a basis. That is, $\alpha_i = a_i/f_i$ with $f_i \in R \setminus \mathfrak{p}$. We get a map

$$\varphi: (f_1...f_m)^{-1}R^n \to (f_1...f_m)^{-1}P^n$$
$$e_i \mapsto \alpha_i.$$

We know that if we localize at p, this is an isomorphism.

(Exercise. If A is a Noetherian commutative ring, and $\varphi : M \to N$ is a homomorphism of R-modules, and there exists $\mathfrak{p} \in \operatorname{Spec}(A)$ such that $\varphi_{\mathfrak{p}} : M_{\mathfrak{p}} \to N_{\mathfrak{p}}$ is an isomorphism, then $\exists g \notin \mathfrak{p}$ such that $M\left[\frac{1}{g}\right] \to N\left[\frac{1}{g}\right]$ is an isomorphism of $g^{-1}A$ -modules.)

Hence, φ induces an isomorphism from $(g^{-1})R^n \to (g^{-1})P$ for some $g \notin \mathfrak{p}$. Now, a finitely generated projective *R*-module *P* is "locally free" if $X = \bigcup X_{f_i} = \operatorname{Spec}(f_i^{-1})R$ such that $f_i^{-1}P$ is free (where *X* is $\operatorname{Spec}(R)$). \Box

Question. Fix $n \ge 1$. Consider the functor

 P_n : Rings \rightarrow Sets

 $R \mapsto \text{Rank 1}$ projective quotients of R^{n+1} .

i.e., equivalence classes of surjective maps $R^{n+1} \to P$ with P projective, P_p free of rank 1 for all $p \in \text{Spec}(R)$ (so that $R^{n+1} \to P$ and $R^{n+1} \to P'$ are equivalent if and only if they have the same kernel).

Example. Let k be a field, and have $P^n(k) : k^{n+1} \to L$ with L a one-dimensional vector space. For each basis element $\ell \in L$, $L \cong k$ through $1 \mapsto k$ gives us a matrix for $\varphi : \overline{a} = [a_0, ..., a_n]$. Since φ is surjective, not all the φ are zero. A different choice of $\ell : \ell^1 = \lambda \ell$ ($\ell \in k^*$) w/ matrices $[a_0, ..., a'_n]$ with respect to ℓ is λ^{\pm} times a'. If R is a local ring, $P^n(R) = n + 1$ tuples, $\overline{a} = [a_0, ..., a_n]$ such that not all $a_i \in \mathfrak{m}$ which is "at least one is a unit" modulo by R^* .

If A is a general commutative ring, L need not be free! However, $X = \text{Spec}(A) = \bigcup X_{g_i} = \text{Spec}(g_i^{-1}A) = g^{-1}L$, and g_i^{-1} is free. So the map $g_i^{-1}R^{n+1} \to L$ is represented by a vector $\underline{a} = [a_0, ..., a_n]$ unique to a unit in $g_i^{-1}R$. We can also assume that at least one of the a_i is a unit.

Next time, we will show there is a scheme $\mathbb{P}^n_{\mathbb{Z}}$ (not affine) which "represents" P^n , i.e., there is a map $\operatorname{Spec}(A) \to \mathbb{P}^n_{\mathbb{Z}}$ with $\operatorname{Spec}(A) \leftrightarrow \operatorname{giving} a \operatorname{rank} 1$ projective quotient of A^{n+1} .

Lecture 11 (February 6, 2009) -

Examples. (2) In particular, if k is a field,

$$\prod_{k=0}^{r} (k) = (k^{n+1} \setminus \{0\}), \ k^* = \bigcup_{i=0}^{n} \mathbb{A}^n(k) = \{(a_0, ..., a_{i-1}, 1, a_{i+1}, ..., a_n) \mid a_i \in k\}.$$
(3) $\mathbb{P}^n_k = \left(\mathbb{A}^{n+1}_k \setminus \{0\}\right) / \mathbb{G}_{m,k}$

(4) $\mathbb{P}_R^n = \bigcup_{i=0}^{n+1} \mathbb{A}_R^n / \sim$ (where we will specify the equivalence class \sim).

<u>Recall</u> $\mathbb{G}_{m,k} = \operatorname{Spec}(k[t, t^{-1}])$. This is an affine group scheme. $\mathbb{G}_{m,k}(R) = R^*$.

Review. Group actions. Classically, for G a group and X a set, a group action is $\mu: G \times X \to X, (g, x) \mapsto gx$ s.t. $g(hx) = (gh)x \forall g, h$ and $e \cdot x = x \forall x$.

For G a group object in a category C, an action of G on an object X is a map

$$\rho: G \times X \to X \text{ such that (1)} G \times G \times X \xrightarrow{1_G \times \rho} G \times X$$
$$\begin{array}{c} \mu \times 1 \downarrow & \downarrow \rho \\ G \times X \xrightarrow{\rho} X \end{array}$$
(2) $X \xrightarrow{e \times 1_X} G \times X \xrightarrow{\rho} X.$

Exercise. This is equivalent to giving, for any object $T \in C$, an action of the group G(T) (morphism $T \to G$) on X(T) compatible with maps $T' \to T$.

Fact. A scheme X is determined by the functor $R \to X(R)$ (with R a ring).

Remark. In any category C, an object X is completely determined by the contravariant functor $h_X : T \to \text{Hom}(T, X)$. Given X, Y, we have the functors h_X and h_Y . Those are functors $C \to \text{Sets}$. Then by the Yoneda lemma (natural transformations $h_X \to h_Y$ are in one-to-one correspondence with maps $X \to Y$), we look at X or the functor h_X represented by X are the same thing.

Actions of \mathbb{G}_m on "other things"

If X = Spec(A) is an affine scheme (over \mathbb{Z}), then an action of \mathbb{G}_m on X is a map $\rho : \mathbb{G}_m \times X \to X$. Notice giving $\mathbb{G}_m \times X$ is equivalent to giving $\text{Spec}(\mathbb{Z}[t, t^{-1}] \otimes A)$ and to give X is equivalent to giving Spec(A). Hence,

$$A \xrightarrow{\rho^*} A[t, t^{-1}] = \mathbb{Z}[t, t^{-1}]$$
$$a \mapsto \sum_{i=-\infty}^{\infty} \rho_i(a) t^i,$$

where $\rho^*(ab) = \sum \rho_i(ab) t^i$ and (if ρ is a ring homomorphism)

$$\rho^*(a)\rho^*(b) = \sum \rho_j(a)t^i \sum \rho_k(b) t^b = \sum_{i=-\infty}^{\infty} \sum_{j+k=i} [\rho_j(a)\rho_k(b)]t^i.$$

If ρ is an action, we have "reversal of the diagram," that is

$$\begin{array}{ccc} A[x,x^{-1},y,y^{-1}] \leftarrow A[t,t^{-1}] \\ \uparrow & \uparrow \\ A[t,t^{-1}] & \longleftarrow & A \end{array}$$

Where the maps are $\sum a_i t^i \mapsto \sum_{i,j} \rho_j(a) x^j y^i$, $a \mapsto \sum \rho_j(0) t^i$, $a \mapsto \sum \rho_k(a) t^k$, and $\sum p_k(a) t^k \mapsto \sum_k p_k(a) (xy)^k$, given in clockwise order starting from the top. Thus

$$\rho_j(a_i) = \begin{cases} 0 & j \neq i \\ a_i & j = i \end{cases}$$

Exercise. The fact that $e \in \mathbb{G}_m(\mathbb{Z})$ acts as identity so $\sum_{j=-\infty}^{\infty} e_j(a) = a$, i.e., the map $a \mapsto \sum e_j(a)$ is a grading.

In conclusion, we can say

Proposition. An action of \mathbb{G}_m on an affine scheme $X = \operatorname{Spec}(A)$ is the same as a \mathbb{Z} -grading of the ring A.

Remark. An algebraic action of \mathbb{C}^* on a \mathbb{C} -vector space V is simply a grading of V, that is, $\bigoplus_{i \in \mathbb{Z}} V_i$ where V_i is an eigenspace (λ acts by λ^i).

Lecture 12 (February 9, 2009) -

Recall the action of $\mathbb{G}_m = \operatorname{Spec} k[t, t^{-1}]$ on $\operatorname{Spec}(A) \equiv \operatorname{grading}$ of A, e.g., $A = k[t_0, ..., t_n]$ (obvious grading $(\lambda, P) \mapsto (\lambda a_0 - \lambda a_n) = \lambda P, x_i \mapsto tx_i$) Recall $\mathbb{P}^n(k) = (k^{n+1} \setminus \{0\})/k^*$. In general, let S be a graded ring, i.e., \mathbb{G}_m acts on Spec(S).

We can ask, what does it mean *scheme-theoretically* to delete $\{0\}$? The origin corresponds to the ideal $(x_0, ..., x_n)$. In general, the complement in Spec(A) of $V((f_1, ..., f_n)) = \{\mathfrak{p} \mid (f_1, ..., f_n) \subset \mathfrak{p}\}$ (but this last set just says $\forall i, f_i \in \mathfrak{p}$). Hence,

$$X \setminus V((f_1, ..., f_n)) = \{ \mathfrak{p} \mid \exists i \, f_i \notin \mathfrak{p} \} = \bigcup_i \{ \mathfrak{p} \mid f_i \notin \mathfrak{p} \} = \bigcup_i \operatorname{Spec}(A)_{f_i},$$

where the localization $\operatorname{Spec}(A)_{f_i} = \operatorname{Spec}(f^{-1}A)$.

So $\mathbb{A}^n \setminus \{0\} = \bigcup \operatorname{Spec}(k[x_0, ..., x_i, 1/x_i, ..., x_n])$. This is the set of points \mathfrak{p} such that at least one X_i is a unit in $k[x_0, ..., x_n]_{\mathfrak{p}}$.

<u>Notice</u> the grading on $k[x_0, ..., x_n]$ extends to each localization -- true whenever we localize with respect to $\{f^n\}/f$ homogeneous. \equiv Action of \mathbb{G}_m on \mathbb{A}^{n+1} induces an action.

Now look at \mathbb{G}_m acting on U_i . We take

Categorical quotient

Let $G \times X \xrightarrow{\lambda} X$ with $(g, x) \mapsto gx$. We also have the second projection $G \times X \to X$. If then $X \to Y$, do these two maps have the same image in Y? This is precisely what it means to be the quotient! So, it is the universal object with the property such that $X \to X/G$ from second projection, $X \to X/G$ from λ , and $X/G \to Y$. Indeed, X/G is universal for maps $f: X \to Y$ s.t. $f \cdot \lambda = f \cdot \text{proj}$, if it exists. For example, \mathbb{G}_m acting on $\mathbb{A}^1_{\mathbb{C}}$ (with $(\lambda, a) \mapsto \lambda a$) are orbits of closed \mathbb{C} -rational points-namely the origin, and everything else. This quotient in general is **not** a scheme.

Moduli problems deal with parametrizing isomorphic classes of elliptic curves over \mathbb{C} . We can embed any elliptic curves $E \hookrightarrow \mathbb{P}^2(\mathbb{C})$. Then $\operatorname{Aut}(\mathbb{P}^2(\mathbb{C})) \cong PGL_3(\mathbb{C})$ acts on the space of all cubic homogenous polynomials with non-zero discriminant. The space of cubic curves $\cong \mathbb{P}^9$ (there are ten coefficients in a degree 3 homogeneous polynomial). Furthermore, $\Delta \neq 0 \Longrightarrow$ Zariski open subset of \mathbb{P}^9 is a quotient by action of PGL_3 .

Returning from our digression, \mathbb{P}^n is going to be quotient $(\mathbb{A}^{n+1}\setminus\{0\})/\mathbb{G}_m$. We form this as follows. Have \mathbb{G}_m act on each U_i :

(1) Form the quotient $U_i/\mathbb{G}_m = \text{Spec}(\text{subring of } \mathcal{O}(U_i), \text{ invariant under } \mathbb{G}_m)$. We shall see that in this case the quotient is a "good" object.

(2) Define $\mathbb{P}^n = \bigcup V_i$. This involves constructing a scheme by gluing open subschemes together.

Let S be any graded ring, and let f be a homogeneous element of positive degree. Then $(f^{-1}S)_0$ = subting of degree zero elements in $f^{-1}S$.

Notice this is still a graded ring. We want to construct the quotient of $\operatorname{Spec}(f^{-1}S)$ by \mathbb{G}_m . In general, A is a graded ring: $\mathbb{G}_m \times \operatorname{Spec}(A) \xrightarrow{\rightarrow} \operatorname{Spec}(A) / \mathbb{G}_m = \operatorname{Spec}(A_0)$, given by $\sum a_i t^i \leftarrow \sum a_i$, where $\sum a_i t^i \in A \otimes \mathbb{Z}[t, t^{-1}] = A[t, t^{-1}]$.

