Lecture 3 (January 16, 2009) - Sheaves and Maps of Sheaves

Maps of sheaves

Recall from last time that if we start with X a topological space and F a presheaf, we can define $|F|$, the etale space. Furthermore, sections of $|F| \xrightarrow{\pi} X$ form a sheaf $F^{\#}$. For all open sets $U \subset X, f \in F(U)$ induces a continuous map $U \rightarrow|F|$ and thence we have a map

with $U \subset V$. Exercise. Check that this commutes (by using the definition of $F^{\#}$).
So we have a map of $F \rightarrow F^{\#}$ presheaves, where $F^{\#}$ is a sheaf.
Lemma. If F is a sheaf and $F^{\#}$, a sheaf of sections of $|F|$, is canonically isomorphic to F itself.

Proof. We need a definition: if $x \in X$ and F is a (pre)-sheaf over X, the stalk F_{x} of F at x is $\lim _{U \ni x} F(U)$, i.e., $\coprod_{x \in U} F(U) / \sim$, where if $x \in U \subset V$ and $f \in F(V)$, then $\left.f \sim f\right|_{U} \in F(U)$, i.e., this is $\pi^{-1}(x)$ for $\pi:|F| \rightarrow X$, so $f \sim g$ if there is an $x \in W \subset$ $U \cap V$

Theorem. If G is any sheaf of sets and $\varphi: F \rightarrow G$ is a map of presheaves is a map of presheaves, it factors uniquely through $F^{\#}$.

$$
\begin{gathered}
F \stackrel{\varphi}{\rightarrow} G \\
\eta \backslash F^{\#} / \bar{\varphi}
\end{gathered}
$$

Proof. First, let's show that φ induces a continuous map $|F| \xrightarrow{\varphi}|G|$. For every U, we have $\varphi_{U}: F(U) \rightarrow G(U)$. Hence,

$$
\left|\varphi_{U}\right|: \varphi_{U} \times \operatorname{id}_{U}: F(U) \times U \rightarrow G(U) \times U
$$

Here we have to check that these maps are compatible with the equivalence relations defining $|F|,|G|$. But this follows from $F \rightarrow G$ being a map of presheaves.

Lecture 4 (January 21, 2009) - Sheaves and Schemes

Recall from last time that giving a sheaf F is equivalent to giving $|F|$, an etale space. We have $U \hookrightarrow X$ with $|F| \xrightarrow{\pi} X$ and $U \xrightarrow{f}|F|$ (in here, $|F| \Leftrightarrow$ sections of π over U). Maps of presheaves

This simply states for a map $F \xrightarrow{\phi} G$, then $\forall U \subset V$,

$$
\begin{gathered}
F(U) \xrightarrow{\uparrow} \underset{\uparrow}{\phi_{U}} G(U) \\
F(V) \xrightarrow{\phi_{V}} G(V) .
\end{gathered}
$$

If F and G are presheaves of abelian groups, then $\operatorname{ker}(\phi): U \mapsto \operatorname{ker} \phi_{U}, \operatorname{coker}(\phi)$: $U \mapsto \operatorname{coker} \phi_{U}$, and $\operatorname{Im}(\phi): U \mapsto \operatorname{Im}\left(\phi_{U}\right)$.

Recall that $\operatorname{ker}(\phi)$ is by definition the pullback of fiber products:

Similarly (with \downarrow replaced with $\uparrow, 0$ and ker ϕ switched, and ker ϕ replaced with coker ϕ), we can characterize the cokernel if we take $0 \rightarrow Q$, coker $\phi \rightarrow Q$ and $B \xrightarrow{\beta} Q$.

Furthermore, (1) $\operatorname{im} \phi \rightarrow B$ is injective, i.e., ker $=0$. (2) if ϕ factors through any other subobject J of B, then im $\phi \subseteq J$. If $\phi: F \rightarrow G$ is a map of sheaves, what are ker ϕ, coker ϕ, and im ϕ in the category of sheaves? Well, (1) presheaf kernel of ϕ is already a sheaf and hence is the sheaf kernel, so ϕ is injective as a map of presheaves if and only if it is injective as a map of sheaves. But the presheaf cokernel need not be a sheaf. Rather, the sheaf cokernel is the sheafification of presheaf cokernel.

Sheaf cokernel of $\phi=0 \Leftrightarrow \phi$ is an epimorphism in the category of sheaves \Leftrightarrow $|\phi|:|F| \rightarrow|G|$ is surjective $\Leftrightarrow \forall x \in X, \phi_{x}: F_{x} \rightarrow G_{x}$ is surjective.

Example. Let $X=\mathbb{C} \backslash\{0\}$ and let $\mathcal{O}=$ sheaf of holomorphic functions on X, and $\mathcal{O}^{*}=$ sheaf of non-vanishing functions on X. Take $\mathcal{O} \xrightarrow{\exp } \mathcal{O}^{*}$, with $U \subset \mathbb{C}^{*}$, $f \in \mathcal{O}(U) \mapsto \exp (f)$. This is surjective, i.e., $\forall x \in \mathbb{C}^{*}$ and for all open neighborhoods $x \in U \subset \mathbb{C}^{*}$ and $g \in \mathcal{O}^{*}(U)$. Further, \exists nbhd V of x with $x \in V \subset U$ and $f \in \mathcal{O}(U)$ such that $\exp (f)=g$. If we take $U=\mathbb{C}^{*}$ and $g=z$, then $\neg \exists f$ on \mathbb{C}^{*} s.t. $\exp (f)=z$. In other words, $\mathcal{O}\left(\mathbb{C}^{*}\right) \xrightarrow{\exp } \mathcal{O}^{*}\left(\mathbb{C}^{*}\right)$ so $\mathcal{O} \rightarrow \mathcal{O}^{*}$ has non-zero cokernel as a map of presheavs. This is the starting point for sheaf cohomology.
Example. The fundamental group $\pi_{1}\left(\mathbb{C}^{*}\right) \cong H_{1}\left(\mathbb{C}^{*}, \mathbb{Z}\right) \cong \mathbb{Z}$, since we just take paths around the punctured disk (on the Argand diagram).

Definition. We can have an exact sequence of sheaves on X :

$$
0 \rightarrow F \stackrel{i}{\rightarrow} G \xrightarrow{e} H \rightarrow 0
$$

i.e., i is injective and is the kernel of e, e is surjective \& is the cokernel of i (all in the category of sheaves). But for a given $U \subset X$ open,

$$
0 \rightarrow F(U) \rightarrow G(U) \rightarrow H(U) \rightarrow " H^{1}(U, F) " \rightarrow \ldots
$$

where the last \rightarrow need not be surjective.

Schemes

A scheme is going to be a topological space X equipped with a sheaf of rings \mathcal{O}_{X} such that stalks $\mathcal{O}_{X, x}$ at each $x \in X$ are local rings ("locally ringed space").

Example. If M is a C^{∞}-manifold and $U \subset M$, let $C^{\infty}(U)$ be C^{∞} functions on U. Then if $x \in M, C_{x}^{\infty}=$ germs of C^{∞} functions on U. If we look at the maximal ideal $m_{x} \subset C_{x}^{\infty}$, then m_{x} / m_{x}^{2} is related to the tangent space.

Affine schemes

If R is a commutative ring (always with 1), then $\operatorname{Spec}(R)^{\mathrm{sp}}=$ set of prime ideals in R, with the following topology: closed sets are $V(\mathfrak{a})$ with $\mathfrak{a} \subset R$ an ideal and $V(\mathfrak{a})=$ $\{\mathfrak{b} \mid \mathfrak{b}$ prime and $\mathfrak{a} \subset \mathfrak{b}\}$. If $f \in R$, then $V(f)=\{\mathfrak{b} \mid f \in \mathfrak{b}\}$ " f vanishes at \mathfrak{b}."

Lemma. (1) \mathfrak{a} and \mathfrak{b} are ideals with $V(\mathfrak{a b})=V(\mathfrak{a}) \cup V(\mathfrak{b})$,
(2) $V\left(\sum a_{i}\right)=\bigcap V\left(\mathfrak{a}_{i}\right)$.
(3) $V(\mathfrak{a}) \subset V(\mathfrak{b}) \Leftrightarrow \sqrt{\mathfrak{a}} \supset \sqrt{\mathfrak{b}}$ with the radical defined

$$
\sqrt{\mathfrak{a}}=\left\{f \in R \mid \exists n \in \mathbb{N} f^{n} \in \mathfrak{a}\right\} .
$$

(4) \emptyset, X are closed with $\emptyset=V(R)$ and $X=V(\{0\})$.

Exercise. Show that $\sqrt{a}=\bigcap \mathfrak{b}$.

$$
\begin{aligned}
& \mathfrak{b} \text { primese } \\
& \mathfrak{a} \subset \mathfrak{b}
\end{aligned}
$$

Lecture 5 (January 23, 2009) - $\operatorname{Spec}(R)$

Let R be a commutative ring. We write $X=\operatorname{Spec}(R)$ to be the set of prime ideals $\mathfrak{p} \subset R$. Then we have the Zariski topology. A set $U \subset X$ is open means if $U=X \backslash V(\mathfrak{a})$ with $\mathfrak{a} \subset R$ an ideal, then in particular for $f \in R, X_{f}=X \backslash V((f))=\{\mathfrak{p} \mid f \notin \mathfrak{p}\}$ (where $f \notin \mathfrak{p}$ is equivalent to saying $f \nvdash 0$ in R / \mathfrak{p}).

Recall localization: if $S \subset R$ is a multiplicative set, then

$$
S^{-1} R=\left\{\left.\frac{r}{s} \right\rvert\, r \in R, s \in S\right\} / \frac{r}{s} \sim \frac{r^{\prime}}{s^{\prime}} \text { if } \exists t \in S \text { s.t. } t s^{\prime} r=t s r^{\prime} .
$$

If $f \in R$, then $\frac{r}{f^{n}} \in R_{f}=\left\{f^{n} \mid n \in \mathbb{N}\right\}^{-1} R$. Recall that

$$
\left\{\text { primes of } S^{-1} R\right\} \stackrel{1-1}{\longleftrightarrow}\{\text { primes of } R \text { disjoint from } S\} \text {. }
$$

If $S \subset R \rightarrow S^{-1} R$ and $A^{*} \subset A$ with $R \stackrel{f}{\rightarrow} A$ a ring homomorphism $\left(f(s) \subset A^{*}\right)$, then it factors uniquely through localization, $S^{-1} R \stackrel{\bar{f}}{\rightarrow} A$. So, X_{f} is homeomorphic to $\operatorname{Spec}\left(R_{f}\right)$. If $\mathfrak{a} \subset S^{-1} R$ is an ideal with $V(\mathfrak{a})=\{\mathfrak{p} \mid \mathfrak{p} \supset \mathfrak{a}\} \stackrel{1-1}{\longleftrightarrow}\left\{\right.$ primes of $\left.S^{-1} R / \mathfrak{a}\right\}$ with $R \rightarrow\left\{\right.$ primes of $\left.S^{-1} R / \mathfrak{a}\right\}$ and $\left\{\right.$ primes of $\left.S^{-1} R / \mathfrak{a}\right\} \rightarrow S^{-1} R / \mathfrak{p}$.
i.e., Primes in R containing $\operatorname{ker}\left(R \rightarrow S^{-1} R / \mathfrak{a}\right)$ correspond with primes in $S^{-1} R$ containing \mathfrak{a}.

For $U \subset X$ a general open set, $U=X \backslash V(\mathfrak{a}), V(\mathfrak{a})=\bigcap_{f \in \mathfrak{a}} V((f))$ with $\mathfrak{a}=\sum_{f \in \mathfrak{a}}(f)$ so then $U=\bigcup_{f \in \mathfrak{a}} X_{f}$. Here, we think of $X_{f}=\{\mathfrak{p} \mid f \notin \mathfrak{p}\}$ - points where f "does not vanish". Furthermore, $X_{f} \cap X_{g}=X_{f g}$. Hence, $f g \notin \mathfrak{p} \Leftrightarrow f \notin \mathfrak{p}$ and $g \notin \mathfrak{p}$. In other words, the X_{f} form a basis of the topology on X. To each X_{f}, we have the ring R_{f}, and if $X_{f} \supset X_{g}$. We have a ring homomorphism $\varphi: R_{f} \rightarrow R_{g}$. Why? Certainly have $R \rightarrow R_{g}$, so need that under this map f maps to a unit in R_{g}. If this is not the case, there is a maximal ideal $m \subset R_{g}$. Since $f / 1 \in m$ that then implies $f \in \varphi^{-1}(m)$ would contradict $X_{g} \subset X_{f}$.

Now we have a presheaf defined on the X_{f}.
(1) $X_{f} \mapsto R_{f}$
(2) $X_{f} \supset X_{g}$, have the restriction $\frac{r}{f^{n}} \mapsto \frac{r}{f^{n}} \in G$.

We want to define "functions" on any open set $U \subset X$ such that $r_{i} \& r_{j}$ have the same image in $R_{f_{i}}, R_{f_{j}}$.

Definition. \mathcal{O}_{X} is the sheaf of sections of the étale space associated to $X_{f} \rightarrow R_{f}$, i.e., sections of $\coprod_{R} X_{f} \times R_{f} / \sim$, where \sim is the equivalence relation generated by $\left(x, \frac{r}{f}\right) \sim\left(y, \frac{r^{\prime}}{g}\right)$. If (1) $x \in X_{f}, y \in X_{g}$, (2) $x=y, X_{f} \subset X_{g}$, (3) $\frac{r^{\prime}}{g} \mapsto \frac{r}{f}$ under $R_{g} \rightarrow R_{f}$. If $\mathfrak{p} \in X$, i.e. a prime ideal, $\mathcal{O}_{X, \mathfrak{p}}$, the stalk of \mathcal{O}_{X} at \mathfrak{p}, is defined as

$$
\mathcal{O}_{X, \mathfrak{p}}=\lim _{p \in X_{f}} R_{f} \text { (a direct limit) }
$$

with respect to inclusions $X_{f} \subset X_{g}$, i.e., $\frac{r_{1}}{f_{1}} \in R_{f_{2}}$ have some imagine in limit $\Leftrightarrow \exists \mathfrak{p} \in X_{g} \subset X_{f_{1}} \cap X_{f_{2}}=X_{f_{1} f_{2}}$ s.t. $\frac{r_{1}}{f_{1}} \& \frac{r_{2}}{f_{2}}$ have same image in Rng. So then the direct limit above just becomes

Lemma. The map $R \rightarrow \prod_{\mathfrak{p}} R_{\mathfrak{p}}$ is injective.
Proof. $\quad \operatorname{Ker}\left(R \rightarrow S^{-1} R\right)=\{r \in R \mid \exists s \in S, r s=0\}=\{r \in R \mid S \cap \operatorname{Ann}(r) \neq \emptyset\}=$ ideal $\{b \in R \mid b a=0\}$. If $a \in R, a \neq 0$, then $\exists m$ a maximal ideal such that $\operatorname{Ann}(a) \subset m$ (where $\operatorname{Ann}(a) \cap(R \backslash m)=\emptyset) \equiv a \nrightarrow 0$ in R_{m}.
And, since if $f \in R, \mathfrak{p} \nexists f, R_{\mathfrak{p}}=\left(R_{f}\right)_{\tilde{\mathfrak{p}}}$ (where \tilde{p} is corresponding prime in R_{f}). We get $R_{f} \rightarrow \prod_{f \notin \mathfrak{p}} R_{\mathfrak{p}}$ is injective.

Lemma. If $X_{f} \subset X$ is one of our basic opens, the map $R_{f} \rightarrow \mathcal{O}_{X}\left(X_{f}\right)$ is an isomorphism.

Proof (in a simple case) We want to show $R \xrightarrow{\sim} \mathcal{O}_{X}(X) \ni \alpha$ (where $\alpha: X \rightarrow|F|$). This implies \exists open cover $\left\{X_{f_{i}}\right\}$ of X and $\alpha_{i} \in R_{f_{i}}$ induce α and this cover can be taken to be
finite and we have $\exists g_{i}$ such that $\sum_{i=1}^{n} g_{i} f_{i}=1$. Without loss of generality, (1) $\alpha_{i}=a_{i} / f_{i}$, (2) α_{1} and α_{2} have the same image in $R_{f_{1} f_{2}}$.
(Justification: Consider $X=\operatorname{Spec} R$, which is quasi-compact. Notice Spec $R=\bigcup U_{i}=$ $X \backslash V\left(\mathfrak{a}_{i}\right) \Leftrightarrow \bigcap V\left(\mathfrak{a}_{i}\right)=\emptyset \Leftrightarrow \sum \mathfrak{a}_{i}=R \Leftrightarrow \exists \alpha_{i} \in \mathfrak{a}_{i} \sum \alpha_{i}=1$ and this is a finite sum $\Rightarrow \exists$ finite subset of $\left\{\mathfrak{a}_{i}\right\}$ s.t. $X=\bigcup_{i} U_{i}$.)
Now, set $a=\sum g_{i} a_{i} \in R$. Then $f_{j} a=\sum g_{i} a_{i} f_{j}=\sum g_{i} f_{i} a_{j}=(1) a_{j}$. This implies $\frac{a}{1}=\frac{a_{j}}{f_{j}} \in R_{f_{j}}$. i.e., the α_{i} determine a unique $a \in R$ and $R \xrightarrow{\hookrightarrow} \mathcal{O}_{X}(X)$.

Lecture 6 (January 26, 2009) - Locally Ring Topological Spaces, and Schemes

Answering homework questions

$\operatorname{Spec}(R)=\left(\operatorname{Spec}(R)^{\operatorname{space}}, \mathcal{O}_{\operatorname{spec}(R)[\text { sheaf of rings] }}\right)$. Then $X_{f}=\operatorname{Spec}\left(f^{-1} R\right) \rightsquigarrow f^{-1} R$. Then Basic Opens \subset All opens
by taking $X_{f} \mapsto f^{-1} R$.

Spec R

Let $R \rightarrow \operatorname{Spec}(R)$ be a locally ringed topological space, i.e., $\mathcal{O}_{\text {spec }(R)}$ is a sheaf of rings such that all stalks are local rings (a stalk at \mathfrak{P} is $R_{\mathfrak{P}}$).
If $\left(X, \mathcal{O}_{X}\right)$ and $\left(Y, \mathcal{O}_{Y}\right)$ are locally ringed topological spaces, then a morphism $\varphi:\left(X, \mathcal{O}_{X}\right) \rightarrow\left(Y, \mathcal{O}_{Y}\right)$ of locally ringed topological spaces consists of
(1) a continuous map $\varphi: X \rightarrow Y$,
(2) a homomorphism of sheaves of rings $\varphi^{\#}: \mathcal{O}_{Y} \rightarrow \varphi_{*} \mathcal{O}_{X}$.

If \mathcal{F} is a (pre)sheaf on X, with $\varphi_{*} \mathcal{F}: U \mapsto \mathcal{F}\left(g^{-1}(U)\right)(U \subset Y)$ (Exercise. If \mathcal{F} is a sheaf then so is $\varphi_{*} \mathcal{F}$.) So $\varphi^{\#}$ is equivalent to: $\forall U \subset Y$, a ring homomorphism

$$
\varphi_{U}^{\#}: \mathcal{O}_{Y}(U) \rightarrow \mathcal{O}_{X}\left(\varphi^{-1}(U)\right)
$$

compatible with restriction maps. For all $x \in X$, this induces maps

$$
\varphi^{\#}: \mathcal{O}_{Y, \varphi(x)} \rightarrow \mathcal{O}_{X, x}
$$

s.t. $\left(\varphi^{\#}\right)^{-1}\left(\mathfrak{m}_{x}\right)=\mathfrak{m}_{\varphi(x)}$.

Then $x \in \varphi^{-1}(U)$ if and only if $\varphi(x) \in U$.

$$
\mathcal{O}_{Y}(U) \rightarrow \mathcal{O}_{X}\left(\varphi^{-1}(U)\right) \rightarrow \mathcal{O}_{X, x}
$$

$\left[\mathcal{O}_{Y, f(x)}=\lim _{U \ni f(x)} \mathcal{O}_{Y}(U)\right]$
[For local rings $(R, \mathfrak{m}),(S, \mathfrak{n})$ a local homomorphism ψ between them is one such that $\psi^{-1}(n)=\mathfrak{m}$.]

Theorem. To give a ring homomorphism $f: A \rightarrow B$ is equivalent to giving a morphism of locally ringed spaces,

$$
\operatorname{Spec}(B) \rightarrow \operatorname{Spec}(A)
$$

Proof. Given $f: A \rightarrow B$, we get $\operatorname{Spec}(f): X=\operatorname{Spec}(B) \rightarrow Y=\operatorname{Spec}(A)$ such that if $\mathfrak{p} \subset B$ is prime, then $\operatorname{Spec}(f)(\mathfrak{p})=f^{-1}(\mathfrak{p})=\operatorname{ker}(A \rightarrow B / \mathfrak{p})$.
[Exercise. The inverse image of an open set is open [so that img of closed set is closed]. Hence, you can do this for just the basis of the topology, i.e., one of these X_{f} 's. Then if $g \in A$, we have $\operatorname{Spec}(f)^{-1}\left(Y_{g}\right)$.]

Recall the relationship between Y_{g} and primes!

$$
X_{f(g)}: g^{-1} A \rightarrow f(g)^{-1} B .
$$

For $\mathfrak{p} \in B$ prime, the induced local homomorphism $A_{f^{-1}(\mathfrak{p})} \rightarrow B_{\mathfrak{p}}$.
On the other hand, given $\varphi: X=\operatorname{Spec}(B) \rightarrow Y=\operatorname{Spec}(A)$, we get a ring hom

$$
\varphi^{\#}: A=\mathcal{O}_{Y}(Y) \rightarrow \mathcal{O}_{X}\left(g^{-1}(Y)\right)=\mathcal{O}_{X}(X)=B
$$

These two functions are mutually inverse (we claim): start with $f: A \rightarrow B$. Then since $\varphi_{\operatorname{Spec}(A)}(\operatorname{Spec}(A))=A$, the induced map $\operatorname{Spec}(f)^{\#}: A \rightarrow B$ is equal to f. Given $\varphi: \operatorname{Spec}(B) \rightarrow \operatorname{Spec}(A)$, we get a ring homomorphism $\varphi^{\#}: A \rightarrow B$ and claim $\operatorname{Spec}\left(\varphi^{\#}\right)=g$. Suppose $\mathfrak{p} \in \operatorname{Spec}(B)$. Then $\varphi(B) \in \operatorname{Spec}(A)$.

$$
\begin{gathered}
\mathcal{O}_{Y}(Y)=A \xrightarrow{\varphi^{\#}} B=\mathcal{O}_{X}(X) \\
\downarrow \\
\downarrow \\
\mathcal{O}_{Y, \varphi_{B}}=A_{\varphi(B)} \xrightarrow{\varphi_{\mathfrak{p}}^{\#}} B_{\mathfrak{p}}=\mathcal{O}_{X, \mathfrak{p}},
\end{gathered}
$$

where the subscripts of the rings (bottom row) mean localization. Since $\varphi_{\mathfrak{p}}^{\#}$ is a local homomorphism, $\varphi_{\mathfrak{p}}^{-1}\left(\mathfrak{p} B_{\mathfrak{p}}\right)=\left(\mathfrak{a} A_{\mathfrak{a}}\right) \Longrightarrow \mathfrak{p}=\mathfrak{a}$.

This gives us an equivalence

$$
\begin{aligned}
\{\text { Rings }\} & \longleftrightarrow\{\text { Affine schemes }\}^{\mathrm{op}} \\
R & \longleftrightarrow \operatorname{Spec}(R) .
\end{aligned}
$$

Definition. A scheme is a locally ringed topological space $\left(X, \mathcal{O}_{X}\right)$ such that X has an open cover $X=\bigcup_{\alpha} U_{\alpha}$ such that each $\left(U_{\alpha},\left.\mathcal{O}_{X}\right|_{U_{\alpha}}\right)$ is an affine scheme.

Examples. [of affine schemes] (1) Consider $\operatorname{Spec}(\mathbb{Z})$. This is just prime ideals (i.e., (p) for p a prime number). For $n \in \mathbb{Z}, V((n))=\{$ prime ideals $\mathfrak{p}, n \in \mathfrak{p}\}$. Then if $n \neq 0$, then this is a finite set of prime divisors of n. If $n=0$, then it's just everything. The point (0) is not closed, rather, $\overline{\{(0)\}}=\operatorname{Spec}(\mathbb{Z})$ is a "generic point" (i.e., a single point in this topological space whose Zariski closure is the whole space).

Lecture 6 (January 26, 2009) - More Schemes

Schemes

Recall these are $\left(X, \mathcal{O}_{X}\right)$ locally ringed spaces with an open cover $X=\bigcup_{i} U_{i}=$ $\operatorname{Spec}\left(R_{i}\right) \Longrightarrow \supset \operatorname{Spec}\left(g^{-1} R_{i}\right)$, with each $\left(U, \mathcal{O}_{X} \mid U_{i}\right)$ by affine schemes.
Definition. Morphisms between schemes. A morphism $f:\left(X, \mathcal{O}_{X}\right) \rightarrow\left(Y, \mathcal{O}_{Y}\right)$ with $\left(X, \mathcal{O}_{X}\right) \supset f^{-1}(U)$ and $U=\operatorname{Spec}(R) \subset\left(Y, \mathcal{O}_{Y}\right)$, and

$$
f_{\uparrow}^{-1}(U) \rightarrow \underset{\nearrow}{U}=\underset{V_{i}}{\operatorname{Spec}(R)}
$$

with $f^{-1}(U)=\bigcup_{j} V_{j}=\operatorname{Spec}\left(S_{j}\right)$. We thus get a map of locally ringed spaces,

$$
V_{j}=\operatorname{Spec}\left(S_{j}\right) \rightarrow \operatorname{Spec}(R)=U
$$

Hence, we have ring homomorphism $R \rightarrow S_{j}$. Then $X=\bigcup \operatorname{Spec}\left(S_{j}\right)=V_{j}$, and $Y=$ $\bigcup U_{i}=\bigcup \operatorname{Spec}\left(R_{i}\right)$ s.t. $\forall j, f\left(V_{j}\right) \subset U_{i}$ for some $i, S_{j} \leftarrow R_{i}$. We want maps that coincide on $V_{j_{1}} \cap V_{j_{2}}=\bigcup W_{k}=\operatorname{Spec}\left(A_{k}\right)$, i.e.

$$
R_{i} \rightarrow S_{j_{r}} \rightarrow W_{k}
$$

commutes ($r=1,2$).
Examples. (1) If $f: X \rightarrow \operatorname{Spec}(A)$, where A is some ring (e.g., a field). Then for all affine opens, $U \subset X, U=\operatorname{Spec}(R)$, we have a ring homomorphism $f^{*}: A \rightarrow R$, and if $U_{1} \subset U_{2}$, then $\operatorname{Spec}\left(R_{1}\right) \subset \operatorname{Spec}\left(R_{2}\right) \rightarrow \operatorname{Spec}(R)$, so $R_{1} \leftarrow R_{2} \leftarrow A$. This is equivalent to saying that \mathcal{O}_{X} is a sheaf of A-algebras (i.e., $\forall U \subset X$ open, we have a ring homomorphism $A \rightarrow \mathcal{O}_{X}(U)$ compatible with restriction.
(2) Have $f: T=\operatorname{Spec}(A) \rightarrow X=\bigcup_{i} \operatorname{Spec}\left(S_{i}\right)=\bigcup U_{i}$. Then $f^{-1}(U) \subset \operatorname{Spec}(A)$ is open with $f^{-1}(U)=\bigcup_{\text {some collection of } f \in A} T_{f}$, so we have $f^{-1} A \leftarrow S_{i}$.
If k is a field, for simplicity let k algebraically closed, then $\mathbb{A}_{k, t}^{1}=\operatorname{Spec}(k[t])$.
(a) Consider $\{(t-a) \mid a \in k\}$. Each $(t-a)$ is closed. Further, $\overline{\{(0)\}}$ is everything.

Finally, proper closed subsets are $V(\mathfrak{a})$, with $\mathfrak{a} \neq 0$. Hence this is just

$$
\begin{aligned}
& V((\mathfrak{a}))=V((f))=\left\{\left(p_{i}\right) \mid p_{i} \text { is irreducible factor of } f\right\} \\
& \quad=\text { finite set of points: } t-a_{i} \text { if } a_{i} \text { 's are zeroes of } f .
\end{aligned}
$$

If $X \rightarrow \operatorname{Spec}(k)$ is a scheme over k, then $X_{1} \xrightarrow{g} X_{2}$ with $X_{1} \xrightarrow{f_{1}} S$ and $X_{2} \xrightarrow{f_{2}} S$ (on a category \mathcal{C} over S), then $\left(x_{1}, f_{1}\right) \rightarrow\left(x_{2}, f_{2}\right)$ with $g: X_{1} \rightarrow X_{2}$ such that $f_{2} g=f_{1}$. Then for every k-algebra R, look at maps of schemes over $k, \operatorname{Spec}(R) \rightarrow X$. We write $X(R)$ for this set, and we call this the " R-valued points of X (over k)."

\boldsymbol{R}-valued points v.s. points of the scheme

Let $\mathbb{A}_{k}^{1}(R)$ for R a k-algebra be such that homomorphisms of k-algebras: $k[t] \rightarrow R$. Note that $\mathbb{A}_{k}^{1}(R) \equiv$ Hom of k-algebras $k[t] \rightarrow R(f \leftrightarrow f(t)) \equiv R$. So if $R=k$ itself, $\mathbb{A}_{k}^{1}(k) \cong k$.

If k is not algebraically closed, e.g. $k=\mathbb{R}$ or $k=\Gamma_{p}$, the points $\mathbb{A}_{k}^{1} \cong$ generic point \cup set of monic irreducible polynomials in $k[t]$.