So, take $\operatorname{Spec}(f^{-1}S)$.

Proposition. There is a one-to-one correspondence between prime ideals in $(f^{-1}S)_0$ and prime ideals in $f^{-1}S$ which are "invariant under the action of \mathbb{G}_m ".

What does "invariant under the action" mean? Well, $V \subset \mathbb{A}^{n+1}$ invariant under $k^* \Leftrightarrow$ it's a cone \Leftrightarrow ideal is homogeneous. In our case, $G \times X \to X$ where $G \times V \to V$ (this factors through V). Hence, "invariant under the action" is saying these are homogeneous prime ideals.

Proof. (of proposition) For simplicity, assume f has degree 1, so that $f^{-1}S$ has a unit of degree 1. Let \mathfrak{p} be a homogeneous prime ideal, with

 $p = \sum p_i \in \mathfrak{p} \Leftrightarrow p_i \in p \,\forall i \Leftrightarrow \mathfrak{p}_i / f_i \in \mathfrak{p} \,\forall i.$

Hence, $\mathfrak{p}_i/f_i \in (f^{-1}S)_0 \cap \mathfrak{p}$, so hence

 $p \in \mathfrak{p} \Leftrightarrow$ it is a sum of elements of the form $f^i q_i$ with $q_i \in (f^{-1}S)_0 \cap \mathfrak{p}$.

Lecture 13 (February 11, 2009) - Graded rings?

Recall $S = \bigoplus_{d \in \mathbb{Z}} S_d$ is a graded ring.

Proposition. If $\exists u \in S_d, d \ge 1, u$ a unit, then there is a 1-1 correspondence between homogeneous prime ideals in S and prime ideals in S_0 .

So Spec (S_0) is Spec $(S)/\mathbb{G}_m$.

Now, given S a graded ring, consider the localizations $f^{-1}S$ for f homogeneous of positive degree. So Spec $((f^{-1}S)_0)$ is the quotient Spec $(f^{-1}S)/\mathbb{G}_m$.

If f, g are two such elements, then $(f^{-1}S)_0 \subset ((fg)^{-1}S)_0 \supset (g^{-1}S)_0$, and so

 $\operatorname{Spec}(f^{-1}S) \supset \operatorname{Spec}((fg)^{-1}S) \subset \operatorname{Spec}(g^{-1}S).$

Then $\operatorname{Proj}(S) := \operatorname{union} \operatorname{Spec}((f^{-1}S)_0) / \sim$ given by the inclusions *. Observe that the points of $\operatorname{Proj}(S)$ are simply the set of homogeneous prime ideals in S such that $\exists f$ homogeneous of positive degree s.t. $f \notin \mathfrak{p}$. Thus

$$S_+ \not\subseteq \mathfrak{p}$$
 where $S_+ = \bigoplus_{d>0} S_d$.

Note: For $\mathfrak{p} \triangleleft (f^{-1}S)_0$ (a prime ideal) we have a 1-1 correspondence $\tilde{\mathfrak{p}} \triangleleft f^{-1}S$ as well as $\tilde{p} \triangleleft S$ s.t. $f \notin \tilde{\mathfrak{p}}$.

For example, for $S = k[x_0, ..., x_d]$ for k a commutative ring, then Proj(S) is the set of homogeneous prime ideals in S not containing all the x_i . Now, recall (here the overbars mean reduction mod \mathfrak{p}).

$$\mathfrak{p} \triangleleft S$$
 s.t. $\exists x_i \notin \mathfrak{p} \Leftrightarrow$ the ideal $(\overline{x}_0, ..., \overline{x}_n)$ in $S_\mathfrak{p}$ is the unit ideal = $\bigcup_{i=0}^n \operatorname{Spec}\left(k[x_0, ..., x_i, \frac{1}{x_1}, ..., x_d]_{\deg 0}\right) \cong \mathbb{A}^d \cong \operatorname{Spec} k[x_1/x_0].$

since $k[x_0, ..., x_i, \frac{1}{x_1}, ..., x_d]_{\text{deg }0} = k\left[\frac{x_0}{x_i}, ..., 1, ..., \frac{x_0}{x_i}\right]$. In other words, this follows since a line which is not vertical is determined by its slope, and a line which is not horizontal is determined by the reciprocal of its slope.

Remark: If X is a scheme, a closed subscheme $Y \subset X$ is

(1) a closed subset $Y \subset X$ as topological spaces, and

(2) if $i: Y \to X$ is the inclusion, a surjective homomorphism of sheaves of rings, $\mathcal{O}_X \to i_* \mathcal{O}_Y \equiv$

sheaf of ideals $\mathcal{J}_Y \subset \mathcal{O}_X$ which is the kernel of this map.

Fact. For every affine open $\text{Spec}(A) \subset X$, an ideal $I \triangleleft A$ is compatible with localization (i.e. the ideal in $f^{-1}A$ is $f^{-1}I$).

Note: A subscheme of $\mathbb{P}_k^d = \bigcup U_i$ is equivalent to $Y_i \subset U_i$ s.t. $Y_i \cap (U_i \cap U_j) = Y_j \cap (U_i \cap U_j)$ which is also equiv to giving a homogeneous ideal $\mathfrak{a} \subset k[x_0, ..., x_d]$ s.t. $(x_0, ..., x_d) \notin \mathfrak{a}$. Thus, if k is Noetherian,

 $\mathfrak{a} = (f_1, ..., f_k)$ with f_i homogeneous polynomials.

Sheaves of modules

If X is a topological space and \mathcal{O} is a sheaf of rings on X, a sheaf of \mathcal{O} -modules is a sheaf element s.t. $\forall U \subset X$, $\mathcal{M}(U)$ is an $\mathcal{O}(U)$ -module, and $\forall U \subset V$, $\mathcal{M}(V) \to \mathcal{M}(U)$ is a homomorphism of $\mathcal{O}(V)$ -modules, where $\mathcal{M}(U)$ is an $\mathcal{O}(V)$ -module via the map $\mathcal{O}(U) \to \mathcal{O}(V)$.

If S = Spec(A) is an affine scheme and M is an A-module, we get a sheaf \tilde{M} :

$$\tilde{M}(S_f = \operatorname{Spec}(f^{-1}A)) = f^{-1}M = f^{-1}A \otimes_A M.$$

Obviously if f | g so $f^{-1}A \to g^{-1}A$ and get a map $f^{-1}M \to g^{-1}M$. Define \tilde{M} to be the sheaf of sections of the etale space over $\text{Spec}(A) = \bigcup S_f \times f^{-1}M$ with obvious identifications.

Theorem. $\tilde{M}(S_f) = f^{-1}M$ for any $f \in A$.

Definition. If X is a scheme, a quasi-coherent sheaf of \mathcal{O}_X -modules \mathcal{M} is a sheaf of \mathcal{O}_X -modules such that \forall affine open sets $U = \operatorname{Spec}(A) \subset X$, $\mathcal{M}/U \cong \tilde{M}$ for M an A-module.

That is, for all $\text{Spec}(A) \subset X$ affine opens, we have an A-module M_A s.t. if $\text{Spec}(A) \subset$ $\text{Spec}(B) \subset X$, then $A \otimes_B M_B \xrightarrow{\sim} M_A$.

Examples of sheaves of modules

(1) \mathcal{O}_X^n free of rank *n*.

(2) P locally free sheaf of rank n, i.e., $\forall U = \text{Spec}(A) \subset X$ affine open, P(U) is a projective A-module. $\equiv \forall x \in X, P_x$ is a free A-module.

(3) Invertible sheaves \equiv rank 1 locally free.

(4) Sheaf of ideals $\varphi \subset \mathcal{O}_X$.

(5) $X = \operatorname{Spec}(\mathbb{Z})$. Consider $\mathbb{Z}/2\mathbb{Z}[\operatorname{tilde}]$. We want to draw the etale space corresponding to this. Then $U = \operatorname{Spec}(\mathbb{Z}[\frac{1}{n}]) = \operatorname{Spec}(\mathbb{Z}) \setminus \{(\mathfrak{p}_1), ..., (\mathfrak{p}_k)\}$. Then

$$(\mathbb{Z}\widetilde{/}2\mathbb{Z})(U) = n^{-1}\mathbb{Z}/2\mathbb{Z} = \begin{cases} 0 & 2 \not\mid n \\ \mathbb{Z}/2\mathbb{Z} & 2 \mid n \end{cases}$$

We are now in a position to prove the following.

Theorem. There is a one-to-one correspondence between maps of schemes over k,

 $X \to \mathbb{P}^d_k$,

and rank 1 locally free quotients $\mathcal{O}_X^{d+1} - \gg \mathcal{L}$. (\equiv an invertible sheaf \mathcal{L} on X together with d + 1 elements $s_0, ..., s_d \in \mathcal{L}(X)$ s.t. $\forall x \in X$, the images of $s_0, ..., s_d$ in \mathcal{L}_x generate this rank 1 free module $\mathcal{O}_{X,x}$.

Lecture 15 (February 16, 2009) - Manifolds and Bundles (wha?)

Hatcher: Book on vector bundles on his website.

Definition. A real / complex C^k / C^* manifold M is a topological space with an equivalence class of "atlases" i.e. coverings by charts, $M = \bigcup_{\alpha} U_{\alpha}$, where a chart is a pair (U, φ) with $U \subset M$ open such that $\varphi : U \to \mathbb{R}^n$ or \mathbb{C}^n is a homeomorphism onto an open subset, and if $(U_{\alpha}, \varphi_{\alpha}), (U_{\beta}, \varphi_{\beta})$ are two charts, we get a homeomorphism $\mathbb{R}^n \supset \varphi_{\beta}(U_{\alpha} \cap U_{\beta}) \xrightarrow{\varphi_{\alpha\beta}} \varphi_{\alpha}(U_{\alpha} \cap U_{\beta}) \subset \mathbb{R}^n$, and we require that $\varphi_{\alpha\beta}$ be continuous, differentiable of order k, real analytic (or in \mathbb{C} -case, complex analytic).

Notice $\varphi_{\alpha\beta} \circ \varphi_{\beta\gamma} = \varphi_{\alpha\gamma} : \varphi_{\gamma}(U_{\alpha} \cap U_{\beta} \cap U_{\gamma}) \to \varphi_{\alpha}(U_{\alpha} \cap U_{\beta} \cap U_{\gamma})$. Furthermore, an atlas (V_i, ψ_i) is a refinement of an atlas $(U_{\alpha}, \varphi_{\alpha})$ if $\{(U_{\alpha}, \varphi_{\alpha}) \subset (V_i, \psi_i)\}$. We say two atlases are *equivalent* if they have a common refinement.

Definition. If $W \subset M$ is open, we say that $f : W \to \mathbb{R}$ (resp \mathbb{C}) is continuous, C^k , C^{∞} , or complex analytic, if $\forall \alpha$, $f \circ \varphi_{\alpha}^{-1} : \varphi_{\alpha}(W \cap U_{\alpha}) \to \mathbb{R}$ (resp \mathbb{C}) has this property.

For example, a map $f: M \to N$ of C^{∞} manifolds is a continuous map of topological spaces such that for every pair of charts $N \supset U \xrightarrow{\varphi} \mathbb{R}^n$, $M \supset V \xrightarrow{\psi} \mathbb{R}^m$, we have $f \circ \psi^{-1} : \psi(V \cap f^{-1}(U)) \to \mathbb{R}^n$.

We say $M \subset N$ is a submanifold if it is a closed subspace and the inclusion is C^{∞} .

A submanifold $M \subset \mathbb{R}^n$ can be described in various ways, especially by equations. For example, f(x, y) = 0 gives a curve in \mathbb{R}^2 .

Examples of bundles

If we have $M \subset \mathbb{R}^n$, then we have TM = tangent bundle to M. Recall if we have a bundle $\pi: E \to M$ (E over M), $E_x = \pi^{-1}(\{x\}) =$ vector space for $x \in M$. Then $(TM)_x$ is simply the tangent space to M in \mathbb{R}^n at x. This is a subspace of \mathbb{R}^n . A morphism $f: E \to F$ of vector bundles over F is a continuous map such that (1) $f \circ \pi_F = \pi_E$, (2) f is a linear on the fibers, (3) f is C^k, C^∞ , as necessary.