While (1) $\mathbb{A}_{k}^{1}(k)=k$ (corresponds to linear polys $\{t-a \mid a \in k\}$). (2) If K / k is a finite extension, then $\mathbb{A}_{k}^{1}(k) \cong k$ with $(\varphi: k[t] \rightarrow k) \rightarrow \varphi(t)$. If K / k is finite, then $\operatorname{ker}(\varphi)=(p(t))$, with p an irreducible monic polynomial. Further, $k[t] / p(t)$ is a field (and in fact $k \subset k[t] / p(t)$). If $\varphi: \operatorname{Spec}(k) \rightarrow X, k$ a field, then to get a continuous map we need $(*, k) \mapsto x \in X$, and if $x \in \operatorname{Spec}(A) \subset X$, then we need $A \xrightarrow{\varphi^{*}} k$ with $\operatorname{ker}\left(\varphi^{*}\right)$ a prime ideal in A equal to x. (So we have maps $X(k) \rightarrow$ points of X). In the general situation, $X(k) \rightarrow X^{\text {sp }}$ (as a top space) with $(\varphi: \operatorname{Spec} k \rightarrow x) \mapsto x \in X(K \leftarrow k(x))$. Then $X(k) \leftrightarrow(x \in X, k(x) \hookrightarrow k)$. For the affine line,

$$
K=\mathbb{A}^{1}(k) \rightarrow \text { set of monic irreducibles in } k[t]
$$

and $\mathbb{A}^{1}(k) \longleftrightarrow(K \hookleftarrow k[t] / p(t))=k((p))$.
What if $[K: k]>1$? e.g.in $k=\mathbb{R}$ and $K=\mathbb{C}$,

$$
\mathbb{A}_{\mathbb{R}}^{1}=\operatorname{Spec} \mathbb{R}[t]=\{0\} \cup\{(t-a) \mid a \in \mathbb{R}\} \cup\{\text { monic irred quadratic }\}
$$

Then $\mathbb{A}_{\mathbb{R}}^{1}(\mathbb{R}) \leftrightarrow\{(t-a) \mid a \in \mathbb{R}\}$ and $\mathbb{C} \leftrightarrow \mathbb{A}_{\mathbb{R}}^{1}(\mathbb{C})=\mathbb{C}$-valued points of $A_{\mathbb{R}}^{1}$. Further,

$$
t \mapsto \alpha(q=(t-\alpha)(t-\bar{\alpha})), \quad \mathbb{C}_{\leftleftarrows} \mathbb{K}((q))
$$

Grothendieck's EGA: Want to study solutions of polynomial equations over a field or ring k :

$$
\begin{gathered}
f_{1}\left(t_{1}, \ldots, t_{n}\right)=0 \\
\vdots \\
f_{m}\left(t_{1}, \ldots, t_{n}\right)=0
\end{gathered}
$$

Consider the functor

$$
\begin{gathered}
k \text {-algebras } \rightarrow \text { Sets. } \\
R \mapsto \text { set of } n \text {-tuples }\left(r_{1}, \ldots, r_{n}\right) \in R^{n}
\end{gathered}
$$

satisfying the equations

$$
\equiv k\left[t_{1}, \ldots, t_{n}\right] /\left(f_{1}, \ldots, f_{m}\right) \rightarrow R
$$

which is equivalent to giving a homomorphism of k-algebras. But that is equivalent to giving $\operatorname{Spec}(\quad) \leftarrow \operatorname{Spec}(\mathbb{R})$.

Lecture 8 (January 30, 2009) -

Given a scheme X and R a ring, we have $X(R)=R$-valued points of $X=$ morphisms $\operatorname{Spec}(R) \rightarrow X$. e.g., If $X=\mathbb{A}_{\mathbb{Z}}^{n}=\operatorname{Spec}\left(\mathbb{Z}\left[t_{1}, \ldots, t_{n}\right]\right)$ and $X(R)=$

Then $X=\operatorname{Spec}(A)$ and $X(R)=$ ring hom $A \rightarrow R$.
$X(R)=$ Ring Homs $\mathbb{Z}\left[t_{1}, \ldots, t_{n}\right] \rightarrow R \equiv R^{n}\left(\varphi \mapsto\left(\varphi\left(t_{1}\right), \ldots, \varphi\left(t_{n}\right)\right)\right)$. Recognize that $R \rightarrow X(R)$ is a functor from rings to sets.

If $f: R \rightarrow S$ is a ring homomorphism, this induces a map

$$
\begin{gathered}
X(R) \rightarrow X(S) \\
(\varphi: \operatorname{Spec} R \rightarrow X) \mapsto(\varphi \circ \operatorname{Spec}(f)) .
\end{gathered}
$$

Question. Given a functor from rings to sets (or if k is a field, k-algebras \rightarrow sets), we can ask if there is a scheme X s.t. $F(R)=X(R)$. We say " F is represented by X."

For example, we could take $F: R \rightarrow R^{\times}$(the group of units). In fact, this is represented by the affine scheme:

A homomorphism $\mathbb{Z}[x, y] /(x y=1) \rightarrow R$ is the same as giving elements $r=\varphi(x), s=\varphi(y)$ s.t $r s=\varphi(x y)=1$ (i.e. giving a unit $r \in R^{*}$).
That is, $\mathbb{Z}\left[x, \frac{1}{x}\right]$, or $\left\{x^{n} \mid n \in \mathbb{N}\right\}^{-1} \mathbb{Z}[x]$.
We have shown that $R \rightarrow R^{\times}$is represented by $\operatorname{Spec}\left(\mathbb{Z}\left[t, t^{-1}\right]\right)$, denoted \mathbb{G}_{m}. We have a group operation, $\mu: R^{\times} \times R^{\times} \rightarrow R^{\times}, 1_{R} \in R^{\times}$, and some axioms, like, $\forall r, s, t \in R^{\times}, \mu(r, \mu(s, t))=\mu(\mu(r, s), t)$.

How can we get such an operation μ ? If X, Y are two affine schemes, " $\operatorname{Spec}(A)$ " and "Spec (B) ", then $X(R) \times Y(R)=$ pairs of homomorphisms $(A \rightarrow R, B \rightarrow R)$, which is the same as giving a homomorphism $(A \otimes B \rightarrow R): \operatorname{Spec} A \times \operatorname{Spec} B=\operatorname{Spec} A \otimes B$. For example,

$$
\begin{gathered}
\mathbb{A}_{\mathbb{Z}}^{n} \times \mathbb{A}_{\mathbb{Z}}^{m} \cong \mathbb{A}_{\mathbb{Z}}^{n+m} \operatorname{because} \\
\operatorname{Spec}\left(\mathbb{Z}\left[t_{1}, \ldots, t_{n}\right]\right) \times \operatorname{Spec}\left(\left[\mathbb{Z}\left[u_{1}, \ldots, u_{m}\right]\right]\right)=\operatorname{Spec}\left(\mathbb{Z}\left[t_{i}\right] \otimes \mathbb{Z}\left[u_{i}\right]\right)=\operatorname{Spec}\left(\mathbb{Z}\left[t_{i}, u_{i}\right]\right) .
\end{gathered}
$$

Exercise. Verify the previous statement.
Example. The functor $R \rightarrow R^{\times} \times R^{\times}$is represented by $\operatorname{Spec}\left(\mathbb{Z}\left[t, t^{-1}\right] \otimes \mathbb{Z}\left[u, u^{-1}\right]\right)$. The map $\mu: R^{\times} \times R^{\times} \rightarrow R^{\times}$is a natural transformation. (Verify this!)

$$
\begin{gathered}
\operatorname{Spec}\left(\mathbb{Z}\left[t, u, t^{-1}, u^{-1}\right]\right) \stackrel{x \longmapsto t u}{\rightleftarrows} \operatorname{Spec}\left(\mathbb{Z}\left[x, x^{-1}\right]\right) \\
\quad \downarrow\left(\text { by } t \mapsto r, u \mapsto s \mathrm{w} / r, s \in R^{\times}\right) \\
R
\end{gathered}
$$

With $\operatorname{Spec}\left(\mathbb{Z}\left[x, x^{-1}\right]\right) \rightarrow R(x \mapsto r s)$. Hence, we have

$$
\begin{gathered}
\mathbb{Z}\left[t, u, t^{-1}, u^{-1}\right] \leftarrow \mathbb{Z}\left[x, x^{-1}\right] \\
\mu: \mathbb{G}_{m}^{t} \times \mathbb{G}_{m}^{n} \rightarrow \mathbb{G}_{m}^{x}
\end{gathered}
$$

with $1: \operatorname{Spec} \mathbb{Z} \rightarrow \mathbb{G}_{m}$ with $t \mapsto 1$. We can also give an associative law:

$$
\begin{array}{cccc}
\mathbb{G}_{m} \times \mathbb{G}_{m} \times \mathbb{G}_{m} & 1 \times \mu \\
\downarrow \mu \times 1 & & \downarrow \mu \\
\mathbb{G}_{m} \times \mathbb{G}_{m} & \longrightarrow & \mathbb{G}_{m}
\end{array}
$$

In general, a group scheme is a scheme G, together with maps

$$
\mu: G \times G \rightarrow G, 1: \operatorname{Spec} \mathbb{Z} \rightarrow G
$$

such that the associative law, identity, inverses hold (with identity given by

$$
\left.\operatorname{Spec} \mathbb{Z} \times \mathbb{G}^{(1, \mathrm{id})} \rightarrow \mathbb{G} \times \mathbb{G} \xrightarrow{\mu} \mathbb{G}\right)
$$

Exercise. What is the correct diagram to express the existence of inverses?
It is denoted \mathbb{G}_{m} for multiplicativity. You can also have \mathbb{G}_{a} as an additive group $(R \rightarrow R)$ (indeed, we can give $\mathbb{G}_{a}=\operatorname{Spec}(\mathbb{Z}[x])$ by $\sigma: \mathbb{G}_{a} \times \mathbb{G}_{a} \rightarrow \mathbb{G}_{a}$ through $x \mapsto$ $x \otimes 1+1 \otimes x)$.

An elliptic curve is an example of a group scheme!
Example. If E / \mathbb{C} is an elliptic curve, then the addition law on E corresponds to E being a group scheme over $\mathbb{C}: E \times E \rightarrow \mathbb{C}$.

Example. If R is a ring, a finitely generated projective module P over R is one a direct summand of a free module ($\exists Q$ s.t. $P \oplus Q$ is free). Fix an integer $n \geq 2$. If R is a local ring, then any finitely generated projective module is free (P is projective iff $\forall p$ prime ideals in R, the localization P_{p} is free). Then that implies there exists a function $\operatorname{Spec}(R) \rightarrow \mathbb{N}$ which takes $x \mapsto \operatorname{Rank}\left(P_{x}\right)$. (Exercise. Figure out why this is related to Cartier divisors (Henri claims it is)). Now, (with $n \geq 2$) we can look at the set of projective rank 1 quotients of $R^{n}: \quad R^{n} \rightarrow P=Q$ (P proj of rank 1), with $R^{n} \rightarrow Q$ as well (where the bold arrows \rightarrow represent surjection).
Fact. If $f: R \rightarrow S$ is a ring homomorphism, then $\left(R^{n} \rightarrow P\right) \mapsto\left(S^{n} \rightarrow S \otimes_{R} P\right)$ gives a functor from rings to sets. This is represented by: $\mathbb{P}_{\mathbb{Z}}^{n-1}$. (next time, we will see two different ways of constructing projective space, and we will see why the previous is true)

Lecture 9 (February 2, 2009) -

How do we express the inverse property of groups with a diagram? We have the fiber product

$$
\begin{gathered}
P \rightarrow \operatorname{Spec}(k) \\
\downarrow \quad \downarrow e \\
G \times G \underset{\mu}{\vec{\mu}} G .
\end{gathered}
$$

Then take $P \xrightarrow{\varphi} G$ with $G \times G \xrightarrow{\pi_{1}} P$, and the condition is that φ is an isomorphism.

Projective modules \& projective spaces

If R is a commutative ring with unity, an R-module P is projective if and only if there is an R-module Q such that $P \oplus Q$ is free.

Lemma. Suppose R is a local ring with maximal ideal \mathfrak{m}, residue field k, and P is a finitely generated projective R-module. Then R is free.
Proof. Since P is finitely generated, this implies that there is a surjective map $R^{n} \xrightarrow{\varphi} P$, and $R^{n} \cong P \oplus Q$ with $Q=\operatorname{ker}(\varphi)$.

If we let $\pi=\iota \circ \varphi: R^{n} \rightarrow R^{n}$ so $\operatorname{im}(\pi)=\iota(P)$, then (notice $\pi^{2}=\pi$)

$$
k^{n}=k \otimes_{R} R^{n} \cong\left(k \otimes_{R} P\right) \oplus\left(k \otimes_{R} Q\right) .
$$

Call $k \otimes_{R} P=\bar{p}$ and $k \otimes_{R} Q=\bar{q}$. Then \bar{p} and \bar{q} are f.d. k vector spaces of dimension m and n (respectively).

Since $R \rightarrow k$ is surjective and P is projective, P is flat (see commutative algebra). That is, $P-\gg k \otimes P$. Choose bases $\alpha_{1}, \ldots, \alpha_{m}$ of $P \otimes k$ and $\alpha_{m+1}, \ldots, \alpha_{n}$ of $Q \otimes k$, and elements $\bar{\alpha}_{1}, \ldots, \bar{\alpha}_{m} \in P, \bar{\alpha}_{m+1}, \ldots, \bar{\alpha}_{n} \in Q$ mapping to these basis elements. Hence, we have a map

$$
\begin{gathered}
R^{n} \xrightarrow{A} R^{n} \\
e_{i} \mapsto \bar{\alpha}_{i} \\
A\left(R^{n}\right) \subset P, A\left(R^{n-m}\right) \subset Q .
\end{gathered}
$$

The matrix X of A in $M_{n}(R)$ has image in $M_{n}(k)$, the matrix of the map

$$
\begin{aligned}
& k^{n} \rightarrow k^{n}=(k \otimes P) \oplus(k \otimes Q) \\
& e_{i} \mapsto \alpha_{i},
\end{aligned}
$$

which is an isomorphism. Hence, the image \bar{X} of X in $M_{n}(k)$ is invertible if and only if $\operatorname{det}(\bar{X}) \in k^{*} \Leftrightarrow \operatorname{det}(X) \notin \mathfrak{m} \Leftrightarrow \operatorname{det}(X) \in R^{*} \Leftrightarrow X \in G L_{n}(R)$. Hence, this matrix being invertible implies A is an isomorphism. Hence, $R^{m} \rightarrow P$ is an isomorphism.

If we look at the proof, suppose that R is no longer local. Then P is still finitely generated projective as an R-module, and $\mathfrak{p} \in \operatorname{Spec}(R)$ is a prime ideal. By the lemma, $P_{\mathfrak{p}}=R_{\mathfrak{p}} \otimes_{R} P=(R \backslash p)^{-1} \mathfrak{p}$ is free. Thus, there exist elements, $\alpha_{1}, \ldots, \alpha_{m} \in P_{\mathfrak{p}}$ which form a basis. That is, $\alpha_{i}=a_{i} / f_{i}$ with $f_{i} \in R \backslash \mathfrak{p}$. We get a map

$$
\begin{aligned}
\varphi:\left(f_{1} \ldots f_{m}\right)^{-1} R^{n} & \rightarrow\left(f_{1} \ldots f_{m}\right)^{-1} P^{n} \\
e_{i} & \mapsto \alpha_{i} .
\end{aligned}
$$

We know that if we localize at \mathfrak{p}, this is an isomorphism.
(Exercise. If A is a Noetherian commutative ring, and $\varphi: M \rightarrow N$ is a homomorphism of R-modules, and there exists $\mathfrak{p} \in \operatorname{Spec}(A)$ such that $\varphi_{\mathfrak{p}}: M_{\mathfrak{p}} \rightarrow N_{\mathfrak{p}}$ is an isomorphism, then $\exists g \notin \mathfrak{p}$ such that $M\left[\frac{1}{g}\right] \rightarrow N\left[\frac{1}{g}\right]$ is an isomorphism of $g^{-1} A$-modules.)
Hence, φ induces an isomorphism from $\left(g^{-1}\right) R^{n} \rightarrow\left(g^{-1}\right) P$ for some $g \notin \mathfrak{p}$. Now, a finitely generated projective R-module P is "locally free" if $X=\bigcup X_{f_{i}}=\operatorname{Spec}\left(f_{i}^{-1}\right) R$ such that $f_{i}^{-1} P$ is free (where X is $\operatorname{Spec}(R)$).

Question. Fix $n \geq 1$. Consider the functor

$$
\begin{gathered}
P_{n}: \text { Rings } \rightarrow \text { Sets } \\
R \mapsto \text { Rank } 1 \text { projective quotientso } \mathrm{f} R^{n+1} .
\end{gathered}
$$

i.e., equivalence classes of surjective maps $R^{n+1} \rightarrow P$ with P projective, $P_{\mathfrak{p}}$ free of rank 1 for all $p \in \operatorname{Spec}(R)$ (so that $R^{n+1} \rightarrow P$ and $R^{n+1} \rightarrow P^{\prime}$ are equivalent if and only if they have the same kernel).
Example. Let k be a field, and have $P^{n}(k): k^{n+1} \rightarrow L$ with L a one-dimensional vector space. For each basis element $\ell \in L, L \cong k$ through $1 \mapsto k$ gives us a matrix for $\varphi: \bar{a}=\left[a_{0}, \ldots, a_{n}\right]$. Since φ is surjective, not all the φ are zero. A different choice of ℓ : $\ell^{1}=\lambda \ell\left(\ell \in k^{*}\right) \mathrm{w} /$ matrices $\left[a_{0}, \ldots, a_{n}^{\prime}\right]$ with respect to ℓ is $\lambda^{ \pm}$times a^{\prime}. If R is a local ring, $P^{n}(R)=n+1$ tuples, $\bar{a}=\left[a_{0}, \ldots, a_{n}\right]$ such that not all $a_{i} \in \mathfrak{m}$ which is "at least one is a unit" modulo by R^{*}.

If A is a general commutative ring, L need not be free! However, $X=\operatorname{Spec}(A)=\bigcup$ $X_{g_{i}}=\operatorname{Spec}\left(g_{i}^{-1} A\right)=g^{-1} L$, and g_{i}^{-1} is free. So the map $g_{i}^{-1} R^{n+1} \rightarrow L$ is represented by a vector $\underline{a}=\left[a_{0}, \ldots, a_{n}\right]$ unique to a unit in $g_{i}^{-1} R$. We can also assume that at least one of the a_{i} is a unit.

Next time, we will show there is a scheme $\mathbb{P}_{\mathbb{Z}}^{n}$ (not affine) which "represents" P^{n}, i.e., there is a map $\operatorname{Spec}(A) \rightarrow \mathbb{P}_{\mathbb{Z}}^{n}$ with $\operatorname{Spec}(A) \leftrightarrow$ giving a rank 1 projective quotient of A^{n+1}.

Lecture 11 (February 6, 2009) -

Examples. (2) In particular, if k is a field,

$$
\prod_{k}^{r}(k)=\left(k^{n+1} \backslash\{0\}\right), k^{*}=\bigcup_{i=0}^{n} \mathbb{A}^{n}(k)=\left\{\left(a_{0}, \ldots, a_{i-1}, 1, a_{i+1}, \ldots, a_{n}\right) \mid a_{i} \in k\right\}
$$

(3) $\mathbb{P}_{k}^{n}=\left(\mathbb{A}_{k}^{n+1} \backslash\{0\}\right) / \mathbb{G}_{m, k}$
(4) $\mathbb{P}_{R}^{n}=\bigcup_{i=0}^{n+1} \mathbb{A}_{R}^{n} / \sim$ (where we will specify the equivalence class \sim).

Recall $\mathbb{G}_{m, k}=\operatorname{Spec}\left(k\left[t, t^{-1}\right]\right)$. This is an affine group scheme. $\mathbb{G}_{m, k}(R)=R^{*}$.
Review. Group actions. Classically, for G a group and X a set, a group action is $\mu: G \times X \rightarrow X,(g, x) \mapsto g x$ s.t. $g(h x)=(g h) x \forall g, h$ and $e \cdot x=x \forall x$.

For G a group object in a category \mathcal{C}, an action of G on an object X is a map

$$
\begin{gathered}
\rho: G \times X \rightarrow X \text { such that (1) } G \times G \times X^{1} G \times \rho \\
\mu \times 1 \downarrow \\
G \times X \times X \\
G \times P \xrightarrow{ } \downarrow \\
\text { (2) } X \xrightarrow{e \times 1_{X}} G \times X \xrightarrow{\rho} X .
\end{gathered}
$$

Exercise. This is equivalent to giving, for any object $T \in \mathcal{C}$, an action of the group $G(T)$ (morphism $T \rightarrow G)$ on $X(T)$ compatible with maps $T^{\prime} \rightarrow T$.

Fact. A scheme X is determined by the functor $R \rightarrow X(R)$ (with R a ring).

Remark. In any category \mathcal{C}, an object X is completely determined by the contravariant functor $h_{X}: T \rightarrow \operatorname{Hom}(T, X)$. Given X, Y, we have the functors h_{X} and h_{Y}. Those are functors $\mathcal{C} \rightarrow$ Sets. Then by the Yoneda lemma (natural transformations $h_{X} \rightarrow h_{Y}$ are in one-to-one correspondence with maps $X \rightarrow Y$), we look at X or the functor h_{X} represented by X are the same thing.

Actions of \mathbb{G}_{m} on "other things"

If $X=\operatorname{Spec}(A)$ is an affine scheme (over \mathbb{Z}), then an action of \mathbb{G}_{m} on X is a map $\rho: \mathbb{G}_{m} \times X \rightarrow X$. Notice giving $\mathbb{G}_{m} \times X$ is equivalent to giving $\operatorname{Spec}\left(\mathbb{Z}\left[t, t^{-1}\right] \otimes A\right)$ and to give X is equivalent to giving $\operatorname{Spec}(A)$. Hence,

$$
\begin{gathered}
A \xrightarrow{\rho^{*}} A\left[t, t^{-1}\right]=\mathbb{Z}\left[t, t^{-1}\right] \\
a \mapsto \sum_{i=-\infty}^{\infty} \rho_{i}(a) t^{i},
\end{gathered}
$$

where $\rho^{*}(a b)=\sum \rho_{i}(a b) t^{i}$ and (if ρ is a ring homomorphism)

$$
\rho^{*}(a) \rho^{*}(b)=\sum \rho_{j}(a) t^{i} \sum \rho_{k}(b) t^{b}=\sum_{i=-\infty}^{\infty} \sum_{j+k=i}\left[\rho_{j}(a) \rho_{k}(b)\right] t^{i}
$$

If ρ is an action, we have "reversal of the diagram," thati s

$$
\begin{aligned}
A\left[x, x^{-1}, y, y^{-1}\right] & \leftarrow A\left[t, t^{-1}\right] \\
\uparrow & \uparrow \\
A\left[t, t^{-1}\right] & \longleftarrow A
\end{aligned}
$$

Where the maps are $\sum a_{i} t^{i} \mapsto \sum_{i, j} \rho_{j}(a) x^{j} y^{i}, a \mapsto \sum \rho_{j}(0) t^{i}, a \mapsto \sum \rho_{k}(a) t^{k}$, and $\sum p_{k}(a) t^{k} \mapsto \sum_{k} p_{k}(a)(x y)^{k}$, given in clockwise order starting from the top. Thus

$$
\rho_{j}\left(a_{i}\right)= \begin{cases}0 & j \neq i \\ a_{i} & j=i\end{cases}
$$

Exercise. The fact that $e \in \mathbb{G}_{m}(\mathbb{Z})$ acts as identity so $\sum_{j=-\infty}^{\infty} e_{j}(a)=a$, i.e., the map $a \mapsto \sum e_{j}(a)$ is a grading.

In conclusion, we can say
Proposition. An action of \mathbb{G}_{m} on an affine scheme $X=\operatorname{Spec}(A)$ is the same as a \mathbb{Z} grading of the ring A.

Remark. An algebraic action of \mathbb{C}^{*} on a \mathbb{C}-vector space V is simply a grading of V, that is, $\bigoplus_{i \in \mathbb{Z}} V_{i}$ where V_{i} is an eigenspace (λ acts by λ^{i}).

Lecture 12 (February 9, 2009) -

Recall the action of $\mathbb{G}_{m}=\operatorname{Spec} k\left[t, t^{-1}\right]$ on $\operatorname{Spec}(A) \equiv$ grading of A, e.g., $A=$ $k\left[t_{0}, \ldots, t_{n}\right]$ (obvious grading $\left.(\lambda, P) \mapsto\left(\lambda a_{0}-\lambda a_{n}\right)=\lambda P, x_{i} \mapsto t x_{i}\right)$
Recall $\mathbb{P}^{n}(k)=\left(k^{n+1} \backslash\{0\}\right) / k^{*}$.

In general, let S be a graded ring, i.e., \mathbb{G}_{m} acts on $\operatorname{Spec}(S)$.
We can ask, what does it mean scheme-theoretically to delete $\{0\}$? The origin corresponds to the ideal $\left(x_{0}, \ldots, x_{n}\right)$. In general, the complement in $\operatorname{Spec}(A)$ of $V\left(\left(f_{1}, \ldots, f_{n}\right)\right)=\left\{\mathfrak{p} \mid\left(f_{1}, \ldots, f_{n}\right) \subset \mathfrak{p}\right\}$ (but this last set just says $\left.\forall i, f_{i} \in \mathfrak{p}\right)$. Hence,

$$
X \backslash V\left(\left(f_{1}, \ldots, f_{n}\right)\right)=\left\{\mathfrak{p} \mid \exists i f_{i} \notin \mathfrak{p}\right\}=\bigcup_{i}\left\{\mathfrak{p} \mid f_{i} \notin \mathfrak{p}\right\}=\bigcup_{i} \operatorname{Spec}(A)_{f_{i}},
$$

where the localization $\operatorname{Spec}(A)_{f_{i}}=\operatorname{Spec}\left(f^{-1} A\right)$.
So $\mathbb{A}^{n} \backslash\{0\}=\bigcup \operatorname{Spec}\left(k\left[x_{0}, \ldots, x_{i}, 1 / x_{i}, \ldots, x_{n}\right]\right)$. This is the set of points \mathfrak{p} such that at least one X_{i} is a unit in $k\left[x_{0}, \ldots, x_{n}\right]_{\mathfrak{p}}$.

Notice the grading on $k\left[x_{0}, \ldots, x_{n}\right]$ extends to each localization -- true whenever we localize with respect to $\left\{f^{n}\right\} / f$ homogeneous. \equiv Action of \mathbb{G}_{m} on \mathbb{A}^{n+1} induces an action.

Now look at \mathbb{G}_{m} acting on U_{i}. We take

Categorical quotient

Let $G \times X \xrightarrow{\lambda} X$ with $(g, x) \mapsto g x$. We also have the second projection $G \times X \rightarrow X$. If then $X \rightarrow Y$, do these two maps have the same image in Y ? This is precisely what it means to be the quotient! So, it is the universal object with the property such that $X \rightarrow X / G$ from second projection, $X \rightarrow X / G$ from λ, and $X / G \rightarrow Y$. Indeed, X / G is universal for maps $f: X \rightarrow Y$ s.t. $f \cdot \lambda=f \cdot$ proj, if it exists. For example, \mathbb{G}_{m} acting on $\mathbb{A}_{\mathbb{C}}^{1}$ (with $\left.(\lambda, a) \mapsto \lambda a\right)$ are orbits of closed \mathbb{C}-rational points-namely the origin, and everything else. This quotient in general is not a scheme.

Moduli problems deal with parametrizing isomorphic classes of elliptic curves over \mathbb{C}. We can embed any elliptic curves $E \hookrightarrow \mathbb{P}^{2}(\mathbb{C})$. Then $\operatorname{Aut}\left(\mathbb{P}^{2}(\mathbb{C})\right) \cong P G L_{3}(\mathbb{C})$ acts on the space of all cubic homogenous polynomials with non-zero discriminant. The space of cubic curves $\cong \mathbb{P}^{9}$ (there are ten coefficients in a degree 3 homogeneous polynomial). Furthermore, $\Delta \neq 0 \Longrightarrow$ Zariski open subset of \mathbb{P}^{9} is a quotient by action of $P G L_{3}$.

Returning from our digression, \mathbb{P}^{n} is going to be quotient $\left(\mathbb{A}^{n+1} \backslash\{0\}\right) / \mathbb{G}_{m}$. We form this as follows. Have \mathbb{G}_{m} act on each U_{i} :
(1) Form the quotient $U_{i} / \mathbb{G}_{m}=\operatorname{Spec}\left(\right.$ subring of $\mathcal{O}\left(U_{i}\right)$, invariant under \mathbb{G}_{m}). We shall see that in this case the quotient is a "good" object.
(2) Define $\mathbb{P}^{n}=\bigcup V_{i}$. This involves constructing a scheme by gluing open subschemes together.

Let S be any graded ring, and let f be a homogeneous element of positive degree. Then $\left(f^{-1} S\right)_{0}=$ subting of degree zero elements in $f^{-1} S$.

Notice this is still a graded ring. We want to construct the quotient of $\operatorname{Spec}\left(f^{-1} S\right)$ by \mathbb{G}_{m}. In general, A is a graded ring: $\mathbb{G}_{m} \times \operatorname{Spec}(A) \rightrightarrows \operatorname{Spec}(A) / \mathbb{G}_{m}=\operatorname{Spec}\left(A_{0}\right)$, given by $\sum a_{i} t^{i} \leftarrow \sum a_{i}$, where $\sum a_{i} t^{i} \in A \otimes \mathbb{Z}\left[t, t^{-1}\right]=A\left[t, t^{-1}\right]$.

So, take $\operatorname{Spec}\left(f^{-1} S\right)$.

Proposition. There is a one-to-one correspondence between prime ideals in $\left(f^{-1} S\right)_{0}$ and prime ideals in $f^{-1} S$ which are "invariant under the action of \mathbb{G}_{m} ".

What does "invariant under the action" mean? Well, $V \subset \mathbb{A}^{n+1}$ invariant under $k^{*} \Leftrightarrow$ it's a cone \Leftrightarrow ideal is homogeneous. In our case, $G \times X \rightarrow X$ where $G \times V \rightarrow V$ (this factors through V). Hence, "invariant under the action" is saying these are homogeneous prime ideals.

Proof. (of proposition) For simplicity, assume f has degree 1 , so that $f^{-1} S$ has a unit of degree 1. Let \mathfrak{p} be a homogeneous prime ideal, with

$$
p=\sum p_{i} \in \mathfrak{p} \Leftrightarrow p_{i} \in p \forall i \Leftrightarrow \mathfrak{p}_{i} / f_{i} \in \mathfrak{p} \forall i .
$$

Hence, $\mathfrak{p}_{i} / f_{i} \in\left(f^{-1} S\right)_{0} \cap \mathfrak{p}$, so hence
$p \in \mathfrak{p} \Leftrightarrow$ it is a sum of elements of the form $f^{i} q_{i}$ with $q_{i} \in\left(f^{-1} S\right)_{0} \cap \mathfrak{p}$.

Lecture 13 (February 11, 2009) - Graded rings?