Give, a vector bundle $\pi: E \to M$ and $s: M \to E$ then s is a section if $\pi \circ s = 1_M$. Interstingly, sections of tangent bundles is the same as sections of vector spaces.

Lecture 17 (February 20, 2009) -

Last time, we looked at R as a ring, M as an R-module, and

 $S^*(M) = R \oplus M \oplus \ldots \oplus S^k M \oplus \ldots$

the symmetric algebra. Now, any times we have a map

$$Spec(S^*(\mathcal{M})) \downarrow \pi \uparrow s Spec(R),$$

then a section corresponds to a homomorphism of *R*-algebras:

 $S^*M \to R.$

An *R*-algebra homomorphism from a symmetric algebra into any *R*-algebra, $S^*M \to A$, is induced by a unique *R*-linear map.

Now, in the previous direct sum for $S^*(M)$, each of the S^iM summands can be sent into A using f. Hence, sections correspond 1-1 with R-linear maps $M \to R$, i.e., elements of M^* . This gives a diagram

$$\begin{array}{c} \operatorname{Spec}(S^*M) \\ \sigma \swarrow \downarrow \pi \\ \operatorname{Spec}(A) \xrightarrow{\smile} \operatorname{Spec}(R), \end{array}$$

which tells us that maps σ such that $\pi \circ \sigma = \varphi$ are in one-to-one correspondence with *R*-linear maps *MA*.

Example. Let $M = \mathbb{Z}/p\mathbb{Z}$ with $p \neq 0$ a prime. Then

$$\operatorname{Spec}(S^*M) \cong \operatorname{Spec}(\mathbb{Z}[x]/(px))$$

Example. Let $M = R^k / \{$ submodule generated by $r_1, ..., r_l \}$, with x_i the generators of R^k . Then

 $S^*M \cong R[x_1, ..., x_k] / \{ \text{ideal generated by the } r_i \}.$

If $M (\cong R^k)$ is free, then

$$Spec(S^*M) \cong \mathbb{A}^k_R$$
$$\downarrow$$
$$Spec(R)$$

and sections are one-to-one with elements of the free rank k module M^* . If $M = \bigoplus Re_i$ sections are of the form $\sum a_i e^i$ (with e^i the dual basis of M^*).

Homework questions

Now, if G is a group and we have a functor taking

Rings
$$\rightarrow$$
 Sets
 $R \mapsto \operatorname{Hom}(G, GL_n(R))$
 $R \xrightarrow{\varphi} S, \ GL_n(R) \xrightarrow{GL_n(\varphi)} GL_n(S), \ \rho : G \to GL_n(R) \text{ with } \rho \mapsto GL_n(\rho) \cdot \rho.$

We claim there is a ring R(G) such that this functor is isomorphic to

 $R_i \mapsto \operatorname{Ring} \operatorname{homs}(R(G), R).$

Example. Let $G \cong \mathbb{Z}$ be infinite cyclic. Then $\rho \equiv \text{picking } \rho(g) \in GL_n(R)$. In this case the functor is just GL_n , represented by $\mathbb{Z}\Big[\{x_{ij} \mid 1 \leq i \leq n, 1 \leq j \leq n\} \cdot \frac{1}{\det((x_{ij}))}\Big]$, the polynomial ring of matrices with entries $x_{ij}/\det((x_{ij}))$. This is an affine open subset of $\mathbb{A}^{n^2}_{\mathbb{Z}}$. Then if we have a ring homomorphism from that ring to R given by φ , then

$$\varphi: x_{ij} \mapsto \varphi(x_{ij}) \in R$$

such that $det(\varphi(x_{ij})) \in \mathbb{R}^*$, i.e. an element of $GL_n(\mathbb{R})$.

If $G = F_n$, the free group on $\langle g_1, ..., g_n \rangle$ or more generally on a set, $\langle \Sigma \rangle$, then for any group H,

Hom group
$$(G, H)$$
 = Hom sets $(\Sigma, H) \approx H^{\Sigma}$.

Then Hom $(G, GL_{\underline{n}}(R)) = GL_n(R)^{\Sigma}$, and so $R \to GL_n(R)^{\Sigma}$ represented by

$$GL_n\Sigma = \operatorname{Spec}\left(\mathbb{Z}\left[\left\{x_{ij}^{\sigma} \mid \sigma \in \Sigma, 1 \leq i, j \leq n\right\}, \left\{\frac{1}{\det(x_{ij})} \mid \sigma \in \Sigma\right\}\right]\right) \subset \mathbb{A}_{\mathbb{Z}}^{n^2\Sigma}.$$

If $G = \langle \Sigma | T \rangle$ (generators and relations), then if $t \in T$, $t = \sigma_{t(1)}^{\pm 1}, ..., \sigma_{t(n_t)}^{\pm 1}$. Then if

$$F_{\Sigma} \xrightarrow{\varepsilon} G$$
$$\rho \cdot \varepsilon \searrow \downarrow \rho$$
$$GL_n(R).$$

Then $\varphi: F_{\Sigma} \to GL_n(R)$ factors through G if and only if for all $t \in T$, $\varphi(t) = I_n$.

$$\rho\left(\sigma_{t(1)}^{\pm 1},...,\rho_{t(n_t)}^{\pm 1}\right) = I.$$

For each $t \in T$, we have n^2 equations corresponding to the entries of this matrix equation. Then $Hom(G, GL_n(R))$ is represented by

$$\operatorname{Spec}\left(\mathbb{Z}\left[\left\{x_{ij}^{\sigma} \mid \sigma \in \Sigma, 1 \leq i, j \leq n\right\}, \left\{\frac{1}{\operatorname{det}\left(x_{ij}\right)} \mid \sigma \in \Sigma\right\}\right]\right)$$

ideal generated by entries of matrices corresponding to the relations.

Sub-Example. What are the representations of $\mathbb{Z}/2\mathbb{Z}$ in GL_2 ? Well, $GL_2 = \begin{pmatrix} x & z \\ y & w \end{pmatrix}$ such that the determinant is a unit. That is,

$$GL_2 = \mathbb{Z}\left[x, y, z, w, \frac{1}{xw-zy}\right] \subset \mathbb{A}^4_{x,y,z,w}$$

Then the representations are equivalent to elements in GL_2 such that $A^2 = I$. Then the $Hom(\mathbb{Z}/2\mathbb{Z}, GL_2)$ is given by $x^2 + yz = 1, w^2 + zy = 1, xy + yw = 0, xz + wz = 0.$

If $\mathbb{A}^2_k \setminus \{(0,0)\}$, then $R^* \times R \cup R \times R^*$ is given by

$$\{(f,g)\in R^2\,|\, (f,g)=R\},$$

i.e., $\exists a, b \in R$ such that af + bg = 1. For example, $\text{Spec}(\mathbb{Z}) \to \mathbb{A}^2_k \setminus \{(0,0)\}$, with $x \mapsto 2$ and $y \mapsto 3$.

Another homework question: What does it mean to show something has a natural scheme structure?

Given $G = \operatorname{Spec}(R)$ with $G \times G \to G$, $R \otimes_k R \leftarrow R$, with $k[\varepsilon] \to k[\varepsilon \otimes 1, 1 \otimes \varepsilon]$. What are the elements in this ring? Well, if we let $\varepsilon \otimes 1 = \varepsilon'$ and $1 \otimes \varepsilon = \varepsilon''$, then they are of the form

$$a + b\varepsilon' + c\varepsilon'' + d\varepsilon'\varepsilon''$$

Check associativity, identity, etc.

$$\begin{array}{ccc} G\times G\times G\to G\times G\\ \downarrow & \downarrow\\ G\times G\to G\end{array}$$

Recall the identity will be a map Spec $k \rightarrow G$.

Lecture 18 (February 23, 2009) - Homework questions

Homework questions

For (2b): A k-derivation is essentially

$$\alpha_2 \times \operatorname{Spec}(A) \to \operatorname{Spec}(A).$$

The former is essentially $\operatorname{Spec}(k[\varepsilon] \otimes_k A) \cong \operatorname{Spec}(A[\varepsilon])$, so all we need to do is give a ring homomorphism $A \to A[\varepsilon]$. So, look at

$$\begin{array}{l} \alpha_2 \times \alpha_2 \to \alpha_2 \\ k[\varepsilon', \varepsilon''] \leftarrow k[\varepsilon] \\ \varepsilon \mapsto \varepsilon' + \varepsilon'' \\ \mathbf{Spec}(k) \to \alpha_2 \\ k \leftarrow k[\varepsilon] \\ \varepsilon \mapsto 0 \end{array}$$

Then we can take

$$\begin{split} \varepsilon &\mapsto 0\\ A &\to A[\varepsilon] \to A\\ a &\mapsto a + \varphi(a)\varepsilon, \end{split}$$

where φ is a ring homomorphism and thus additive. Further, notice

 $ab \mapsto ab + \varphi(ab)\varepsilon = (a + \varphi(a)\varepsilon)(b + \varphi(b)\varepsilon) = ab + (\varphi(a)b + a\varphi(b))\varepsilon$ so that $\varphi(ab) = \varphi(a)b + a\varphi(b)$ and hence φ is a derivation.

$$\begin{array}{c}
k \\
\swarrow \downarrow \searrow \\
A \leftarrow A[\varepsilon] \leftarrow A,
\end{array}$$

with $a \mapsto a + 0\varepsilon$ for the \downarrow map, and so $a \in k \Longrightarrow \varphi(a) = 0$. Then we have to check

$$\begin{array}{c} \alpha_2 \times \alpha_2 \times \operatorname{Spec}(A) \to \alpha_2 \times \operatorname{Spec}(A) \\ \downarrow \qquad \qquad \downarrow \\ \alpha_2 \times \operatorname{Spec}(A) \to \operatorname{Spec}(A) \end{array}$$

commutes, which is simply a computation. Say the maps are

$$\begin{array}{c} a + \delta(a)\varepsilon' + \delta(a)\varepsilon'' \leftarrow a + \delta(a)\varepsilon \\ \uparrow & \uparrow \\ a + \delta(a)\varepsilon \longleftarrow a. \end{array}$$

Then $a + \delta(a)\varepsilon' + \delta(a)\varepsilon''$ gets mapped to $a + \delta(a)\varepsilon'' + (\delta(a) + \delta(\delta(a))\varepsilon'') = \varepsilon$ (or is it?).

<u>Digression</u> In char p > 0, $\alpha_p = \operatorname{Spec}(k[x]/x^p)$ with $x \mapsto x \otimes 1 + 1 \otimes x$. This is a ring homomorphism by the binomial theorem. In *any* characteristic, there is a correspondence between k-algebra homomorphisms $\varphi : A \to A[\varepsilon]$ such that $\varphi(a) = a + \delta(a)\varepsilon$, and derivations. In characteristic zero, there is a 1-1 correspondence between k-derivations $\delta : A \to A$, and actions of \mathcal{G}_a on $X = \operatorname{Spec}(A)$, where

 \mathcal{G}_a is defined as follows. Recall $\mathbb{G}_a = \operatorname{Spec}(k[x])$ with $x \mapsto x \otimes 1 + 1 \otimes x$. Notice that this makes sense on power series: $k[[x]] \to k[[x \otimes 1, 1 \otimes x]]$ sends a power series $\sum_{n=0}^{\infty} a_n x^n \mapsto \sum_{n=0}^{\infty} a_n (x \otimes 1 + 1 \otimes x)^n$. Then rather than take the tensor products we just take power series in the elements (call this diagram \bigstar)

$$A[[x']] \widehat{\otimes} A[[x'']] \\ || \\ A[[x', x'']] \leftarrow A[[x]] \\ \uparrow \\ A[[x]] \leftarrow A$$

Remark. $k[[x']] \otimes k[[x'']] \not\cong k[[x, x'']]$

Then if $a \mapsto \varphi(a) := \sum \varphi^i(a) x^i$ in the right \uparrow in the above diagram, the result on the top line will be

$$\varphi(a) \coloneqq \sum \varphi^{i}(a) \, x^{i} \mapsto \sum_{i,j=0}^{\infty} \varphi^{i} \varphi^{j}(a) (x')^{i} (x'')^{j} = \sum \varphi^{i}(a) (x' + x'')^{i}, \quad (1)$$

with the condition $\varphi^0(a) = a$. Here, we are using $\varphi^i \neq \varphi \circ ... \circ \varphi$ as *i*-times. We will explain in what sense we use the notation " φ^i " momentarily. So, coming back to \mathcal{G}_a , this is similarly defined as for \mathbb{G}_a , but with the diagram above. Now, notice in (1) above, this is equivalent to giving

$$\varphi^0 = \mathrm{id}, \, \varphi^1, ..., \varphi^i: A \to A, ...$$

such that $\forall n \geq 0, \forall a, \varphi^n(a)(x')^i(x'')^j\binom{n}{i} = \varphi^i \varphi^{n-1}(a)$ with i + j = a. For example, $\varphi^2 \cdot 2 = \varphi^1 \cdot \varphi^1$, that is, $\varphi^2 = \frac{1}{2}(\varphi^1)^2$ (binomial theorem). This is the sense in which we use the notation φ^i . Then notice that $\varphi^n = \frac{1}{n!}\varphi^{\circ n}$, where $\varphi^{\circ n} = \varphi \circ \ldots \circ \varphi$ composed *n* times.