Recall $S=\bigoplus_{d \in \mathbb{Z}} S_{d}$ is a graded ring.
Proposition. If $\exists u \in S_{d}, d \geq 1, u$ a unit, then there is a $1-1$ correspondence between homogeneous prime ideals in S and prime ideals in S_{0}.
$\operatorname{So} \operatorname{Spec}\left(S_{0}\right)$ is $\operatorname{Spec}(S) / \mathbb{G}_{m}$.
Now, given S a graded ring, consider the localizations $f^{-1} S$ for f homogeneous of positive degree. So $\operatorname{Spec}\left(\left(f^{-1} S\right)_{0}\right)$ is the quotient $\operatorname{Spec}\left(f^{-1} S\right) / \mathbb{G}_{m}$.
If f, g are two such elements, then $\left(f^{-1} S\right)_{0} \subset\left((f g)^{-1} S\right)_{0} \supset\left(g^{-1} S\right)_{0}$, and so

$$
\operatorname{Spec}\left(f^{-1} S\right) \supset \operatorname{Spec}\left((f g)^{-1} S\right) \subset \operatorname{Spec}\left(g^{-1} S\right)
$$

Then $\operatorname{Proj}(S):=$ union $\operatorname{Spec}\left(\left(f^{-1} S\right)_{0}\right) / \sim$ given by the inclusions $*$. Observe that the points of $\operatorname{Proj}(S)$ are simply the set of homogeneous prime ideals in S such that $\exists f$ homogeneous of positive degree s.t. $f \notin \mathfrak{p}$. Thus

$$
S_{+} \nsubseteq \mathfrak{p} \text { where } S_{+}=\bigoplus_{d>0} S_{d}
$$

Note: For $\mathfrak{p} \triangleleft\left(f^{-1} S\right)_{0}$ (a prime ideal) we have a 1-1 correspondence $\tilde{\mathfrak{p}} \triangleleft f^{-1} S$ as well as $\tilde{p} \triangleleft S$ s.t. $f \notin \tilde{\mathfrak{p}}$.

For example, for $S=k\left[x_{0}, \ldots, x_{d}\right]$ for k a commutative ring, then $\operatorname{Proj}(S)$ is the set of homogeneous prime ideals in S not containing all the x_{i}. Now, recall (here the overbars mean reduction $\bmod \mathfrak{p}$).

$$
\begin{aligned}
& \mathfrak{p} \triangleleft S \text { s.t. } \exists x_{i} \not \subset \mathfrak{p} \Leftrightarrow \text { the ideal }\left(\bar{x}_{0}, \ldots, \bar{x}_{n}\right) \text { in } S_{\mathfrak{p}} \text { is the unit ideal }= \\
& \bigcup_{i=0}^{n} \operatorname{Spec}\left(k\left[x_{0}, \ldots, x_{i}, \frac{1}{x_{1}}, \ldots, x_{d}\right]_{\operatorname{deg} 0}\right) \cong \mathbb{A}^{d} \cong \operatorname{Spec} k\left[x_{1} / x_{0}\right] .
\end{aligned}
$$

since $k\left[x_{0}, \ldots, x_{i}, \frac{1}{x_{1}}, \ldots, x_{d}\right]_{\operatorname{deg} 0}=k\left[\frac{x_{0}}{x_{i}}, \ldots, 1, \ldots, \frac{x_{0}}{x_{i}}\right]$. In other words, this follows since a line which is not vertical is determined by its slope, and a line which is not horizontal is determined by the reciprocal of its slope.
Remark: If X is a scheme, a closed subscheme $Y \subset X$ is
(1) a closed subset $Y \subset X$ as topological spaces, and
(2) if $i: Y \rightarrow X$ is the inclusion, a surjective homomorphism of sheaves of rings,

$$
\mathcal{O}_{X} \rightarrow i_{*} \mathcal{O}_{Y} \equiv
$$

sheaf of ideals $\mathcal{J}_{Y} \subset \mathcal{O}_{X}$ which is the kernel of this map.
Fact. For every affine open $\operatorname{Spec}(A) \subset X$, an ideal $I \triangleleft A$ is compatible with localization (i.e. the ideal in $f^{-1} A$ is $f^{-1} I$).
Note: A subscheme of $\mathbb{P}_{k}^{d}=\bigcup U_{i}$ is equivalent to $Y_{i} \subset U_{i}$ s.t. $Y_{i} \cap\left(U_{i} \cap U_{j}\right)=$ $Y_{j} \cap\left(U_{i} \cap U_{j}\right)$ which is also equiv to giving a homogeneous ideal $\mathfrak{a} \subset k\left[x_{0}, \ldots, x_{d}\right]$ s.t. $\left(x_{0}, \ldots, x_{d}\right) \not \subset \mathfrak{a}$. Thus, if k is Noetherian,

$$
\mathfrak{a}=\left(f_{1}, \ldots, f_{k}\right) \text { with } f_{i} \text { homogeneous polynomials. }
$$

Sheaves of modules

If X is a topological space and \mathcal{O} is a sheaf of rings on X, a sheaf of \mathcal{O}-modules is a sheaf element s.t. $\forall U \subset X, \mathcal{M}(U)$ is an $\mathcal{O}(U)$-module, and $\forall U \subset V, \mathcal{M}(V) \rightarrow \mathcal{M}(U)$ is a homomorphism of $\mathcal{O}(V)$-modules, where $\mathcal{M}(U)$ is an $\mathcal{O}(V)$-module via the map $\mathcal{O}(U) \rightarrow \mathcal{O}(V)$.
If $S=\operatorname{Spec}(A)$ is an affine scheme and M is an A-module, we get a sheaf \tilde{M} :

$$
\tilde{M}\left(S_{f}=\operatorname{Spec}\left(f^{-1} A\right)\right)=f^{-1} M=f^{-1} A \otimes_{A} M
$$

Obviously if $f \mid g$ so $f^{-1} A \rightarrow g^{-1} A$ and get a map $f^{-1} M \rightarrow g^{-1} M$. Define \tilde{M} to be the sheaf of sections of the etale space over $\operatorname{Spec}(A)=\bigcup S_{f} \times f^{-1} M$ with obvious identifications.
Theorem. $\tilde{M}\left(S_{f}\right)=f^{-1} M$ for any $f \in A$.
Definition. If X is a scheme, a quasi-coherent sheaf of \mathcal{O}_{X}-modules \mathcal{M} is a sheaf of \mathcal{O}_{X}-modules such that \forall affine open sets $U=\operatorname{Spec}(A) \subset X, \mathcal{M} / U \cong \tilde{M}$ for M an A module.
That is, for all $\operatorname{Spec}(A) \subset X$ affine opens, we have an A-module M_{A} s.t. if $\operatorname{Spec}(A) \subset$ $\operatorname{Spec}(B) \subset X$, then $A \otimes_{B} M_{B} \xrightarrow{\sim} M_{A}$.

Examples of sheaves of modules

(1) \mathcal{O}_{X}^{n} free of rank n.
(2) P locally free sheaf of rank n, i.e., $\forall U=\operatorname{Spec}(A) \subset X$ affine open, $P(U)$ is a projective A-module. $\equiv \forall x \in X, P_{x}$ is a free A-module.
(3) Invertible sheaves \equiv rank 1 locally free.
(4) Sheaf of ideals $\varphi \subset \mathcal{O}_{X}$.
(5) $X=\operatorname{Spec}(\mathbb{Z})$. Consider $\mathbb{Z} / 2 \mathbb{Z}[$ tilde $]$. We want to draw the etale space corresponding to this. Then $U=\operatorname{Spec}\left(\mathbb{Z}\left[\frac{1}{n}\right]\right)=\operatorname{Spec}(\mathbb{Z}) \backslash\left\{\left(\mathfrak{p}_{1}\right), \ldots,\left(\mathfrak{p}_{k}\right)\right\}$. Then

$$
(\mathbb{Z} / 2 \mathbb{Z})(U)=n^{-1} \mathbb{Z} / 2 \mathbb{Z}= \begin{cases}0 & 2 \nmid n \\ \mathbb{Z} / 2 \mathbb{Z} & 2 \mid n\end{cases}
$$

We are now in a position to prove the following.
Theorem. There is a one-to-one correspondence between maps of schemes over k,

$$
X \rightarrow \mathbb{P}_{k}^{d},
$$

and rank 1 locally free quotients $\mathcal{O}_{X}^{d+1}-\gg \mathcal{L}$. (\equiv an invertible sheaf \mathcal{L} on X together with $d+1$ elements $s_{0}, \ldots, s_{d} \in \mathcal{L}(X)$ s.t. $\forall x \in X$, the images of s_{0}, \ldots, s_{d} in \mathcal{L}_{x} generate this rank 1 free module $\mathcal{O}_{X, x}$.

Lecture 15 (February 16, 2009) - Manifolds and Bundles (wha?)

Hatcher: Book on vector bundles on his website.
Definition. A real / complex C^{k} / C^{*} manifold M is a topological space with an equivalence class of "atlases" i.e. coverings by charts, $M=\bigcup_{\alpha} U_{\alpha}$, where a chart is a pair (U, φ) with $U \subset M$ open such that $\varphi: U \rightarrow \mathbb{R}^{n}$ or \mathbb{C}^{n} is a homeomorphism onto an open subset, and if $\left(U_{\alpha}, \varphi_{\alpha}\right),\left(U_{\beta}, \varphi_{\beta}\right)$ are two charts, we get a homeomorphism $\mathbb{R}^{n} \supset$ $\varphi_{\beta}\left(U_{\alpha} \cap U_{\beta}\right) \xrightarrow{\varphi_{\alpha \beta}} \varphi_{\alpha}\left(U_{\alpha} \cap U_{\beta}\right) \subset \mathbb{R}^{n}$, and we require that $\varphi_{\alpha \beta}$ be continuous, differentiable of order k, real analytic (or in \mathbb{C}-case, complex analytic).

Notice $\varphi_{\alpha \beta} \circ \varphi_{\beta \gamma}=\varphi_{\alpha \gamma}: \varphi_{\gamma}\left(U_{\alpha} \cap U_{\beta} \cap U_{\gamma}\right) \rightarrow \varphi_{\alpha}\left(U_{\alpha} \cap U_{\beta} \cap U_{\gamma}\right)$. Furthermore, an atlas $\left(V_{i}, \psi_{i}\right)$ is a refinement of an atlas $\left(U_{\alpha}, \varphi_{\alpha}\right)$ if $\left\{\left(U_{\alpha}, \varphi_{\alpha}\right) \subset\left(V_{i}, \psi_{i}\right)\right\}$. We say two atlases are equivalent if they have a common refinement.
Definition. If $W \subset M$ is open, we say that $f: W \rightarrow \mathbb{R}$ (resp \mathbb{C}) is continuous, C^{k}, C^{∞}, or complex analytic, if $\forall \alpha, f \circ \varphi_{\alpha}^{-1}: \varphi_{\alpha}\left(W \cap U_{\alpha}\right) \rightarrow \mathbb{R}($ resp $\mathbb{C})$ has this property.
For example, a map $f: M \rightarrow N$ of C^{∞} manifolds is a continuous map of topological spaces such that for every pair of charts $N \supset U \xrightarrow{\varphi} \mathbb{R}^{n}, M \supset V \xrightarrow{\psi} \mathbb{R}^{m}$, we have

$$
f \circ \psi^{-1}: \psi\left(V \cap f^{-1}(U)\right) \rightarrow \mathbb{R}^{n}
$$

We say $M \subset N$ is a submanifold if it is a closed subspace and the inclusion is C^{∞}.
A submanifold $M \subset \mathbb{R}^{n}$ can be described in various ways, especially by equations. For example, $f(x, y)=0$ gives a curve in \mathbb{R}^{2}.

Examples of bundles

If we have $M \subset \mathbb{R}^{n}$, then we have $T M=$ tangent bundle to M. Recall if we have a bundle $\pi: E \rightarrow M(E$ over $M), E_{x}=\pi^{-1}(\{x\})=$ vector space for $x \in M$. Then $(T M)_{x}$ is simply the tangent space to M in \mathbb{R}^{n} at x. This is a subspace of \mathbb{R}^{n}. A morphism $f: E \rightarrow F$ of vector bundles over F is a continuous map such that (1) $f \circ \pi_{F}=\pi_{E}$, (2) f is a linear on the fibers, (3) f is C^{k}, C^{∞}, as necessary.

Give, a vector bundle $\pi: E \rightarrow M$ and $s: M \rightarrow E$ then s is a section if $\pi \circ s=1_{M}$. Interstingly, sections of tangent bundles is the same as sections of vector spaces.

Lecture 17 (February 20, 2009) -

Last time, we looked at R as a ring, M as an R-module, and

$$
S^{*}(M)=R \oplus M \oplus \ldots \oplus S^{k} M \oplus \ldots
$$

the symmetric algebra. Now, any times we have a map

$$
\begin{gathered}
\operatorname{Spec}\left(S^{*}(\mathcal{M})\right) \\
\downarrow \pi \uparrow s \\
\operatorname{Spec}(R),
\end{gathered}
$$

then a section corresponds to a homomorphism of R-algebras:

$$
S^{*} M \rightarrow R
$$

An R-algebra homomorphism from a symmetric algebra into any R-algebra, $S^{*} M \rightarrow A$, is induced by a unique R-linear map.

Now, in the previous direct sum for $S^{*}(M)$, each of the $S^{i} M$ summands can be sent into A using f. Hence, sections correspond 1-1 with R-linear maps $M \rightarrow R$, i.e., elements of M^{*}. This gives a diagram

$$
\begin{gathered}
\operatorname{Spec}\left(S^{*} M\right) \\
\sigma \swarrow \quad \downarrow \pi \\
\operatorname{Spec}(A) \underset{\varphi}{\operatorname{Spec}(R),}
\end{gathered}
$$

which tells us that maps σ such that $\pi \circ \sigma=\varphi$ are in one-to-one correspondence with R linear maps $M A$.
Example. Let $M=\mathbb{Z} / p \mathbb{Z}$ with $p \neq 0$ a prime. Then

$$
\operatorname{Spec}\left(S^{*} M\right) \cong \operatorname{Spec}(\mathbb{Z}[x] /(p x))
$$

Example. Let $M=R^{k} /\left\{\right.$ submodule generated by $\left.r_{1}, \ldots, r_{l}\right\}$, with x_{i} the generators of R^{k}. Then

$$
S^{*} M \cong R\left[x_{1}, \ldots, x_{k}\right] /\left\{\text { ideal generated by the } r_{i}\right\}
$$

If $M\left(\cong R^{k}\right)$ is free, then

and sections are one-to-one with elements of the free rank k module M^{*}. If $M=\bigoplus R e_{i}$ sections are of the form $\sum a_{i} e^{i}$ (with e^{i} the dual basis of M^{*}).

Homework questions

Now, if G is a group and we have a functor taking

$$
\begin{gathered}
\text { Rings } \rightarrow \text { Sets } \\
R \mapsto \operatorname{Hom}\left(G, G L_{n}(R)\right) \\
R \xrightarrow{\varphi} S, G L_{n}(R) \xrightarrow{G L_{n}(\varphi)} G L_{n}(S), \rho: G \rightarrow G L_{n}(R) \text { with } \rho \mapsto G L_{n}(\rho) \cdot \rho .
\end{gathered}
$$

We claim there is a ring $R(G)$ such that this functor is isomorphic to

$$
R_{i} \mapsto \operatorname{Ring} \operatorname{homs}(R(G), R)
$$

Example. Let $G \cong \mathbb{Z}$ be infinite cyclic. Then $\rho \equiv$ picking $\rho(g) \in G L_{n}(R)$. In this case the functor is just $G L_{n}$, represented by $\mathbb{Z}\left[\left\{x_{i j} \mid 1 \leq i \leq n, 1 \leq j \leq n\right\} \cdot \frac{1}{\operatorname{det}\left(\left(x_{i j}\right)\right)}\right]$, the polynomial ring of matrices with entries $x_{i j} / \operatorname{det}\left(\left(x_{i j}\right)\right)$. This is an affine open subset of $\mathbb{A}_{\mathbb{Z}}^{n^{2}}$. Then if we have a ring homomorphism from that ring to R given by φ, then

$$
\varphi: x_{i j} \mapsto \varphi\left(x_{i j}\right) \in R
$$

such that $\operatorname{det}\left(\varphi\left(x_{i j}\right)\right) \in R^{*}$, i.e. an element of $G L_{n}(R)$.
If $G=F_{n}$, the free group on $\left\langle g_{1}, \ldots, g_{n}\right\rangle$ or more generally on a set, $\langle\Sigma\rangle$, then for any group H,

$$
\operatorname{Hom} \operatorname{group}(G, H)=\operatorname{Hom} \operatorname{sets}(\Sigma, H) \approx H^{\Sigma}
$$

Then $\operatorname{Hom}\left(G, G L_{\underline{n}}(R)\right)=G L_{n}(R)^{\Sigma}$, and so $R \rightarrow G L_{n}(R)^{\Sigma}$ represented by

$$
G L_{n} \Sigma=\operatorname{Spec}\left(\mathbb{Z}\left[\left\{x_{i j}^{\sigma} \mid \sigma \in \Sigma, 1 \leq i, j \leq n\right\},\left\{\left.\frac{1}{\operatorname{det}\left(x_{i j}\right)} \right\rvert\, \sigma \in \Sigma\right\}\right]\right) \subset \mathbb{A}_{\mathbb{Z}}^{n^{2} \Sigma}
$$

If $G=\langle\Sigma \mid T\rangle$ (generators and relations), then if $t \in T, t=\sigma_{t(1)}^{ \pm 1}, \ldots, \sigma_{t\left(n_{t}\right)}^{ \pm 1}$. Then if

$$
\begin{gathered}
F_{\Sigma} \xrightarrow{\varepsilon} G \\
\rho \cdot \varepsilon \searrow \downarrow \rho \\
G L_{n}(R) .
\end{gathered}
$$

Then $\varphi: F_{\Sigma} \rightarrow G L_{n}(R)$ factors through G if and only if for all $t \in T, \varphi(t)=I_{n}$.

$$
\rho\left(\sigma_{t(1)}^{ \pm 1} \ldots \rho_{t\left(n_{t}\right)}^{ \pm 1}\right)=I .
$$

For each $t \in T$, we have n^{2} equations corresponding to the entries of this matrix equation. Then $\operatorname{Hom}\left(G, G L_{n}(R)\right)$ is represented by

$$
\operatorname{Spec}\left(\mathbb{Z}\left[\left\{x_{i j}^{\sigma} \mid \sigma \in \Sigma, 1 \leq i, j \leq n\right\},\left\{\left.\frac{1}{\operatorname{det}\left(x_{i j}\right)} \right\rvert\, \sigma \in \Sigma\right\}\right]\right)
$$

$\overline{\text { ideal generated by entries of matrices corresponding to the relations. }}$.

Sub-Example. What are the representations of $\mathbb{Z} / 2 \mathbb{Z}$ in $G L_{2}$? Well, $G L_{2}=\left(\begin{array}{ll}x & z \\ y & w\end{array}\right)$ such that the determinant is a unit. That is,

$$
G L_{2}=\mathbb{Z}\left[x, y, z, w, \frac{1}{x w-z y}\right] \subset \mathbb{A}_{x, y, z, w}^{4}
$$

Then the representations are equivalent to elements in $G L_{2}$ such that $A^{2}=I$. Then the $\operatorname{Hom}\left(\mathbb{Z} / 2 \mathbb{Z}, G L_{2}\right)$ is given by $x^{2}+y z=1, w^{2}+z y=1, x y+y w=0, x z+w z=0$.

If $\mathbb{A}_{k}^{2} \backslash\{(0,0)\}$, then $R^{*} \times R \cup R \times R^{*}$ is given by

$$
\left\{(f, g) \in R^{2} \mid(f, g)=R\right\}
$$

i.e., $\exists a, b \in R$ such that $a f+b g=1$. For example, $\operatorname{Spec}(\mathbb{Z}) \rightarrow \mathbb{A}_{k}^{2} \backslash\{(0,0)\}$, with $x \mapsto 2$ and $y \mapsto 3$.
Another homework question: What does it mean to show something has a natural scheme structure?

Given $G=\operatorname{Spec}(R)$ with $G \times G \rightarrow G, R \otimes_{k} R \leftarrow R$, with $k[\varepsilon] \rightarrow k[\varepsilon \otimes 1,1 \otimes \varepsilon]$. What are the elements in this ring? Well, if we let $\varepsilon \otimes 1=\varepsilon^{\prime}$ and $1 \otimes \varepsilon=\varepsilon^{\prime \prime}$, then they are of the form

$$
a+b \varepsilon^{\prime}+c \varepsilon^{\prime \prime}+d \varepsilon^{\prime} \varepsilon^{\prime \prime}
$$

Check associativity, identity, etc.

Recall the identity will be a map Spec $k \rightarrow G$.

Lecture 18 (February 23, 2009) - Homework questions

Homework questions

For (2b): A k-derivation is essentially

$$
\alpha_{2} \times \operatorname{Spec}(A) \rightarrow \operatorname{Spec}(A)
$$

The former is essentially $\operatorname{Spec}\left(k[\varepsilon] \otimes_{k} A\right) \cong \operatorname{Spec}(A[\varepsilon])$, so all we need to do is give a ring homomorphism $A \rightarrow A[\varepsilon]$. So, look at

$$
\begin{gathered}
\alpha_{2} \times \alpha_{2} \rightarrow \alpha_{2} \\
k\left[\varepsilon^{\prime}, \varepsilon^{\prime \prime}\right] \leftarrow k[\varepsilon] \\
\varepsilon \mapsto \varepsilon^{\prime}+\varepsilon^{\prime \prime} \\
\operatorname{Spec}(k) \rightarrow \alpha_{2} \\
k \leftarrow k[\varepsilon] \\
\varepsilon \mapsto 0
\end{gathered}
$$

Then we can take

$$
\begin{array}{r}
\varepsilon \mapsto 0 \\
A \rightarrow A[\varepsilon] \rightarrow A \\
a \mapsto a+\varphi(a) \varepsilon,
\end{array}
$$

where φ is a ring homomorphism and thus additive. Further, notice

$$
a b \mapsto a b+\varphi(a b) \varepsilon=(a+\varphi(a) \varepsilon)(b+\varphi(b) \varepsilon)=a b+(\varphi(a) b+a \varphi(b)) \varepsilon
$$

so that $\varphi(a b)=\varphi(a) b+a \varphi(b)$ and hence φ is a derivation.

with $a \mapsto a+0 \varepsilon$ for the \downarrow map, and so $a \in k \Longrightarrow \varphi(a)=0$. Then we have to check

$$
\begin{aligned}
\alpha_{2} \times \alpha_{2} \times & \times \operatorname{Spec}(A) \\
\downarrow & \rightarrow \alpha_{2} \times \operatorname{Spec}(A) \\
\downarrow & \downarrow \\
\alpha_{2} \times & \operatorname{Spec}(A)
\end{aligned} \rightarrow \operatorname{Spec}(A)
$$

commutes, which is simply a computation. Say the maps are

$$
\begin{aligned}
a+\delta(a) \varepsilon^{\prime}+\delta(a) \varepsilon^{\prime \prime} & \leftarrow a+\delta(a) \varepsilon \\
\uparrow & \uparrow \\
a+\delta(a) \varepsilon & \longleftarrow a .
\end{aligned}
$$

Then $a+\delta(a) \varepsilon^{\prime}+\delta(a) \varepsilon^{\prime \prime}$ gets mapped to $a+\delta(a) \varepsilon^{\prime \prime}+\left(\delta(a)+\delta(\delta(a)) \varepsilon^{\prime \prime}\right)=\varepsilon$ (or is it?).

Digression In char $p>0, \alpha_{p}=\operatorname{Spec}\left(k[x] / x^{p}\right)$ with $x \mapsto x \otimes 1+1 \otimes x$. This is a ring homomorphism by the binomial theorem. In any characteristic, there is a correspondence between k-algebra homomorphisms $\varphi: A \rightarrow A[\varepsilon]$ such that $\varphi(a)=a+\delta(a) \varepsilon$, and derivations. In characteristic zero, there is a $1-1$ correspondence between k-derivations $\delta: A \rightarrow A$, and actions of \mathcal{G}_{a} on $X=\operatorname{Spec}(A)$, where
\mathcal{G}_{a} is defined as follows. Recall $\mathbb{G}_{a}=\operatorname{Spec}(k[x])$ with $x \mapsto x \otimes 1+1 \otimes x$. Notice that this makes sense on power series: $k[[x]] \rightarrow k[[x \otimes 1,1 \otimes x]]$ sends a power series $\sum_{n=0}^{\infty} a_{n} x^{n} \mapsto \sum_{n=0}^{\infty} a_{n}(x \otimes 1+1 \otimes x)^{n}$. Then rather than take the tensor products we just take power series in the elements (call this diagram $\star)$

Remark. $k\left[\left[x^{\prime}\right]\right] \otimes k\left[\left[x^{\prime \prime}\right]\right] \not \equiv k\left[\left[x, x^{\prime \prime}\right]\right]$
Then if $a \mapsto \varphi(a):=\sum \varphi^{i}(a) x^{i}$ in the right \uparrow in the above diagram, the result on the top line will be

$$
\begin{equation*}
\varphi(a):=\sum \varphi^{i}(a) x^{i} \mapsto \sum_{i, j=0}^{\infty} \varphi^{i} \varphi^{j}(a)\left(x^{\prime}\right)^{i}\left(x^{\prime \prime}\right)^{j}=\sum \varphi^{i}(a)\left(x^{\prime}+x^{\prime \prime}\right)^{i}, \tag{1}
\end{equation*}
$$

with the condition $\varphi^{0}(a)=a$. Here, we are using $\varphi^{i} \neq \varphi \circ \ldots \circ \varphi$ as \boldsymbol{i}-times. We will explain in what sense we use the notation " φ^{i} " momentarily. So,
coming back to \mathcal{G}_{a}, this is similarly defined as for \mathbb{G}_{a}, but with the diagram above. Now, notice in (1) above, this is equivalent to giving

$$
\varphi^{0}=\mathrm{id}, \varphi^{1}, \ldots, \varphi^{i}: A \rightarrow A, \ldots
$$

such that $\forall n \geq 0, \forall a, \varphi^{n}(a)\left(x^{\prime}\right)^{i}\left(x^{\prime \prime}\right)^{j}\binom{n}{i}=\varphi^{i} \varphi^{n-1}(a)$ with $i+j=a$. For example, $\varphi^{2} \cdot 2=\varphi^{1} \cdot \varphi^{1}$, that is, $\varphi^{2}=\frac{1}{2}\left(\varphi^{1}\right)^{2}$ (binomial theorem). This is the sense in which we use the notation φ^{i}. Then notice that $\varphi^{n}=\frac{1}{n!} \varphi^{\circ n}$, where $\varphi^{\circ n}=\varphi \circ \ldots \circ \varphi$ composed n times.
Then the claim is as follows.
Proposition. To give a ring homomorphism $\varphi: A \rightarrow A[[x]]$ such that $\varphi(a)=\sum_{i=0}^{\infty} \varphi^{i}(a) x^{i}$ with (i) $\varphi^{0}(a)=a$ for all a, (ii) the diagram (\star) commutes, i..e,

$$
\sum_{i=0}^{\infty} \varphi^{i}\left(x^{\prime}+x^{\prime \prime}\right)^{i}=\sum_{i} \sum_{j} \varphi^{i} \varphi^{j}\left(x^{\prime}\right)^{i}\left(x^{\prime \prime}\right)^{j}
$$

is, in characteristic 0 , equivalent to giving a derivation on A.
Hence, going back to the idea of a group scheme, recall this is just verifying that the diagram below commutes,

with the maps

$$
\begin{array}{cc}
(g, h, x) & (g h, x) \\
\downarrow & \downarrow \\
(g, h x) & \mapsto g h x
\end{array}
$$

induced by multiplication.
Example. Consider $C^{\infty}(\mathbb{R})$ with derivation $\frac{d}{d t}$. Then if you evaluate

$$
\begin{gathered}
C^{\infty}(\mathbb{R}) \rightarrow C^{\infty}(\mathbb{R})[[x]] \\
f \mapsto \sum_{n=0}^{\infty} \frac{1}{n!} \frac{d^{n} f}{d t^{n}} x^{n}
\end{gathered}
$$

at a point $t=t_{0}$ in \mathbb{R} (i.e., coeffs of a formal power series in x), then this gives the Taylor series of f at t_{0}.

Previous homework problem

Recall the problem dealing with $X:=\mathbb{A}_{k}^{n} \backslash\{0\} \subset \mathbb{A}_{k}^{n}$ (in the homework it was $n=2$). Of course, $\{0\}=\left(x_{1}, \ldots, x_{n}\right) \triangleleft k\left[x_{1}, \ldots, x_{n}\right]$ is the point corresponding to / consisting of the maximal ideal generated by x_{1}, \ldots, x_{n}. So, a point \mathfrak{p} in \mathbb{A}_{k}^{n} is in X if and only if $\mathfrak{p} \neq\left(x_{1}, \ldots, x_{n}\right)$ if and only if $\exists x_{i}$ such that $x_{i} \notin \mathfrak{p}$ (since $\left(x_{1}, \ldots, x_{n}\right)$ is maximal). Then

$$
X=\bigcup_{i=1}^{n} D\left(x_{i}\right)=\operatorname{Spec}\left(k\left[x_{1}, \ldots, x_{n}\right]\left[\frac{1}{x_{i}}\right]\right)
$$

(so $D\left(x_{i}\right)$ is the line where we deleted the entire line $x_{i}=0$, so for \mathbb{A}^{2} it would be deletion of the y-axis if $i=2$). Furthermore, notice the primes in the Spec above are in one-to-one correspondence with primes $\nexists x_{i}$. Anyway, if $\varphi: \operatorname{Spec}(R) \rightarrow X$ is a morphism composed with $X \subset \mathbb{A}_{k}^{n}$, we get $\bar{\varphi}: \operatorname{Spec}(R) \rightarrow \mathbb{A}_{k}^{n}$, or equivalently,

$$
k\left[x_{1}, \ldots, x_{n}\right] \rightarrow R \text { with } x_{i} \mapsto r_{i} .
$$

That is (and we saw this earlier), giving a homomorphism of $\operatorname{Spec}(R)$ to \mathbb{A}_{k}^{n} is equivalent to giving a ring homomorphism as above. Now, the above map will factor through the open subset X if and only if $\{0\} \notin$ image of $X \Leftrightarrow X=\bigcup_{i=1}^{n}(\bar{\varphi})^{-1}\left(D\left(x_{i}\right)\right)$. Now we just need to know that $\bar{\varphi}$ is. Call $(\bar{\varphi})^{-1}\left(D\left(x_{i}\right)\right)=x_{r_{i}}$. This is just the open subset of X where r_{i} are units. We can see this by looking at

$$
\begin{gathered}
R\left[\frac{1}{r_{i}}\right] \leftarrow k\left[x_{1}, \ldots, x_{n}, \frac{1}{x_{i}}\right] \\
\uparrow \\
R \leftarrow k\left[x_{1}, \ldots, x_{n}\right]
\end{gathered}
$$

where we notice $R \otimes_{k\left[x_{1}, \ldots, x_{n}, \frac{1}{x_{i}}\right]} R\left[x_{1}, \ldots, x_{n}\right]=R\left[\frac{1}{r_{i}}\right]$, and this diagram corresponds to

$$
\begin{aligned}
&(\bar{\varphi})^{-1}\left(D\left(x_{i}\right)\right) \rightarrow D\left(x_{i}\right) \\
& \downarrow \\
& X \stackrel{\downarrow}{\varphi} \\
& \mathbb{A}^{n} .
\end{aligned}
$$

Continuing our \Leftrightarrow we get if and only if $\left(r_{1}, \ldots, r_{n}\right) \triangleleft R$ is the unit ideal $\Leftrightarrow \exists s_{1}, \ldots, s_{n}$ in R with $\sum r_{i} s_{i}=1$ (that is, $\forall \mathfrak{p} \triangleleft R$ at least one r_{i} maps to units in $R_{\mathfrak{p}}$, which is the same as saying subschemes $V\left(r_{i}\right) \subset X$ are disjoint).