Then the claim is as follows.

Proposition. To give a ring homomorphism $\varphi : A \to A[[x]]$ such that $\varphi(a) = \sum_{i=0}^{\infty} \varphi^i(a) x^i$ with (i) $\varphi^0(a) = a$ for all a, (ii) the diagram (\bigstar) commutes, i..e,

$$\sum_{i=0}^{\infty} \varphi^{i} (x' + x'')^{i} = \sum_{i} \sum_{j} \varphi^{i} \varphi^{j} (x')^{i} (x'')^{j}$$

is, in characteristic 0, equivalent to giving a derivation on A.

Hence, going back to the idea of a group scheme, recall this is just verifying that the diagram below commutes,

$$\begin{array}{ccc} G \times G \times X \to G \times X \\ \downarrow & \downarrow \\ G \times X \longrightarrow X \end{array}$$

with the maps

$$\begin{array}{ccc} (g,h,x)\mapsto (gh,x)\\ \downarrow & \downarrow\\ (g,hx)\mapsto ghx \end{array}$$

induced by multiplication.

Example. Consider $C^{\infty}(\mathbb{R})$ with derivation $\frac{d}{dt}$. Then if you evaluate

$$egin{aligned} &C^\infty(\mathbb{R}) o C^\infty(\mathbb{R})[[x]]\ &f\mapsto \sum\limits_{n=0}^\infty rac{1}{n!} rac{d^nf}{dt^n} \, x^n \end{aligned}$$

at a point $t = t_0$ in \mathbb{R} (i.e., coeffs of a formal power series in x), then this gives the Taylor series of f at t_0 . \Box

Previous homework problem

Recall the problem dealing with $X := \mathbb{A}_k^n \setminus \{0\} \subset \mathbb{A}_k^n$ (in the homework it was n = 2). Of course, $\{0\} = (x_1, ..., x_n) \triangleleft k[x_1, ..., x_n]$ is the point corresponding to / consisting of the maximal ideal generated by $x_1, ..., x_n$. So, a point \mathfrak{p} in \mathbb{A}_k^n is in X if and only if $\mathfrak{p} \neq (x_1, ..., x_n)$ if and only if $\exists x_i$ such that $x_i \notin \mathfrak{p}$ (since $(x_1, ..., x_n)$ is maximal). Then

$$X = \bigcup_{i=1}^{n} D(x_i) = \operatorname{Spec}\left(k[x_1, ..., x_n] \begin{bmatrix} \frac{1}{x_i} \end{bmatrix}\right)$$

(so $D(x_i)$ is the line where we deleted the entire line $x_i = 0$, so for \mathbb{A}^2 it would be deletion of the *y*-axis if i = 2). Furthermore, notice the primes in the Spec above are in one-to-one correspondence with primes $\not \supseteq x_i$. Anyway, if $\varphi : \operatorname{Spec}(R) \to X$ is a morphism composed with $X \subset \mathbb{A}_k^n$, we get $\overline{\varphi} : \operatorname{Spec}(R) \to \mathbb{A}_k^n$, or equivalently,

$$k[x_1, ..., x_n] \to R \text{ with } x_i \mapsto r_i.$$

That is (and we saw this earlier), giving a homomorphism of $\operatorname{Spec}(R)$ to \mathbb{A}_k^n is equivalent to giving a ring homomorphism as above. Now, the above map will factor through the open subset X if and only if $\{0\} \notin$ image of $X \Leftrightarrow X = \bigcup_{i=1}^n (\overline{\varphi})^{-1}(D(x_i))$. Now we just need to know that $\overline{\varphi}$ is. Call $(\overline{\varphi})^{-1}(D(x_i)) = x_{r_i}$. This is just the open subset of X where r_i are units. We can see this by looking at

$$R\begin{bmatrix} \frac{1}{r_i} \end{bmatrix} \leftarrow k \begin{bmatrix} x_1, ..., x_n, \frac{1}{x_i} \end{bmatrix}$$

$$\uparrow \qquad \uparrow$$

$$R \leftarrow k[x_1, ..., x_n]$$

where we notice $R \otimes_{k\left[x_1,...,x_n,\frac{1}{x_i}\right]} R[x_1,...,x_n] = R\left[\frac{1}{r_i}\right]$, and this diagram corresponds to

$$\overline{\varphi})^{-1}(D(x_i)) \to D(x_i)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$X \xrightarrow{\overline{\varphi}} \mathbb{A}^n.$$

Continuing our \Leftrightarrow we get if and only if $(r_1, ..., r_n) \triangleleft R$ is the unit ideal $\Leftrightarrow \exists s_1, ..., s_n$ in R with $\sum r_i s_i = 1$ (that is, $\forall \mathfrak{p} \triangleleft R$ at least one r_i maps to units in $R_{\mathfrak{p}}$, which is the same as saying subschemes $V(r_i) \subset X$ are disjoint).

Lecture 19 (February 25, 2009) - Quasi-coherent, locally free of rank 1 sheaves

Recall if R is a ring, a map $\text{Spec}(R) \to \mathbb{A}^n \setminus \{0\}$ is the same as an n-tuple $(r_1, ..., r_n)$ such that the ideal $(r_1, ..., r_n) = R$. This is equivalent to the map

$$R^n o R \ (x_1, ..., x_n) \mapsto \sum r_i x_i$$

being surjective. Recall also that $\mathbb{G}_m = \operatorname{Spec}(\mathbb{Z}[t, t^{-1}])$ acts on $\mathbb{A}^{n+1} \setminus \{0\} \subset \mathbb{A}^{n+1} = \operatorname{Spec}(\mathbb{Z}[x_0, ..., x_n])$ and the quotient is \mathbb{P}^n . And \mathbb{P}^n is the union of the affine open sets

$$U_i = \operatorname{Spec}\left(\mathbb{Z}\left[\frac{x_0}{x_1}, ..., \frac{x_{i-1}}{x_i}, \frac{x_{i+1}}{x_i}, ..., \frac{x_n}{x_i}\right]\right).$$

Then the degree zero part of the \mathbb{Z} -graded ring $\bigstar = \mathbb{Z} \Big[x_0, ..., x_i, \frac{1}{x_i}, ..., x_n \Big]$. Then

$$\mathbb{A}^{n+1}\setminus\{0\} = \bigcup_{i=0}^n V_i = \operatorname{Spec}[\bigstar].$$

Also, \mathbb{G}_m acts on each V_i with the quotient equal to U_i and furthermore there is a one-toone correspondence between prime ideals in $\mathbb{Z}\left[\frac{x_0}{x_1}, \dots, \frac{x_n}{x_1}\right]$, and homogeneous prime ideals in \bigstar which do not contain the ideal (x_0, \dots, x_n) .

Here, \mathbb{P}^n as a set is the set of homogeneous prime ideals in $\mathbb{Z}[x_0, ..., x_n]$ not containing all of $x_0, ..., x_n$. In other words, U_i is the set of homogeneous primes \mathfrak{p} such

that $x_i \notin \mathfrak{p}$. If R is a ring, a map $\phi : \operatorname{Spec}(R) \to \mathbb{P}^n_{\mathbb{Z}} = \bigcup U_i$ is given by maps $\phi_i : \phi^{-1}(U_i) \to U_i$ where $\phi^{-1}(U_i)$ is a Zariski open set of $\operatorname{Spec}(R)$ such that on $W_i \cap W_j$ the maps $\phi_i|_{W_i \cap W_j}, \phi_j|_{W_i \cap W_j} : W_i \cap W_j \to U_i \cap U_j$ agree.

Notice that each ϕ_i is determined by elements $\xi_0^i, ..., \xi_n^i$ (with $\zeta_i^i = 1$) in $\mathcal{O}_X(U_i)$ (where X = Spec(R)). On

$$U_i \cap U_j = \operatorname{Spec} \mathbb{Z} \left[\frac{x_0}{x_i}, ..., \frac{x_i}{x_i}, \frac{x_i}{x_j}, ..., \frac{x_n}{x_i} \right] \text{ (degree 0 part of}$$
$$\mathbb{Z} \left[x_0, ..., x_i, \frac{1}{x_i}, ..., x_j, \frac{1}{x_j}, ..., x_n \right] \text{)},$$

we know $x_k/x_i = x_k/x_j \cdot x_j/x_i$. To say that $\phi_i = \phi_j$ on $W_i \cap W_j$ means $\xi_k^i = \xi_k^j \xi_j^i$ with ξ_j^i a unit and $\xi_j^i \cdot \xi_i^j = 1$. In other words, giving ϕ is the same as giving $X = U_0 \cup U_1$ and giving a function $\xi_1^0 \in \mathcal{O}_X(U_0)$, and a function $\xi_0^1 \in \mathcal{O}_X(U_1)$ such that on $U_0 \cap U_1$, we have $\xi_0^1 \xi_0^1 = 1$. So, $\xi_0^1 \in \mathcal{O}_X(U_0 \cap U_1)^*$ (invertible function, so it's a unit in this open set). Now, out of this unit, we can construct a locally free sheaf of rank 1, \mathcal{L} , as follows: on U_0 take the (locally) free sheaf $\mathcal{O}_{U_0} \cong \mathcal{O}_X|_{U_0}$. On U_1 , take $\mathcal{O}_{U_1} \cong \mathcal{O}_X|_{U_1}$. Glue these together on $U_0 \cap U_1$ by the map:

$$\mathcal{O}_{U_0}|_{U_0\cap U_1} \to \mathcal{O}_{U_1}|_{U_0\cap U_1}, \ \ \alpha \mapsto \alpha \xi_1^0.$$

It is a remark here to notice if $X = U_0 \cup U_1$ and $\mathcal{M}_0, \mathcal{M}_1$ are quasi-coherent sheaves on U_0 and U_1 respectively, and $\phi : \mathcal{M}_0|_{U_0 \cap U_1} \to \mathcal{M}_1|_{U_0 \cap U_1}$ is an isomorphism, we get a sheaf \mathcal{N} such that $\mathcal{N}|_{U_0} \cong \mathcal{M}_0$ and $\mathcal{N}|_{U_1} \cong \mathcal{M}_1$. If $V \subset X$ is open, then

 $\mathcal{N}(V) = \{(s,t) \mid s \in \mathcal{M}_0(U_0 \cap V), t \in \mathcal{M}_1(U_1 \cap V), \phi(s) = t\}.$

More generally, given $X = \bigcup_{i \in I} U_i$ and \mathcal{M}_i sheaves on U_i , then together with isomorphisms $\phi_{ij} : \mathcal{M}_j|_{U_i \cap U_i} \to \mathcal{M}_i|_{U_i \cap U_i}$ such that $\forall i, j, k$,

$$\phi_{ij}|_{U_i \cap U_j \cap U_k} \cdot \phi_{jk}|_{U_i \cap U_j \cap U_k} = \phi_{ik}|_{U_i \cap U_j \cap U_k},$$

then there is a sheaf \mathcal{N} such that $\mathcal{N}|_{U_i} \cong \mathcal{M}_i$ and sections are given by a similar formula. In particular, if each $\mathcal{M}_i \cong \mathcal{O}_{U_i}$, then an isomorphism $\phi_{ij} : \mathcal{O}_{U_j}|_{U_i \cap U_j} \to \mathcal{O}_{U_i}|_{U_i \cap U_j}$ is just $\phi_{ij} : \mathcal{O}_{U_i \cap U_j} \to \mathcal{O}_{U_i \cap U_j}$ given by

$$1 \in \mathcal{O}_{U_i \cap U_i}(U_i \cap U_j) \mapsto \alpha \in \mathcal{O}_{U_i \cap U_i}(U_i \cap U_j).$$

Since this is a map of modules, any $v \mapsto \alpha u$, and since ϕ is an isomorphism,

$$\alpha \in \mathcal{O}_{U_i \cap U_j} (U_i \cap U_j)^*,$$

i.e., $\phi_{ij} = \text{multiplication by a unit which we also denote } \phi_{ij} \in \mathcal{O}_X(U_i \cap U_j)^*$. Hence, a collection $\phi_{ij} \in \mathcal{O}_X(U_i \cap U_j)^*$ such that $\phi_{ii} = 1$, $\phi_{ij} \cdot \phi_{jk} = \phi_{ik} \in \mathcal{O}_X(U_i \cap U_j \cap U_k)$ $\forall i, j, k (*)$ (this is called the "co-cycle condition") determines, by gluing, a quasi-coherent sheaf \mathcal{L} on X such that $\mathcal{L}|_{U_i} \cong \mathcal{O}_X|_{U_i}$, i.e., \mathcal{L} is a "locally free of rank 1".