Lecture 19 (February 25, 2009) - Quasi-coherent, locally free of rank 1 sheaves

Recall if R is a ring, a map $\operatorname{Spec}(R) \rightarrow \mathbb{A}^{n} \backslash\{0\}$ is the same as an n-tuple $\left(r_{1}, \ldots, r_{n}\right)$ such that the ideal $\left(r_{1}, \ldots, r_{n}\right)=R$. This is equivalent to the map

$$
R^{n} \rightarrow R \quad\left(x_{1}, \ldots, x_{n}\right) \mapsto \sum r_{i} x_{i}
$$

being surjective. Recall also that $\mathbb{G}_{m}=\operatorname{Spec}\left(\mathbb{Z}\left[t, t^{-1}\right]\right)$ acts on $\mathbb{A}^{n+1} \backslash\{0\} \subset \mathbb{A}^{n+1}=$ $\operatorname{Spec}\left(\mathbb{Z}\left[x_{0}, \ldots, x_{n}\right]\right)$ and the quotient is \mathbb{P}^{n}. And \mathbb{P}^{n} is the union of the affine open sets

$$
U_{i}=\operatorname{Spec}\left(\mathbb{Z}\left[\frac{x_{0}}{x_{1}}, \ldots, \frac{x_{i-1}}{x_{i}}, \frac{x_{i+1}}{x_{i}}, \ldots, \frac{x_{n}}{x_{i}}\right]\right) .
$$

Then the degree zero part of the \mathbb{Z}-graded ring $\boldsymbol{\star}=\mathbb{Z}\left[x_{0}, \ldots, x_{i}, \frac{1}{x_{i}}, \ldots, x_{n}\right]$. Then

$$
\mathbb{A}^{n+1} \backslash\{0\}=\bigcup_{i=0}^{n} V_{i}=\operatorname{Spec}[\boldsymbol{\star}] .
$$

Also, \mathbb{G}_{m} acts on each V_{i} with the quotient equal to U_{i} and furthermore there is a one-toone correspondence between prime ideals in $\mathbb{Z}\left[\frac{x_{0}}{x_{1}}, \ldots, \frac{x_{n}}{x_{1}}\right]$, and homogeneous prime ideals in \star which do not contain the ideal $\left(x_{0}, \ldots, x_{n}\right)$.

Here, \mathbb{P}^{n} as a set is the set of homogeneous prime ideals in $\mathbb{Z}\left[x_{0}, \ldots, x_{n}\right]$ not containing all of x_{0}, \ldots, x_{n}. In other words, U_{i} is the set of homogeneous primes \mathfrak{p} such
that $x_{i} \notin \mathfrak{p}$. If R is a ring, a map $\phi: \operatorname{Spec}(R) \rightarrow \mathbb{P}_{\mathbb{Z}}^{n}=\bigcup U_{i}$ is given by maps $\phi_{i}: \phi^{-1}\left(U_{i}\right) \rightarrow U_{i}$ where $\phi^{-1}\left(U_{i}\right)$ is a Zariski open set of $\operatorname{Spec}(R)$ such that on $W_{i} \cap W_{j}$ the maps $\left.\phi_{i}\right|_{W_{i} \cap W_{j}},\left.\phi_{j}\right|_{W_{i} \cap W_{j}}: W_{i} \cap W_{j} \rightarrow U_{i} \cap U_{j}$ agree.

Notice that each ϕ_{i} is determined by elements $\xi_{0}^{i}, \ldots, \xi_{n}^{i}$ (with $\zeta_{i}^{i}=1$) in $\mathcal{O}_{X}\left(U_{i}\right)$ (where $X=\operatorname{Spec}(R)$). On

$$
\begin{aligned}
U_{i} \cap U_{j}= & \operatorname{Spec} \mathbb{Z}\left[\frac{x_{0}}{x_{i}}, \ldots, \frac{x_{i}}{x_{i}}, \frac{x_{i}}{x_{j}}, \ldots, \frac{x_{n}}{x_{i}}\right] \text { (degree } 0 \text { part of } \\
& \left.\mathbb{Z}\left[x_{0}, \ldots, x_{i}, \frac{1}{x_{i}}, \ldots, x_{j}, \frac{1}{x_{i}}, \ldots, x_{n}\right]\right),
\end{aligned}
$$

we know $x_{k} / x_{i}=x_{k} / x_{j} \cdot x_{j} / x_{i}$. To say that $\phi_{i}=\phi_{j}$ on $W_{i} \cap W_{j}$ means $\xi_{k}^{i}=\xi_{k}^{j} \xi_{j}^{i}$ with ξ_{j}^{i} a unit and $\xi_{j}^{i} \cdot \xi_{i}^{j}=1$. In other words, giving ϕ is the same as giving $X=U_{0} \cup U_{1}$ and giving a function $\xi_{1}^{0} \in \mathcal{O}_{X}\left(U_{0}\right)$, and a function $\xi_{0}^{1} \in \mathcal{O}_{X}\left(U_{1}\right)$ such that on $U_{0} \cap U_{1}$, we have $\xi_{0}^{1} \xi_{0}^{1}=1$. So, $\xi_{0}^{1} \in \mathcal{O}_{X}\left(U_{0} \cap U_{1}\right)^{*}$ (invertible function, so it's a unit in this open set). Now, out of this unit, we can construct a locally free sheaf of rank $1, \mathcal{L}$, as follows: on U_{0} take the (locally) free sheaf $\left.\mathcal{O}_{U_{0}} \cong \mathcal{O}_{X}\right|_{U_{0}}$. On U_{1}, take $\left.\mathcal{O}_{U_{1}} \cong \mathcal{O}_{X}\right|_{U_{1}}$. Glue these together on $U_{0} \cap U_{1}$ by the map:

$$
\left.\left.\mathcal{O}_{U_{0}}\right|_{U_{0} \cap U_{1}} \rightarrow \mathcal{O}_{U_{1}}\right|_{U_{0} \cap U_{1}}, \quad \alpha \mapsto \alpha \xi_{1}^{0}
$$

It is a remark here to notice if $X=U_{0} \cup U_{1}$ and $\mathcal{M}_{0}, \mathcal{M}_{1}$ are quasi-coherent sheaves on U_{0} and U_{1} respectively, and $\phi:\left.\left.\mathcal{M}_{0}\right|_{U_{0} \cap U_{1}} \rightarrow \mathcal{M}_{1}\right|_{U_{0} \cap U_{1}}$ is an isomorphism, we get a sheaf \mathcal{N} such that $\left.\mathcal{N}\right|_{U_{0}} \cong \mathcal{M}_{0}$ and $\left.\mathcal{N}\right|_{U_{1}} \cong \mathcal{M}_{1}$. If $V \subset X$ is open, then

$$
\mathcal{N}(V)=\left\{(s, t) \mid s \in \mathcal{M}_{0}\left(U_{0} \cap V\right), t \in \mathcal{M}_{1}\left(U_{1} \cap V\right), \phi(s)=t\right\}
$$

More generally, given $X=\bigcup_{i \in I} U_{i}$ and \mathcal{M}_{i} sheaves on U_{i}, then together with isomorphisms $\phi_{i j}:\left.\left.\mathcal{M}_{j}\right|_{U_{i} \cap U_{j}} \rightarrow \mathcal{M}_{i}\right|_{U_{i} \cap U_{j}}$ such that $\forall i, j, k$,

$$
\left.\left.\phi_{i j}\right|_{U_{i} \cap U_{j} \cap U_{k}} \cdot \phi_{j k}\right|_{U_{i} \cap U_{j} \cap U_{k}}=\left.\phi_{i k}\right|_{U_{i} \cap U_{j} \cap U_{k}},
$$

then there is a sheaf \mathcal{N} such that $\left.\mathcal{N}\right|_{U_{i}} \cong \mathcal{M}_{i}$ and sections are given by a similar formula. In particular, if each $\mathcal{M}_{i} \cong \mathcal{O}_{U_{i}}$, then an isomorphism $\phi_{i j}:\left.\left.\mathcal{O}_{U_{j}}\right|_{U_{i} \cap U_{j}} \rightarrow \mathcal{O}_{U_{i}}\right|_{U_{i} \cap U_{j}}$ is just $\phi_{i j}: \mathcal{O}_{U_{i} \cap U_{j}} \rightarrow \mathcal{O}_{U_{i} \cap U_{j}}$ given by

$$
1 \in \mathcal{O}_{U_{i} \cap U_{j}}\left(U_{i} \cap U_{j}\right) \mapsto \alpha \in \mathcal{O}_{U_{i} \cap U_{j}}\left(U_{i} \cap U_{j}\right)
$$

Since this is a map of modules, any $v \mapsto \alpha u$, and since ϕ is an isomorphism,

$$
\alpha \in \mathcal{O}_{U_{i} \cap U_{j}}\left(U_{i} \cap U_{j}\right)^{*},
$$

i.e., $\phi_{i j}=$ multiplication by a unit which we also denote $\phi_{i j} \in \mathcal{O}_{X}\left(U_{i} \cap U_{j}\right)^{*}$. Hence, a collection $\phi_{i j} \in \mathcal{O}_{X}\left(U_{i} \cap U_{j}\right)^{*}$ such that $\phi_{i i}=1, \phi_{i j} \cdot \phi_{j k}=\phi_{i k} \in \mathcal{O}_{X}\left(U_{i} \cap U_{j} \cap U_{k}\right)$ $\forall i, j, k(*)$ (this is called the "co-cycle condition") determines, by gluing, a quasi-coherent sheaf \mathcal{L} on X such that $\left.\left.\mathcal{L}\right|_{U_{i}} \cong \mathcal{O}_{X}\right|_{U_{i}}$, i.e., \mathcal{L} is a "locally free of rank 1 ".

Conversely, if we are given a quasi-coherent sheaf \mathcal{L} on X such that there exists an open cover U_{i} and an isomorphism $\sigma_{i}:\left.\left.\mathcal{L}\right|_{U_{i}} \cong \mathcal{O}_{X}\right|_{U_{i}}$, i.e., \mathcal{L} is locally free of rank 1 . Then if we set $\phi_{i j}=\left.\left.\sigma_{i} \cdot \sigma_{j}^{-1} \cdot \mathcal{O}_{X}\right|_{U_{i} \cap U_{j}} \rightarrow \mathcal{O}_{X}\right|_{U_{i} \cap U_{j}}$, then the $\phi_{i j}$ satisfy ($*$).

Now, we want to go back and relate this to projective space.

Proposition. Suppose we are given a scheme X, and a locally free rank 1 sheaf \mathcal{L} on X determined by a cocycle $\left\{\phi_{i j}\right\}$ with respect to an affine open cover U_{i} of X, and a homomorphism $\theta: \mathcal{O}_{X}^{n+1} \rightarrow \mathcal{L}$ which is surjective.
Remark. For \mathcal{M}, \mathcal{N} quasi-coherent sheaves, $\theta: \mathcal{M} \rightarrow \mathcal{N}$ is surjective if and only if for all affine opens, $\mathcal{M}(U) \rightarrow \mathcal{N}(U)$.
Next time, we will show that θ gives a map to \mathbb{P}^{n}.

Lecture 20 (February 27, 2009) - Constructing maps to \mathbb{P}^{n}

Recall from last time that the idea is the following. If X is a scheme and \mathcal{L} is a sheaf of locally free \mathcal{O}_{X}-modules of rank 1 , and we are given a surjective homomorphism of sheaves of modules $\varphi: \mathcal{O}^{n+1} \rightarrow \mathcal{L}$, then we get a well-defined map

$$
f_{\varphi}: X \rightarrow \mathbb{P}_{\mathbb{Z}}^{n}
$$

as follows. Recall that by definition, there exists an open cover U_{i} of X and an isomorphism $\sigma_{i}:\left.\left.\mathcal{O}_{X}\right|_{U_{i}} \xrightarrow{\sim} \mathcal{L}\right|_{U_{i}}$. This is called a "local trivialization". Notice that to give σ_{i} is equivalent to giving the section $\sigma_{i}(1) \in \mathcal{L}\left(U_{i}\right)$ with σ_{i} an isomorphism; in other words, $\forall x \in U_{i}, \sigma_{i}(1) \in \mathcal{L}_{X, x}$, where $\mathcal{L}_{X, x}$ is an \mathcal{O}_{X}-module that is free or rank 1--that is, $\sigma_{i}(1)$ vanishes nowhere in U_{i}.

Reminder. If R is a local ring and L is free of rank 1 , then $\ell \in L$ generates L if and only if $\ell \notin m L$ (for m a maximal ideal of R) if and only if a non-zero $\bar{\ell} \in R / m \otimes_{R} L$.

Given such a local trivialization, $\sigma_{i}^{-1} \circ \varphi:\left(a_{0}, \ldots, a_{n}\right) \mapsto \sum_{i=0}^{n} a_{i} r_{i} \in \mathcal{O}_{X}\left(U_{i}\right)$ for some $\left(r_{0}, \ldots, r_{n}\right)$ because φ is surjective. Hence, there exists an \underline{a} such that $\varphi(\underline{a})=1$, that is, $\left(r_{0}, \ldots, r_{n}\right) \subset \mathcal{O}_{X}\left(U_{i}\right)$ is the unit ideal, or equivalently, $\psi_{i}=\sigma_{i}^{-1} \circ \varphi$ corresponds to the map $\left(r_{0}, \ldots, r_{n}\right): U_{i} \rightarrow \mathbb{A}^{n+1} \backslash\{0\}$. On $U_{i} \cap U_{j}$, we have

$$
\sigma_{j}=\varphi_{j i} \sigma_{i},
$$

with $\varphi_{j i} \in \mathcal{O}_{X}\left(U_{i} \cap U_{j}\right)^{*}$. Hence, we have two maps

$$
U_{i} \cap U_{j} \underset{\psi_{j}}{\psi_{i}} \mathbb{A}^{n+1} \backslash\{0\} \times \mathbb{G}_{m},
$$

where ψ_{i} corresponds to $\left(r_{0}^{(i)}, \ldots, r_{n}^{(i)}\right)$ and ψ_{j} corresponds to $\left(r_{0}^{(j)}, \ldots, r_{n}^{(j)}\right)$. Let's look at the coordinates of the pull-backs of these maps (where elements are mapped to).

$$
\begin{gathered}
\text { For }\left(x_{0}, \ldots, x_{n}, t\right), \text { each } x_{k} \stackrel{\psi_{i}^{*}}{\mapsto} r_{k}^{(i)} \text { and } x_{k} \stackrel{\psi_{j}^{*}}{\mapsto} r_{k}^{(j)}, \\
\quad \text { and under both maps } t \text { maps to } \varphi_{j i} .
\end{gathered}
$$

Observe that $\psi_{j}^{*}\left(x_{k}\right)=\psi_{i}^{*}\left(x_{k}\right) f_{i j}^{*}(t)$, where we let $f_{i j}: U_{i} \cap U_{j} \rightarrow \mathbb{G}_{m}$ (remember it makes sense to talk about this map). Hence, ψ_{i} and ψ_{j} are the composition

Since \mathbb{P}^{n} is the quotient of $\mathbb{A}^{n+1} \backslash\{0\}$ by the action of \mathbb{G}_{m}, the composition of these maps with proj ${ }^{n}$ to \mathbb{P}^{n} are the same.