Conversely, if we are given a quasi-coherent sheaf \mathcal{L} on X such that there exists an open cover U_i and an isomorphism $\sigma_i : \mathcal{L}|_{U_i} \cong \mathcal{O}_X|_{U_i}$, i.e., \mathcal{L} is locally free of rank 1. Then if we set $\phi_{ij} = \sigma_i \cdot \sigma_j^{-1} \cdot \mathcal{O}_X|_{U_i \cap U_j} \to \mathcal{O}_X|_{U_i \cap U_j}$, then the ϕ_{ij} satisfy (*).

Now, we want to go back and relate this to projective space.

Proposition. Suppose we are given a scheme X, and a locally free rank 1 sheaf \mathcal{L} on X determined by a cocycle $\{\phi_{ij}\}$ with respect to an affine open cover U_i of X, and a homomorphism $\theta : \mathcal{O}_X^{n+1} \to \mathcal{L}$ which is surjective.

Remark. For \mathcal{M} , \mathcal{N} quasi-coherent sheaves, $\theta : \mathcal{M} \to \mathcal{N}$ is surjective if and only if for all affine opens, $\mathcal{M}(U) \to \mathcal{N}(U)$.

Next time, we will show that θ gives a map to \mathbb{P}^n .

Lecture 20 (February 27, 2009) - Constructing maps to \mathbb{P}^n

Recall from last time that the idea is the following. If X is a scheme and \mathcal{L} is a sheaf of locally free \mathcal{O}_X -modules of rank 1, and we are given a surjective homomorphism of sheaves of modules $\varphi : \mathcal{O}^{n+1} \to \mathcal{L}$, then we get a well-defined map

$$f_{\varphi}: X \to \mathbb{P}^n_{\mathbb{Z}}$$

as follows. Recall that by definition, there exists an open cover U_i of X and an isomorphism $\sigma_i : \mathcal{O}_X|_{U_i} \xrightarrow{\sim} \mathcal{L}|_{U_i}$. This is called a "**local trivialization**". Notice that to give σ_i is equivalent to giving the section $\sigma_i(1) \in \mathcal{L}(U_i)$ with σ_i an isomorphism; in other words, $\forall x \in U_i, \sigma_i(1) \in \mathcal{L}_{X,x}$, where $\mathcal{L}_{X,x}$ is an \mathcal{O}_X -module that is free or rank 1--that is, $\sigma_i(1)$ vanishes nowhere in U_i .

Reminder. If R is a local ring and L is free of rank 1, then $\ell \in L$ generates L if and only if $\ell \notin mL$ (for m a maximal ideal of R) if and only if a non-zero $\overline{\ell} \in R/m \otimes_R L$.

Given such a local trivialization, $\sigma_i^{-1} \circ \varphi : (a_0, ..., a_n) \mapsto \sum_{i=0}^n a_i r_i \in \mathcal{O}_X(U_i)$ for some $(r_0, ..., r_n)$ because φ is surjective. Hence, there exists an <u>a</u> such that $\varphi(\underline{a}) = 1$, that is, $(r_0, ..., r_n) \subset \mathcal{O}_X(U_i)$ is the unit ideal, or equivalently, $\psi_i = \sigma_i^{-1} \circ \varphi$ corresponds to the map $(r_0, ..., r_n) : U_i \to \mathbb{A}^{n+1} \setminus \{0\}$. On $U_i \cap U_j$, we have

$$\sigma_j = \varphi_{ji}\sigma_i,$$

with $\varphi_{ji} \in \mathcal{O}_X(U_i \cap U_j)^*$. Hence, we have two maps

$$U_i \cap U_j \stackrel{\psi_i}{ oldsymbol{\psi}_j} \mathbb{A}^{n+1} ackslash \{0\} imes \mathbb{G}_m,$$

where ψ_i corresponds to $(r_0^{(i)}, ..., r_n^{(i)})$ and ψ_j corresponds to $(r_0^{(j)}, ..., r_n^{(j)})$. Let's look at the coordinates of the pull-backs of these maps (where elements are mapped to).

For
$$(x_0, ..., x_n, t)$$
, each $x_k \stackrel{\psi_i^*}{\mapsto} r_k^{(i)}$ and $x_k \stackrel{\psi_j^*}{\mapsto} r_k^{(j)}$,
and under both maps t maps to φ_{ii} .

Observe that $\psi_j^*(x_k) = \psi_i^*(x_k) f_{ij}^*(t)$, where we let $f_{ij} : U_i \cap U_j \to \mathbb{G}_m$ (remember it makes sense to talk about this map). Hence, ψ_i and ψ_j are the composition

Since \mathbb{P}^n is the quotient of $\mathbb{A}^{n+1}\setminus\{0\}$ by the action of \mathbb{G}_m , the composition of these maps with projⁿ to \mathbb{P}^n are the same.

Now we can ask the question: what happens if we had made a different choice of the (U_i, σ_i) ? In other words, consider $\{(V_j, \tau_j)\}$. Then by what we have just seen, these will have to differ by multiplication by a unit, and hence on $U_i \cap V_j$, the maps to $\mathbb{A}^{n+1} \setminus \{0\}$ associated to σ_i and τ_j induce the same map to \mathbb{P}^n . So the map $f_{\varphi} : X \to \mathbb{P}^n$ is not dependent on these choices (see beginning of lecture for f_{φ}).

Now that we know about our map f_{φ} , we claim that given a $f: X \to \mathbb{P}^n$, we can construct a surjective homomorphism $\varphi: \mathcal{O}_X^{n+1} \to \mathcal{L}$ such that $f_{\varphi} = f$ (where \mathcal{L} is locally free of rank 1). Here is the construction.

Step 1. Consider the sheaves $\mathcal{O}_{\mathbb{P}^n}(k)$. Recall that

$$\mathbb{P}^n = \bigcup_{i=0}^n \operatorname{Spec}\left(\mathbb{Z}\Big[x_0, ..., x_i, \frac{1}{x_i}, ..., x_n\Big]_{\deg 0}\right)$$

with homogeneous coordinates $(x_0 : ... : x_n)$ (where deg 0 means "take the degree 0 part of this guy").Notice that $\mathbb{Z}\left[x_0, ..., x_i, \frac{1}{x_i}, ..., x_n\right]$ is \mathbb{Z} -graded, and it has a unit in degree 1 (namely, x_i). In general, if $S = \bigoplus_{n \in \mathbb{Z}} S_n$ is such a ring and $u \in S_1$ is the unit, we can multiply by u to get $S_k \to S_{k+1}$, which will be an isomorphism of S_0 -modules. So, S_k (for any $k \in \mathbb{Z}$) is a free rank 1 S_0 -module generated by u^k .

Lemma. For each $k \in \mathbb{Z}$, the modules M_i of homogeneous elements of degree k in

$$\mathbb{Z}\Big[x_0,...,x_i,rac{1}{x_i},...,x_n\Big]$$

patch together to give a locally free rank 1 sheaf on $\mathbb{P}^n_{\mathbb{Z}}$.

Proof. Let $k \in \mathbb{Z}$. Our goal is to give an isomorphism

$$M_i = \mathbb{Z}\Big[x_0, ..., x_i, \frac{1}{x_i}, ..., x_n\Big]_{\deg k} \longrightarrow \mathbb{Z}\Big[x_0, ..., x_j, \frac{1}{x_j}, ..., x_n\Big]_{\deg k} = M_j$$

That is, $M_i = \mathcal{O}_X(k)(U_i)$ is the elements of $\mathbb{Z}\left[x_0, ..., x_i, \frac{1}{x_i}, ..., x_n\right]$ of degree k. This is free of rank 1 over the homogeneous components of degree zero, and so generated by the $(x_i)^k$, that is,

$$f = \underbrace{\frac{a(x_0, \dots, x_n)}{x_i^{\ell+k}} \cdot x_i^k}_{\text{degree 0}} \cdot x_i^k$$

on $U_i \cap U_j$ with $f \cdot \left(\frac{x_j}{x_i}\right)^k$ = (something of degree zero).

Now, we look at the localization of M_i with respect to x_j and M_j with respect to x_i , and the intersection with respect to both. Let's look at specifics here.

What does M_i look like? Take $f \in M_i$. Then $f = \frac{a(x_0,...,x_n)}{x_i^\ell}$ where a is of degree l + k. Similarly, given $g \in M_j$, it will look like $g = \frac{b(x_0,...,x_n)}{x_i^m}$ with b of degree m + k. Now, we want to make ourselves a nice little map

$$M_i\left[\frac{1}{x_j}\right] \to M_j\left[\frac{1}{x_i}\right].$$

Using the fact x_i/x_j is a unit on $U_i \cap U_j$,

$$\frac{a(x_0,...,x_n)}{x_i^\ell} \mapsto \frac{a_0(x_0,...,x_n)}{x_j^\ell} \cdot \left(\frac{x_j}{x_i}\right)^k,$$

with $a_0 a$ function. Now, recall the co-cycle condition (*) for a locally free sheaf of rank 1 (see previous lecture). Then the co-cycle defining $\mathcal{O}_{\mathbb{P}^n}(k)$ is $\left(\frac{x_i}{x_j}\right)^k$ on $U_i \cap U_j$.

Refer back to our discussion at the beginning of this proof, and we can extend the result for f to say that since on $U_i \cap U_j \cap U_m$

$$\left(\frac{x_i}{x_j}\right)^k \left(\frac{x_j}{x_m}\right)^k = \left(\frac{x_i}{x_m}\right)^k,$$

we have a locally free rank 1 sheaf. [Wait, what? Go back and look at this.] \Box

Notice if $k \ge 1$, then any homogeneous polynomial of degree k in $x_0, ..., x_n$ defines a global section in $\mathcal{O}_{\mathbb{P}^n}(k)(\mathbb{P}^n)$. In other words, if

$$f(x_0,...,x_n) \in \mathbb{Z}[x_0,...,x_n]$$

is homogeneous of degree k, then

$$f = \frac{f}{x_i^k} \cdot x_i^k$$
,

where the first term is homogeneous of degree 0. So these "glue together" as co-cycles. Notice

$$\varphi_i = \left(\frac{x_i}{x_j}\right)^k \varphi_j$$

so consider the (φ_i) . Then in particular, $\mathcal{O}(1)$ has n + 1 global sections $x_0, ..., x_n$. Hence, we have constructed

$$\mathcal{O}_{\mathbb{P}^n}^{n+1} \to \mathcal{O}_{\mathbb{P}^n}(1) \text{ given by } (a_0,...,a_n) \mapsto \sum a_i x_i.$$

Notice further that this map is surjective. On U_i , $\mathcal{O}_{\mathbb{P}^n}(1)|_{U_i} \cong \mathcal{O}_{U_i}$ is trivial, generated by $x_i = \sigma(0, ..., 1, ...0)$.

Step 2. Now given any $f: X \to \mathbb{P}^n$, just take $\mathcal{L} = f^*(\mathcal{O}_{\mathbb{P}^n}(1))$. We will see this done next time.

Lecture 22 (March 4, 2009) - Quasicoherent Sheaves

Let X = Spec(A), M an A-module, and \tilde{M} a quasi-coherent sheaf on X associated to M. Then

$$\tilde{M}\left(X_f = \operatorname{Spec}\left(A\left[\frac{1}{f}\right]\right)\right) = M\left[\frac{1}{f}\right] \cong A_f \otimes_A M$$

If $f: X \to Y$ is a map of schemes \mathcal{M} , there exists a quasi-coherent sheaf of \mathcal{O}_{Y} modules. Define $f^*\mathcal{M} = \mathcal{O}_X \mathcal{O}_{f^{-1}\mathcal{O}_Y} f^{-1}\mathcal{M}$.

Then there is an equivalence of categories:

quasi-coherent sheaves on spec $A \leftrightarrow A$ -modules.

For X a general scheme, a quasicoherent sheaf on X, is equivalent to giving the following:

For every affine
$$U = \operatorname{Spec}(A) \subset X$$
 an A-module $M(U)$ s.t. if
 $V = \operatorname{Spec}\left(A\left[\frac{1}{f}\right]\right) \subset \operatorname{Spec}(A) = U$, with $m_i \in M\left[\frac{1}{f_i}\right]$, then the map
 $M(U)\left[\frac{1}{f}\right] \to M(V)$

is an isomorphism.

Also, if $X = \bigcup_i U_i$, and given quasi-coherent sheaves \mathcal{M}_i on U_i ,

$$\theta_{ji} = \mathcal{M}_i|_{U_i \cap U_j} \xrightarrow{\simeq} \mathcal{M}_j|_{U_i \cap U_j}$$

satisfying $\theta_{ki} = \theta_{kj}\theta_{ji} \Longrightarrow$ get a quasi-coherent \mathcal{M} on X.

Given \mathcal{M} a quasi-coherent sheaf of \mathcal{O}_Y -modules, define the quasi-coherent sheaf $f^*\mathcal{M}$. We only need to find an open cover $X = \bigcup U_i$, and to define $f^*\mathcal{M}|_{U_i}$ such that these patch together. Consider $f: X \to Y = \bigcup_i U_i = \operatorname{Spec}(A_i)$. Of course we can write $X = \bigcup_j V_j = \operatorname{Spec}(B_j)$. Further $f(V_j) \subset U_i$ for some $i, \varphi(j)$ i.e., $f|_{V_j}$ is determined by a map $f_j^*: A_{\varphi(1)} \to B_i$ such that these are compatible.

So, let's say we have

$$V = \operatorname{Spec}(B) \xrightarrow{f_{U,V}} U = \operatorname{Spec}(A)$$

with $V \subset X$ and $U \subset Y$. Then giving f is equivalent to giving (i) a map of topological spaces $X \to Y$, (ii) for all pairs U, V of affine opens such that $f(V) \subset U$, a ring homomorphism $f^* : \mathcal{O}_Y(U) \to \mathcal{O}_X(V)$ such that $\operatorname{Spec}(f^*) = f|_U$, and this is natural with respect to inclusion of affine opens.

We can also do this in a category-theoretic say. Say we can have a quasi-coherent sheaf \mathcal{N} on X, and a quasi-coherent sheaf \mathcal{M} on Y.

Definition. A homomorphism of quasi-coherent sheaves $\varphi : \mathcal{M} \to \mathcal{N}$ over f consists of giving for all pairs V = Spec(B), U = Spec(A) as above, that is, such that $f(V) \subset U$, a homomorphism of abelian groups,

$$\varphi_{U,V}: \mathcal{M}(U) \to \mathcal{N}(V)$$

which is $\mathcal{O}_X(U)$ -linear, where $\mathcal{N}(V)$ is an $\mathcal{O}_X(U)$ module via

$$f_{UV}: \mathcal{O}_Y(U) \to \mathcal{O}_X(V),$$

and these homomorphisms are natural with respect to inclusions $U' \subset U$ and $V' \subset V$.

Now, backtracking a little, if $f : R \to S$ is a ring homomorphism, and M is an R-module (left if these are noncommutative), then what is $S \otimes_R M$? We have two categories, Mod_S modules over S and Mod_R modules over R, and there is the forgetful functor (think universal algebra):

$$\begin{array}{c} \operatorname{forget} \\ \operatorname{Mod}_S \xrightarrow{} \operatorname{Mod}_R \\ N \mapsto F(N) \end{array}$$

where we view N as R-modules.

Exercise. Hom_R $(M, N) \cong$ Hom_S $(S \otimes M, N)$

Then we can define

$$f^*\mathcal{M}(V) \coloneqq \mathcal{O}_X(V) \otimes_{\mathcal{O}_Y(U)} \mathcal{M}(U)$$

for all pairs V, U with $f(V) \subset U$, and the maps for $V' \subset U$ where the restriction map is simply induced by $\mathcal{O}_X(V) \to \mathcal{O}_X(V')$:

$$\mathcal{O}_X(V) \otimes \mathcal{M}(U) \to \mathcal{O}_X(V') \otimes \mathcal{M}(V).$$

Notice if $V = \operatorname{Spec}(B), V' = \operatorname{Spec}\left(B\left[\frac{1}{g}\right]\right), U = \operatorname{Spec}(A)$, then

$$B\left[\frac{1}{g}\right] \otimes_B \left(B \otimes_A \mathcal{M}(U)\right) \cong B\left[\frac{1}{g}\right] \otimes_A \mathcal{M}(U) \cong B \otimes_A \mathcal{M}(U)\left[\frac{1}{g}\right].$$

In particular, if \mathcal{E} is a locally free of rank n sheaf on Y (so \exists an open cover $Y = \bigcup_i U_i$ such that $\sigma_i \mathcal{E}|_{U_i} \xrightarrow{\sim} \mathcal{O}_Y^n|_{U_i}$), then for every affine $V \subset X$ such that $f(V) \subset U_i$,

$$f^*(\mathcal{E})|_V \cong \mathcal{O}^n_X|_V.$$

That is, $\mathcal{O}_X(V) \otimes_{\mathcal{O}_Y(U_i)} \mathcal{O}_Y(U_i)^n \cong \mathcal{O}_X(U)^n$. Then

 $\theta_{ji}: \sigma_j \sigma_i^{-1}: \mathcal{O}^n|_{U_i \cap U_j} \to \mathcal{O}^n|_{U_i \cap U_j}$ (an iso given by an element of $GL_n(\mathcal{O}_{U_i \cap U_j})$) If $f(V) \subset U_i$ and $f(W) \subset U_j$, we have

$$f^*(\mathcal{E})|_V \xrightarrow{f^*(\sigma_i)} \mathcal{O}^n_X|_V$$

with $f^*(\sigma_j)f^*(\sigma_i)^{-1} = f^*(\theta_{ji})$. In other words, you can think of a locally free sheaf as being determined by the patching data given by the θ_{ji} , and then we can think of the pullback f^* as:

Proposition. $f^*(\mathcal{E})$ is determined by the cocycle

$$f^*(\theta_{ij}) \in GL_n(\mathcal{O}_X(f^{-1}(U_i) \cap f^{-1}(U_j)))$$

 $(X = \bigcup_i f^{-1}(U_i)).$

Geometrically, suppose we have a vector bundle

$$E \\ \downarrow \pi \\ Y = \bigcup_{i} U_{i} = \operatorname{Spec}(A_{i})$$
$$\mathbb{A}_{U_{i}}^{n} \stackrel{\tau_{i}}{\leftarrow} \pi^{-1}(U_{i}) \subset E \\ \searrow \qquad \downarrow \qquad \downarrow \\ U_{i} \qquad \subset \qquad Y$$

with $\tau_i : \pi^{-1}(U_i) \cong A_{U_i}^n \cong \operatorname{Spec} A_i[t_1, ..., t_n]$. Over $U_i \cap U_j$, we require that

$$\tau_j \cdot \tau_i^{-1} : \mathbb{A}^n_{U_i \cap U_j} \to \mathbb{A}^n_{U_i \cap U_j}$$

is a matrix

$$\sigma_{ji} \in GL_n(\mathcal{O}_Y(U_i \cap U_j))$$

with

$$(\tau_j \cdot \tau_i)^*(t_k) = \sum_{\ell=1}^n \theta_{ji}^{k\ell} t_\ell$$

with θ_{ji}^{**} entries in the matrix θ_{ji} . We will get to the completely geometric interpretation of locally free sheaves and pullback.

Lecture 24 (March 9, 2009) -

[I walked in late, missing a few notes.]

Standard example: $X = \mathbb{A}_A^{n+1} = \operatorname{Spec} A[x_0, ..., x_n]$, and $\underline{s} = (x_0, ..., x_n) : \mathcal{O}_X^{n+1} \to \mathcal{O}_X$. The image of \underline{s} is the ideal of origin on $\mathbb{A}^{n+1} \setminus \{0\}$, \underline{s} is surjective, so we have the standard map

 $\mathbb{A}^{n+1}_A \backslash \{0\} \to \mathbb{P}^n_A.$

Our map $\Sigma : \mathcal{O}_X^{n+1} \to \mathcal{L}$ has image $\mathcal{M} \subset \mathcal{L}$ which is a subsheaf. Now, $\mathcal{M}_x \subset \mathcal{L}_x$ is the image $\mathcal{O}_{X,x}^{n+1}$, and since $\mathcal{L}_x = \mathcal{O}_{X,x}\ell$, $\mathcal{M}_x = g_x\mathcal{L}_x$, where g is an ideal. This is true in any affine neighborhood of x such that $\mathcal{L}|_U \cong \mathcal{O}_X|_U\ell$. Globally, $\mathcal{M} = \mathcal{G}\mathcal{L}$ where \mathcal{G} is a sheaf of ideals in \mathcal{O}_X . If U is affine open, then im $\underline{s}|_U = \mathcal{G}(U) \cdot \mathcal{L}(U)$. So, we get a closed subscheme $Y \subset X$, i.e., $Y \subset X$ closed and $\forall U \subset X$ affine open,

$$Y \cap U = \operatorname{Spec}(\mathcal{O}_X(U)/\mathcal{G}(U)),$$

that is, $i: Y \hookrightarrow X$ with $i_* \mathcal{O}_Y \cong \mathcal{O}_X / \mathcal{G}$.

Let $\underline{s}: \mathcal{O}_X^{n+1} \to \mathcal{L}$. Then image $\mathcal{M} \subset \mathcal{L}$ and is isomorphic to \mathcal{GL} , where \mathcal{G} is the sheaf of ideals. Let $Y \subset X$. Then $\mathcal{O}_Y \cong \mathcal{O}_X/\mathcal{G}$ is the subscheme where \underline{s} vanishes on $X \setminus Y$, and this is the open subscheme on which \underline{s} is surjective. We then get an induced map $X \setminus Y \to \mathbb{P}_A^n$.

$$\begin{array}{ccc}
U \\
\cap & \searrow \\
X & \xrightarrow{2} P
\end{array}$$

 $\Gamma_{f|_U} \subset X \times P$. Define $\tilde{X} = \text{closure } \Gamma_{f|_U}$. Then

We can do this with schemes. If $X = \bigcup_i U_i = \operatorname{Spec}(R_i)$, and $P = \bigcup_j V_j = \operatorname{Spec}(S_j)$, then $X \times P = \bigcup_{i,j} U_i \times V_j = \operatorname{Spec}(R_i \otimes S_j)$. Suppose that $U \subset X$ is an open subscheme (i.e., an open subset, $\mathcal{O}_U = \mathcal{O}_X|_U$). If given a map of schemes, $f : U \to P$, then we know there exists an affine open cover of U, namely $W_k = \operatorname{Spec}(T_k) \subset U$ such that $\forall k \exists j$ such that $f(W_k) \subset V_j$, and a map $f_{kj}^* : S_j \to T_k$.

Glueing together the graphs of the maps $f|_{W_k}: W_k \to V_j, W_k \to W_k \times V_j$ gives a map of schemes $\Gamma_f: U \to U \times {}_A P$. This makes sense for any morphism of schemes $U \to P$.

Definition. *f* is separated if Γ_f is the inclusion of a closed subscheme.

In our situation, $U \xrightarrow{f} P$ (with $U \subset X$), we can define a closed subscheme $\tilde{X} \subset X \times P$ such that in each affine open $U_i \times V_j$, $U_i \subset X$ affine and $V_j \subset P$ opens. Then

 $\tilde{X} \cap (U_i \times V_j) =$ Zariski closure of the graph of $f|_{U_i \cap U_j} \cap (U_i \times V_j)$.

We shall show this (next lecture) as an explicit ideal.

Suppose we are over a field k

$$\begin{array}{c} \mathbb{A}^2 \setminus \{0\} \\ \cap \\ \mathbb{A}^2_{x,y} \\ \end{array} \begin{array}{c} \mathbb{P}^1_k = \operatorname{Proj}(k[x,y]), \end{array}$$

with $\tilde{X} \subset \mathbb{A}^2_{x,y} \times \mathbb{P}^1_k = \operatorname{Proj}(k[x',y']).$

Exercise. $\tilde{X} \subset \mathbb{A}^2_{x,y} \times \operatorname{Spec} k\left[\frac{x'}{y'}\right] \cup \mathbb{A}^2_{x,y} \times \operatorname{Spec} k\left[\frac{y'}{x'}\right] \coloneqq U_1 \cap U_2$. Hence, $\tilde{X} \cap U_1$ has equation $x = \left(\frac{x'}{y'}\right) \cdot y$. Similarly, $\tilde{X} \cap U_2$ has equation $y = \left(\frac{y'}{x'}\right)x$. Then

 $\tilde{X} \cap U_1 \cap U_2$

we get x/y = x'/y'.

Lecture 28 (March 9, 2009) -

Valuation Rings

Recall if \mathcal{O} is a valuation ring then any finitely generated ideal is principal. Since if $f_1 - f_k \in \mathcal{O}$ then choose i such that $v(f_i) = \min(v(f_1), ..., v(f_n))$, then $\forall j \neq i$, $v(f_j) \geq v(f_i)$.

(Valuation ring: \mathcal{O} local domain s.t. if $k = \text{fraction field of } \mathcal{O}, \exists \text{ valuation } v : k^* \to \Gamma$ totally ordered subgroup s.t. $v(xy) = v(x) + v(y) \text{ w/ } v(x+y) > \min(v(x), v(y))$ if $x + y \neq 0$, with $\mathcal{O} = \{x \in k^* \mid v(x) \ge 0\} \cup \{0\}$.)

That implies

$$v(f_j/f_i) \geq 0 \Longrightarrow f_j/f_i \in \mathcal{O} \Longrightarrow f_j \in (f_i) \Longrightarrow (f_1,...,f_n) = (f_i).$$

Corollary. Let \mathcal{O} be a valuation ring with a fraction field k. Let $P \in \mathbb{P}^n(k)$. Then $\exists !$ point $\tilde{P} \in \mathbb{P}^n(\mathcal{O})$ which restrict to P.

Proof. \exists elements $a_0, ..., a_n \in k$ such that $P = (a_0 : ... : a_n) \in \mathbb{P}^n(k)$. Then $\exists g \in \mathcal{O}$ such that $\forall i, ga_i \in \mathcal{O}$. Hence, we may assume $\forall i, a_i \in \mathcal{O}$. By remark above, the ideal $(a_0, ..., a_n) = (a_i)$ for some *i*. Thus

$$P = \left(\frac{a_0}{a_i}, \dots, 1, \dots, \frac{a_n}{a_i}\right),$$

(where 1 is in the *i*th place) for all $a_i/a_j \in \mathcal{O}$, and this represents an \mathcal{O} -valued point of \mathbb{P}^n .

Finally, if $(a_0, ..., a_n)$ and $(b_0, ..., b_n)$ are two sequences of elements of \mathcal{O} generate the unit ideal in \mathcal{O} such that viewed as points in $\mathbb{P}^n(k)$,

$$(a_0:\ldots:a_n)=(b_0:\ldots:b_n).$$

That implies $\exists c \in k$ such that $b_j = ca_j \forall j$.

We claim that $c \in \mathcal{O}^*$ equivalently v(i) = 0. Since $(a_0, ..., a_n) = (b_0, ..., b_n) = \mathcal{O}$, there exists *i* such that $v(a_i) = 0 \Longrightarrow v(c) = v(b_i) \ge 0$, and $\exists j$ such that $v(b_j) = 0 \Longrightarrow 0 = v(c) + v(a_j) \Longrightarrow v(c) \le 0$.

Motivation from topology

 $f: X \to Y$ is a map of metric spaces.

We say f is proper if $f^{-1}(k)$ is compact \forall compact k. This implies f is a closed map, i.e., for $Z \subset X$ closed $\implies f(Z)$ is closed.

That implies that \forall sequences $a_n \in Z$ converging in X, with $\lim_{n \to \infty} a_n = a \in X$, that $a \in Z$.

Suppose that $\{b_n\}$ is a sequence in f(Z) with limit $b \in Y$. $\exists a_n \in Z$ s.t. $f(a_n) = b_n$. Further, \exists compact nbhd K of b and so we may assume that $b_n \in K \forall n$.

 $\implies a_n \in f^{-1}(K)$ which is compact

 \implies a_n have an accum. point in $f^{-1}(K)$

 \implies since b_n is convergent and f is continuous, f(c) = b so $b \in f(Z)$.

Remark. A topological space is sequentially separated if Cauchy sequences have at most one limit.

If \mathcal{O} is a valuation ring with fraction field k, think of map from Spec(k) to a scheme X as a sequence, and if map extends to $\text{Spec}(\mathcal{O}) \to X$ think of the induced map $\text{Spec}(k) \to X$ as the limit of the sequence.

Result above about \mathbb{P}^n says that \mathbb{P}^n is "compact".

In topology, a "nice" topological space X is compact if every open cover has a finite subcover. In algebraic geometry: consider for example $\mathbb{A}^1_{\mathbb{C}}$. The open sets here are complements of finitely many points ($\mathbb{A}^1 \setminus S$, with S finite). This implies any open cover has a finite subcover.

For example, the projection $p : \mathbb{A}^2 \xrightarrow{k} \mathbb{A}^1$ given by $k[x] \hookrightarrow k[x, y]$, projection onto x-axis, is not a closed map (closed sets \rightarrow closed sets). For example, the hyperbola xy = 1 has open image $V(xy - 1) = \mathbb{A}^1 \setminus \{0\}$.

Consider the discrete valuation $\mathcal{O} = k[t]_{(t)} \subset k(t) = K$ and $\operatorname{Spec}(K) \to \mathbb{A}^2$ with $x \mapsto t$ and $y \mapsto t^{-1}$. Then $\operatorname{Spec}(k[t, t^{-1}]) \cong C \subset \mathbb{A}^2$. The induced map $p \cdot f : \operatorname{Spec}(K) \to \mathbb{A}^1_x$ extends to a map $\operatorname{Spec}(\mathcal{O}_K) \to \mathbb{A}_x$ and $\to \operatorname{Spec}(k[x]_{(x)})$. But $f : \operatorname{Spec}(K) \to \mathbb{A}^2$ does not extend since $v(f^*(y)) = -1$.

Recall that a morphism $f: X \to Y$ is **separated** if $\Delta: X \to X \times_Y X$ is a closed immersion.

Definitions: (i) $f: X \to Y$ is of **finite type** if Y has an affine open cover $Y = \bigcup \operatorname{Spec}(A_i)$, and $\forall i, f^{-1}(\operatorname{Spec}(A_i))$ has a finite affine open cover $\bigcup_{j=1}^n \operatorname{Spec}(B_{ij})$ with B_{ij} an A_i -algebra of finite type.

(ii) $f: X \to Y$ is **universally closed** if $\forall g: T \to Y$, the induced map $f_T: T \times_Y X \to T$ is closed, i.e., closed sets to closed sets.

Definition. $f: X \to Y$ is proper if it is separated, of finite type, and universally closed.

Theorem. If Y is Noetherian (i.e., has a finite cover by affine opens $\text{Spec}(B_i)$ with the B_i Noetherian), then a morphism $f: X \to Y$ is proper if for all valuation rings \mathcal{O} and maps $\alpha : \text{Spec}(k) \to X, \beta : \text{Spec}(\mathcal{O}) \to Y$ (with k fraction field of \mathcal{O}),

$$\operatorname{Spec}(k) \xrightarrow{\alpha} X$$
$$\downarrow \qquad \downarrow \qquad \qquad \downarrow$$
$$\operatorname{Spec}(\mathcal{O}) \xrightarrow{\beta} Y$$

such that $f\alpha = \beta | \operatorname{Spec}(k)$. Then $\exists ! \gamma : \operatorname{Spec}(\mathcal{O}) \to X$ making the diagram commute. Corollary. $\mathbb{P}^n_{\mathbb{Z}}$ is proper over $\operatorname{Spec}(\mathbb{Z})$.

Lecture 30 (March 30, 2009) -

Valuative Criterion of Properness

Recall if k is a field, $\mathcal{O} \subset k$ is a valuation ring if equivalently, \exists a valuation $v : k \setminus \{0\} \rightarrow \Gamma$ a totally ordered group such that $\mathcal{O} = \{x \mid v(x) \ge 0\} \cup \{0\}$, or, \mathcal{O} is maximal among local ring $R \subset K$ with respect to R < S if $\mathfrak{m}_S \cap R = \mathfrak{m}_R$

Valuative Criterion of Seperatedness

Theorem. If $f : X \to Y$ with X Noetherian (given the union of a finite Spec(A), A Noetherian), then f is separated if and only if \forall valuation rings \mathcal{O} , and all commutative squares

$$\begin{aligned} \operatorname{Spec}(k) &\xrightarrow{h} X\\ i &\downarrow \qquad \downarrow f\\ \operatorname{Spec}(\mathcal{O}) &\xrightarrow{}{g} Y, \end{aligned}$$

 \exists at most one map \tilde{g} : Spec $(\mathcal{O}) \to X$ (lift in the diagram) making the square commute.

Theorem. Let X be Noetherian. If f is of finite type and Y is Noetherian, then f is proper if and only if \exists exactly one lift \tilde{g} .

Proof. Assume f is proper. Then given

$$\begin{array}{ccc} X_{\mathcal{O}} \to X \\ f' \downarrow & \downarrow f \\ \operatorname{Spec}(\mathcal{O}) \xrightarrow{} q Y \end{array}$$

let $f': X_{\mathcal{O}} \to \operatorname{Spec}(\mathcal{O})$ be the pullback of f along g.

Now just consider

$$\begin{array}{c} \operatorname{Spec}(k) \xrightarrow{j} X_{\mathcal{O}} \\ i \searrow f' \downarrow \text{ f.t., sep} \\ \operatorname{Spec}(\mathcal{O}). \end{array}$$

We would like to show there is an extension of the section $\operatorname{Spec}(\mathcal{O}) \to X_{\mathcal{O}}$. Let $U = \operatorname{Spec}(K)$ and let $S = \operatorname{Spec}(\mathcal{O})$. Let V be the Zariski closure of $j(U) \subset X_{\mathcal{O}}$. Since U is $\operatorname{Spec}(a \text{ field}), U$ is irreducible. So really, $U = \{u\}$, and so $j(\{u\}) \in$ affine open set $\operatorname{Spec}(B)$ with $\operatorname{Kernel}(K \leftarrow B)$ closed subscheme defined by prime ideals. Then V is an integral subscheme (all its coordinate rings are integral domains). Hence $f'(V) \subset S$ is closed and non-empty since f is proper (in fact, it contains a generic point $\operatorname{Spec}(k)$ of S). So $f'(V) = \overline{\operatorname{Spec}(k)} \subset S$ which is just S.

$$U \hookrightarrow V \subset X_{\mathcal{O}}$$

\$\sqrt{\pi}\$ \$\pi\$ \$\p

Since $\{s\} \in S$ is a closed point of S, $\pi^{-1}(s)$ is a closed subset of V, a scheme of f.t. over s = Spec(k) with k fraction field of \mathcal{O} . By the Nullstelensatz, there exist closed points $v \in V$ such that $\pi(v) = s$. (Note: For residue fields, $[k(v) : k(s)] < \infty$).

Essentially, we now want to show π is an isomorphism. $\forall v \in \pi^{-1}(s)$,

$$\pi^*: \mathcal{O} = \mathcal{O}_{S,s} \to \mathcal{O}_{V,v} \subset k$$

is a local homomorphism, but they have the same fraction field. Hence, since \mathcal{O} is a valuation ring, $\pi_{S,V}$ is an isomorphism, and since this is true for all points above S, it is easy to check that \exists exactly one point above s (notice $\mathcal{O}_{V,v'} \supset \mathcal{O}_{V,v}$). Hence, $V \cong S$ and so we get a map $S \to X$ lifting g. \Box

Example. Consider the nodal cubic $x = t^2 - 1$ and $y = t(t^2 - 1)$ so that $y^2 = x^2(x + 1)$ and hence we have $f : \mathbb{A}^1_t \to \mathbb{A}^2_{x,y}$ with $f^{-1}(\{0,0\}) = 2$ points. Then $\mathcal{O}_{C,P}$ is not a valuation ring.

Amazing stuff (finally, some geometry!!)

Remarks. (1) If X is a curve over a field, then X is non-singular if and only if all the local ring $\mathcal{O}_{X,P}$ for $P \in X$ closed, are valuation rings and they are in fact d.v.r.'s.

(2) dim(X) > 1, $P \in X$, X finite type over a field k, X irreducible, then if P is a closed point $\mathcal{O}_{X,P}$ is never a valuation ring.

e.g. If we take $(0,0) \in \mathbb{A}^2_{x,y} = x$, then

$$\mathcal{O}_{X,P} = \{ f(x,y) \in k(x,y) \mid f = g/h, \, g, h \in k[x,y], \, h(0,0) \neq 0 \}.$$

Exercise. This is not a valuation! [Hint: complement of valuation must be consistent with reciprocal of ideal.]

 $\operatorname{Bl}_{p_2}(\operatorname{Bl}_p(X)) \leftarrow \dots$

with $p_2 \in \operatorname{Bl}_p(X) \to p \in X$, then $\bigcup \mathcal{O}_{p_i}$ is a valuation ring.

Next time: "Zariski-Riemann Space"

Lecture 31 (April 1, 2009) -

Cohomology

Goal: (1) Describe the cohomology of sheaves of abelian groups.

(2) (i) Cohomology $H^i(X, \mathcal{F}) = 0$ for X a scheme of finite type over a Noetheria nring and $i \gg 0$.

(ii) $H^i(X, \mathcal{F}) = 0$ if X is affine and \mathcal{F} is quasi-coherent.

(3) if X is projective over S = Spec(A) and \mathcal{F} is a coherent sheaf on X then $H^i(X; \mathcal{F})$ is a finitely A-module for all $i \gg 0$.

Cohomology of sheaves of abelian groups

Suppose X is a topological space, and consider the category Ab_X = sheaves of abelian groups on X. We thus have a functor

$$\Gamma : \operatorname{Ab}_X \to \operatorname{Ab}$$
$$\mathcal{F} \mapsto \Gamma(X, \mathcal{F}) = \mathcal{F}(X)$$

This functor is not exact, i.e., if $0 \to \mathcal{F} \to \mathcal{G} \to \mathcal{H} \to 0$ is an exact sequence of sheaves of abelian groups, then we have

 $0 \to \Gamma(X, \mathcal{F}) \to \Gamma(X, \mathcal{G}) \to \Gamma(X, \mathcal{H})$

is exact, but the last map need not be surjective.

Recall an exercise: $\Gamma(X, \Gamma) \to \Gamma(X, \mathcal{H})$ is surjective if \mathcal{F} is flasque.

Remark. In general, we have the notion of derived functors.

Idea. Suppose $F : A \to B$ is a left exact functor between abelian categories. A δ -functor is a sequence of functors

$$F^i: A \to B, \ i \ge 0, \ F^0 = F$$

and for every exact sequence

$$0 \to A_1 \to A_2 > A_3 \to 0$$

in A, maps $\partial^i: F^i(A_3) \to F^{i+1}(A_1)$ such that we have a long exact sequence

$$0 \to F(A_1) \to F(A_2) \to F(A_3) \xrightarrow{\partial^0} F^1(A_1) \to F^1(A_2) \to F^1(A_3) \xrightarrow{\partial^1} F^2(A_1) \to \dots$$

and the ∂ 's are "natural" with respect to the maps of exact sequences.

Derived functors $(R^i F, \partial^i), i \gg 0$, are (if they exist) the universal ∂ -functor extending F, i.e., for any ∂ -functor \exists a unique transformation of ∂ -functors

$$(R^i F, \partial^i) \to (F^i, \partial).$$

Injective objects

If A is an abelian category, then an object $I \in A$ is injective if \forall diagrams

$$\begin{array}{c}
B \\
\tilde{f} \swarrow \uparrow i \\
I \xleftarrow{f} A
\end{array}$$

with *i* a monomorphism, there exists an \tilde{f} making the diagram commute.

Lemma. *I is injective iff every exact sequence*

$$0 \to I \xrightarrow{i} A \xrightarrow{\varepsilon} B \to 0$$

splits, i.e., $\exists s : A \to I$ such that $s \cdot i = \text{Id}_A$ so $A \cong I \oplus B$.

Corollary. If $F : A \to B$ is a left exact additive functor and *i* is an injective object in *A*, and

$$0 \to I \to A_2 \to A_3 \to 0$$

is exact in A, then

$$0 \to F(I) \to F(A_2) \to F(A_3) \to 0$$

is exact.

Proof. Follows from lemma and fact additive functors preserve direct sums. (exercise) \Box Suppose that A has "enough" injectives. i.e., \forall objects $A \in A$, $\exists I$ and a monomorphism $A \hookrightarrow I$. If so, every object has an injective resolution:

$$0 \to A \to I^0 \to I^1 \to \dots$$

i.e., an exact sequence with I^j injective for $j \gg 0$.

Lemma. Given two injective resolutions $A \xrightarrow{\varepsilon} I^0$ and $A \xrightarrow{\varepsilon^1} J^0$, \exists a map of cochain cxs $\varphi^0 : I^0 \to J^0$

such that $\varphi \circ \varepsilon = \varepsilon'$, that is, $A \to I^0 \to J^1 \to \dots$ and $A \hookrightarrow J^0 \to J^1 \to \dots$ with φ^0, φ^1 between the I and J's, and $A \to I^0$ and $A \to J^0$.

If $\varphi, \varphi': I^0 \to J^0$ are 2 such maps, then they are chain homotopic.

Corollary. If J^0 is also an injective resolution of A, then $\exists \psi : J^0 \to I^0$ extending the identity on A, and $\psi \circ \varphi$ is chain homotopic to the identity of I, and $\varphi \circ \psi \sim \mathrm{Id}_J$.

Suppose $F: A \to B$ is a left exact functor. Pick an injective resolution of $A \in \mathbb{Q}$, $A \to I^0$, and consider the complex $F(I^0)$ in B. Observe up to chain homotopy equivalence, this does not depend on I^1 , and any two chains of φ or ψ induces chain homotopic maps $F(I) \to F(J)$ and $F(J) \to F(I)$. Hence, we get canonical isomorphisms $H^i(F(I)) \to H^i(F(J))$ for $i \gg 0$, and so we can define

$$R^i F(A) \coloneqq H^i(F(I))$$

for any choice of injective resolution I of A.

Lecture 33 (April 6, 2009) -

Definition. $H^i(X, \mathcal{F}) = H^i(\Gamma(X, \mathcal{I}^*)).$

(By previous discussion, this is (up to canonical iso) indep of choice of \mathcal{I}^* .

 $f_*: \mathcal{O}_X$ -modules $\to \mathcal{O}_Y$ -modules.

This is left exact, since

$$f_*\mathcal{F}(U) = \mathcal{F}(f^{-1}(u)),$$

and in general not exact, e.g., if Y = pt, then f_* is just $\Gamma(X, _)$.

We can define $R^i f_* : \mathcal{O}_X$ -modules $\to \mathcal{O}_Y$ -modules given by $\mathcal{F} \mapsto H^i(f_*(\mathcal{I}^*))$ (a complex of sheaves of \mathcal{O}_Y -modules).

Remark. The object one should "really" consider is the whole complex $f_*(\mathcal{I}^*)$. This is well-defined up to chain-homotopy equivalence, and hence up to quasi-isomorphism. This is the map of complexes which induces an isomorphism on cohomology.

Derived Category

 $D^{\Box}(X, \mathcal{O}_X)$. Start with the category of cochain complexes of \mathcal{O}_X -modules, where \Box can be either "bounded", "bounded below" ($\mathcal{F}^i \neq 0$ only for finitely many *i*, and $H^i(\mathcal{F}^i) = 0$ for $i \ll 0$, respectively), and "qc sheaves (X, \mathcal{O}_X) . Then, invert all the quasiisomorphisms (and you get $D^{\Box}(X, \mathcal{O}_X)$). (That implies if $\mathcal{F} \to \mathcal{I}^*$ is a resolution, then \mathcal{F} and \mathcal{I}^* iso. in D(X)).

$$Rf_*: D(X) \to D(X)$$

with $\mathcal{F}^* \cong \mathcal{I}^* \Longrightarrow Rf_*(\mathcal{F}) = f_*(\mathcal{I}^*).$

Warning. A priori, $R^i f_*$ may depend on what category of modules you are working with.

If $A \to R$ is a ring hom with I an injective R-module, then what is injective over [diagram]. - May depend on choice of \mathcal{O}_X and on particular category of modules.

Lemma. Any injective sheaf \mathcal{I} of \mathcal{O}_X -modules is flasque.

Proof. If $U \subset X$ is open, consider $j : U \hookrightarrow X$, and let $j_! \mathcal{O}_U$ be the extension by zero of \mathcal{O}_U , i.e., if $V \subseteq U$, then $j_! \mathcal{O}_U(v) = \mathcal{O}_U(v) = \mathcal{O}_X(v)$ and if $V \nsubseteq U$, then $j_! \mathcal{O}_U(v) = 0$. **Exercise.** Hom $_{\mathcal{O}_X}(j_! \mathcal{O}_U, \mathcal{F}) = \mathcal{F}(U)$.

The natural map $j_! \mathcal{O}_U \to \mathcal{O}_X$ is injective. Hence, since \mathcal{I} is injective,

$$\operatorname{Hom}(\mathcal{O}_X, \mathcal{I}) \to \operatorname{Hom}(j_! \mathcal{O}_U, \mathcal{I})$$

is surjective.

Proposition. If \mathcal{F} is a flasque sheaf of \mathcal{O}_X -modules on X, then $H^i(X, \mathcal{F}) = 0$ for i > 0. *Proof.* Choose $0 \to \mathcal{F} \to \mathcal{I} \to \mathcal{G} \to 0$ with \mathcal{I} injective. Recall if \mathcal{F} is flasque, then $\mathcal{I}(X)$ surjects into $\mathcal{G}(X)$. Since \mathcal{I} is injective, $H^i(X, \mathcal{I}) = 0$ for i > 0 (it is its own injective resolution).

Now look at the long exact sequence:

$$0 \to \mathcal{F}(X) \to \mathcal{I}(X) \to \mathcal{G}(X) \to H^1(X, \mathcal{F}) \to H^1(X, \mathcal{I}) \to H^1(X, \mathcal{G}) \xrightarrow{\partial} H^2(X, \mathcal{F}).$$

Hence, $H^1(X, \mathcal{F}) = 0$ for $i > 1$. But \mathcal{G} is flasque. Then

$$\begin{aligned} \mathcal{F}(X) &\to \mathcal{I}(X) \to \mathcal{F}(X) \\ &\downarrow & \downarrow \\ \mathcal{F}(U) \to \mathcal{G}(U) \end{aligned}$$

where the bottom row is a surjection. Hence by induction, $H^i(X, \mathcal{F}) = 0$ for i > 0. i.e., flasque sheaves acylic as indeed \mathcal{F} flasque implies $R^i f_* \mathcal{F} = 0$ for i > 0. \Box

Exercise. $R^{i}f_{*}(U) = H^{i}(f^{-1}(U), \mathcal{F}).$

Exercise. $R^i f_* =$ sheaf assoc to presheaf $U \mapsto H^i(f^{-1}(U), \mathcal{F})$.

Proposition. Suppose \mathcal{F} is a sheaf of \mathcal{O}_X -modules, and $\mathcal{F} \xrightarrow{\varepsilon} \mathcal{A}^*$ is a resolution of \mathcal{F} by acyclic sheaves. Then $H^i(X, \mathcal{F}) \cong H^i(\Gamma(X, \mathcal{A}^*))$.

Proof. Look at

$$0 \to \mathcal{F} \to \mathcal{A}^0 \to \mathcal{G}^0 \to 0.$$

Then

$$\begin{split} H^0(X,\mathcal{F}) &\to H^0(X,\mathcal{A}^0) \to H^0(X,\mathcal{G}^0) \xrightarrow{\partial} H^1(X,\mathcal{F}) \to H^1(X,\mathcal{A}^0) = 0 \to \dots \\ \text{And in general } H^i(X,A^0) &= 0 \text{ for } i \geq 1, \\ (1) H^1(X,\mathcal{F}) &= \operatorname{Coker}(H^i(X,A^0) \to H^0(X,\mathcal{G}^0)) \, (\bigstar) \\ H^{i+1}(X,\mathcal{F}) &\cong H^i(X,\mathcal{G}^i) \, (\bigstar \bigstar) \end{split}$$

Look at resolution

$$0 \to F \to \mathcal{A}^0 \to \mathcal{A}^1 \to \mathcal{A}^2 \to \dots$$

So

$$0 \to \mathcal{G}^0 \to A^1 \to A^2 \to \dots$$

is a resolution. Left exactness of H^0 implies

$$\bigstar = H^i(\Gamma(X, A^*)),$$

and $\bigstar \bigstar$ and \bigstar imply by induction that

$$\mathrm{H}^{i}(X,\mathcal{F}) = H^{1}(X,\mathcal{G}^{i-1}) = H^{i}(\Gamma(X,A^{*})).$$

Hence, we can use any acyclic resolution to compute cohomology. \Box