Now we can ask the question: what happens if we had made a different choice of the $\left(U_{i}, \sigma_{i}\right)$? In other words, consider $\left\{\left(V_{j}, \tau_{j}\right)\right\}$. Then by what we have just seen, these will have to differ by multiplication by a unit, and hence on $U_{i} \cap V_{j}$, the maps to $\mathbb{A}^{n+1} \backslash\{0\}$ associated to σ_{i} and τ_{j} induce the same map to \mathbb{P}^{n}. So the map $f_{\varphi}: X \rightarrow \mathbb{P}^{n}$ is not dependent on these choices (see beginning of lecture for f_{φ}).

Now that we know about our map f_{φ}, we claim that given a $f: X \rightarrow \mathbb{P}^{n}$, we can construct a surjective homomorphism $\varphi: \mathcal{O}_{X}^{n+1} \rightarrow \mathcal{L}$ such that $f_{\varphi}=f$ (where \mathcal{L} is locally free of rank 1). Here is the construction.

Step 1. Consider the sheaves $\mathcal{O}_{\mathbb{P}^{n}}(k)$. Recall that

$$
\mathbb{P}^{n}=\bigcup_{i=0}^{n} \operatorname{Spec}\left(\mathbb{Z}\left[x_{0}, \ldots, x_{i}, \frac{1}{x_{i}}, \ldots, x_{n}\right]_{\operatorname{deg} 0}\right)
$$

with homogeneous coordinates $\left(x_{0}: \ldots: x_{n}\right)$ (where deg 0 means "take the degree 0 part of this guy").Notice that $\mathbb{Z}\left[x_{0}, \ldots, x_{i}, \frac{1}{x_{i}}, \ldots, x_{n}\right]$ is \mathbb{Z}-graded, and it has a unit in degree 1 (namely, x_{i}). In general, if $S=\bigoplus_{n \in \mathbb{Z}} S_{n}$ is such a ring and $u \in S_{1}$ is the unit, we can multiply by u to get $S_{k} \rightarrow S_{k+1}$, which will be an isomorphism of S_{0}-modules. So, S_{k} (for any $k \in \mathbb{Z}$) is a free rank $1 S_{0}$-module generated by u^{k}.
Lemma. For each $k \in \mathbb{Z}$, the modules M_{i} of homogeneous elements of degree k in

$$
\mathbb{Z}\left[x_{0}, \ldots, x_{i}, \frac{1}{x_{i}}, \ldots, x_{n}\right]
$$

patch together to give a locally free rank 1 sheaf on $\mathbb{P}_{\mathbb{Z}}^{n}$.
Proof. Let $k \in \mathbb{Z}$. Our goal is to give an isomorphism

$$
M_{i}=\mathbb{Z}\left[x_{0}, \ldots, x_{i}, \frac{1}{x_{i}}, \ldots, x_{n}\right]_{\operatorname{deg} k} \longrightarrow \mathbb{Z}\left[x_{0}, \ldots, x_{j}, \frac{1}{x_{j}}, \ldots, x_{n}\right]_{\operatorname{deg} k}=M_{j}
$$

That is, $M_{i}=\mathcal{O}_{X}(k)\left(U_{i}\right)$ is the elements of $\mathbb{Z}\left[x_{0}, \ldots, x_{i}, \frac{1}{x_{i}}, \ldots, x_{n}\right]$ of degree k. This is free of rank 1 over the homogeneous components of degree zero, and so generated by the $\left(x_{i}\right)^{k}$, that is,

$$
f=\underbrace{\frac{a\left(x_{0}, \ldots, x_{n}\right)}{x_{i}^{++k}}}_{\text {degree } 0} \cdot x_{i}^{k}
$$

on $U_{i} \cap U_{j}$ with $f \cdot\left(\frac{x_{j}}{x_{i}}\right)^{k}=$ (something of degree zero).
Now, we look at the localization of M_{i} with respect to x_{j} and M_{j} with respect to x_{i}, and the intersection with respect to both. Let's look at specifics here.

What does M_{i} look like? Take $f \in M_{i}$. Then $f=\frac{a\left(x_{0}, \ldots, x_{n}\right)}{x_{i}^{l}}$ where a is of degree $l+k$. Similarly, given $g \in M_{j}$, it will look like $g=\frac{b\left(x_{0}, \ldots, x_{n}\right)}{x_{i}^{m}}$ with b of degree $m+k$. Now, we want to make ourselves a nice little map

$$
M_{i}\left[\frac{1}{x_{j}}\right] \rightarrow M_{j}\left[\frac{1}{x_{i}}\right]
$$

Using the fact x_{i} / x_{j} is a unit on $U_{i} \cap U_{j}$,

$$
\frac{a\left(x_{0}, \ldots, x_{n}\right)}{x_{i}^{l}} \mapsto \frac{a_{0}\left(x_{0}, \ldots, x_{n}\right)}{x_{j}^{l}} \cdot\left(\frac{x_{j}}{x_{i}}\right)^{k},
$$

with $a_{0} a$ function. Now, recall the co-cycle condition $(*)$ for a locally free sheaf of rank 1 (see previous lecture). Then the co-cycle defining $\mathcal{O}_{\mathbb{P}^{n}}(k)$ is $\left(\frac{x_{i}}{x_{j}}\right)^{k}$ on $U_{i} \cap U_{j}$.

Refer back to our discussion at the beginning of this proof, and we can extend the result for f to say that since on $U_{i} \cap U_{j} \cap U_{m}$

$$
\left(\frac{x_{i}}{x_{j}}\right)^{k}\left(\frac{x_{j}}{x_{m}}\right)^{k}=\left(\frac{x_{i}}{x_{m}}\right)^{k}
$$

we have a locally free rank 1 sheaf. [Wait, what? Go back and look at this.]
Notice if $k \geq 1$, then any homogeneous polynomial of degree k in x_{0}, \ldots, x_{n} defines a global section in $\mathcal{O}_{\mathbb{P}^{n}}(k)\left(\mathbb{P}^{n}\right)$. In other words, if

$$
f\left(x_{0}, \ldots, x_{n}\right) \in \mathbb{Z}\left[x_{0}, \ldots, x_{n}\right]
$$

is homogeneous of degree k, then

$$
f=\frac{f}{x_{i}^{k}} \cdot x_{i}^{k}
$$

where the first term is homogeneous of degree 0 . So these "glue together" as co-cycles. Notice

$$
\varphi_{i}=\left(\frac{x_{i}}{x_{j}}\right)^{k} \varphi_{j}
$$

so consider the $\left(\varphi_{i}\right)$. Then in particular, $\mathcal{O}(1)$ has $n+1$ global sections x_{0}, \ldots, x_{n}. Hence, we have constructed

$$
\mathcal{O}_{\mathbb{P}^{n}}^{n+1} \rightarrow \mathcal{O}_{\mathbb{P}^{n}}(1) \text { given by }\left(a_{0}, \ldots, a_{n}\right) \mapsto \sum a_{i} x_{i} .
$$

Notice further that this map is surjective. On $U_{i},\left.\mathcal{O}_{\mathbb{P}^{n}}(1)\right|_{U_{i}} \cong \mathcal{O}_{U_{i}}$ is trivial, generated by $x_{i}=\sigma(0, \ldots, 1, \ldots 0)$.

Step 2. Now given any $f: X \rightarrow \mathbb{P}^{n}$, just take $\mathcal{L}=f^{*}\left(\mathcal{O}_{\mathbb{P}^{n}}(1)\right)$. We will see this done next time.

Lecture 22 (March 4, 2009) - Quasicoherent Sheaves

Let $X=\operatorname{Spec}(A), M$ an A-module, and \tilde{M} a quasi-coherent sheaf on X associated to M. Then

$$
\tilde{M}\left(X_{f}=\operatorname{Spec}\left(A\left[\frac{1}{f}\right]\right)\right)=M\left[\frac{1}{f}\right] \cong A_{f} \otimes_{A} M
$$

If $f: X \rightarrow Y$ is a map of schemes \mathcal{M}, there exists a quasi-coherent sheaf of $\mathcal{O}_{Y^{-}}$ modules. Define $f^{*} \mathcal{M}=\mathcal{O}_{X} \mathcal{O}_{f^{-1} \mathcal{O}_{Y}} f^{-1} \mathcal{M}$.

Then there is an equivalence of categories:

$$
\text { quasi-coherent sheaves on spec } A \longleftrightarrow A \text {-modules. }
$$

For X a general scheme, a quasicoherent sheaf on X, is equivalent to giving the following:

For every affine $U=\operatorname{Spec}(A) \subset X$ an A-module $M(U)$ s.t. if
$V=\operatorname{Spec}\left(A\left[\frac{1}{f}\right]\right) \subset \operatorname{Spec}(A)=U$, with $m_{i} \in M\left[\frac{1}{f_{i}}\right]$, then the map

$$
M(U)\left[\frac{1}{f}\right] \rightarrow M(V)
$$

is an isomorphism.
Also, if $X=\bigcup_{i} U_{i}$, and given quasi-coherent sheaves \mathcal{M}_{i} on U_{i},

$$
\theta_{j i}=\left.\left.\mathcal{M}_{i}\right|_{U_{i} \cap U_{j}} \xrightarrow{\sim} \mathcal{M}_{j}\right|_{U_{i} \cap U_{j}}
$$

satisfying $\theta_{k i}=\theta_{k j} \theta_{j i} \Longrightarrow$ get a quasi-coherent \mathcal{M} on X.
Given \mathcal{M} a quasi-coherent sheaf of \mathcal{O}_{Y}-modules, define the quasi-coherent sheaf $f^{*} \mathcal{M}$. We only need to find an open cover $X=\bigcup U_{i}$, and to define $\left.f^{*} \mathcal{M}\right|_{U_{i}}$ such that these patch together. Consider $f: X \rightarrow Y=\bigcup_{i} U_{i}=\operatorname{Spec}\left(A_{i}\right)$. Of course we can write $X=\bigcup_{j} V_{j}=\operatorname{Spec}\left(B_{j}\right)$. Further $f\left(V_{j}\right) \subset U_{i}$ for some $i, \varphi(j)$ i.e., $\left.f\right|_{V_{j}}$ is determined by a map $f_{j}^{*}: A_{\varphi(1)} \rightarrow B_{i}$ such that these are compatible.

So, let's say we have

$$
V=\operatorname{Spec}(B) \xrightarrow{f_{U, V}} U=\operatorname{Spec}(A)
$$

with $V \subset X$ and $U \subset Y$. Then giving f is equivalent to giving (i) a map of topological spaces $X \rightarrow Y$, (ii) for all pairs U, V of affine opens such that $f(V) \subset U$, a ring homomorphism $f^{*}: \mathcal{O}_{Y}(U) \rightarrow \mathcal{O}_{X}(V)$ such that $\operatorname{Spec}\left(f^{*}\right)=\left.f\right|_{U}$, and this is natural with respect to inclusion of affine opens.

We can also do this in a category-theoretic say. Say we can have a quasi-coherent sheaf \mathcal{N} on X, and a quasi-coherent sheaf \mathcal{M} on Y.

Definition. A homomorphism of quasi-coherent sheaves $\varphi: \mathcal{M} \rightarrow \mathcal{N}$ over f consists of giving for all pairs $V=\operatorname{Spec}(B), U=\operatorname{Spec}(A)$ as above, that is, such that $f(V) \subset U$, a homomorphism of abelian groups,

$$
\varphi_{U, V}: \mathcal{M}(U) \rightarrow \mathcal{N}(V)
$$

which is $\mathcal{O}_{X}(U)$-linear, where $\mathcal{N}(V)$ is an $\mathcal{O}_{X}(U)$ module via

$$
f_{U V}: \mathcal{O}_{Y}(U) \rightarrow \mathcal{O}_{X}(V)
$$

and these homomorphisms are natural with respect to inclusions $U^{\prime} \subset U$ and $V^{\prime} \subset V$.
Now, backtracking a little, if $f: R \rightarrow S$ is a ring homomorphism, and M is an R module (left if these are noncommutative), then what is $S \otimes_{R} M$? We have two categories, Mod_{S} modules over S and Mod_{R} modules over R, and there is the forgetful functor (think universal algebra):

$$
\begin{aligned}
& \quad \operatorname{Mod}_{S} \xrightarrow{\text { forget }} \operatorname{Mod}_{R} \\
& N \mapsto F(N)
\end{aligned}
$$

where we view N as R-modules.
Exercise. $\operatorname{Hom}_{R}(M, N) \cong \operatorname{Hom}_{S}(S \otimes M, N)$
Then we can define

$$
f^{*} \mathcal{M}(V):=\mathcal{O}_{X}(V) \otimes_{\mathcal{O}_{Y}(U)} \mathcal{M}(U)
$$

for all pairs V, U with $f(V) \subset U$, and the maps for $V^{\prime} \subset U$ where the restriction map is simply induced by $\mathcal{O}_{X}(V) \rightarrow \mathcal{O}_{X}\left(V^{\prime}\right)$:

$$
\mathcal{O}_{X}(V) \otimes \mathcal{M}(U) \rightarrow \mathcal{O}_{X}\left(V^{\prime}\right) \otimes \mathcal{M}(V)
$$

Notice if $V=\operatorname{Spec}(B), V^{\prime}=\operatorname{Spec}\left(B\left[\frac{1}{g}\right]\right), U=\operatorname{Spec}(A)$, then

$$
B\left[\frac{1}{g}\right] \otimes_{B}\left(B \otimes_{A} \mathcal{M}(U)\right) \cong B\left[\frac{1}{g}\right] \otimes_{A} \mathcal{M}(U) \cong B \otimes_{A} \mathcal{M}(U)\left[\frac{1}{g}\right]
$$

In particular, if \mathcal{E} is a locally free of rank n sheaf on Y (so \exists an open cover $Y=\bigcup_{i} U_{i}$ such that $\left.\left.\left.\sigma_{i} \mathcal{E}\right|_{U_{i}} \simeq \mathcal{O}_{Y}^{n}\right|_{U_{i}}\right)$, then for every affine $V \subset X$ such that $f(V) \subset U_{i}$,

$$
\left.\left.f^{*}(\mathcal{E})\right|_{V} \cong \mathcal{O}_{X}^{n}\right|_{V}
$$

That is, $\mathcal{O}_{X}(V) \otimes \mathcal{O}_{Y}\left(U_{i}\right) \mathcal{O}_{Y}\left(U_{i}\right)^{n} \cong \mathcal{O}_{X}(U)^{n}$. Then

$$
\theta_{j i}: \sigma_{j} \sigma_{i}^{-1}:\left.\left.\mathcal{O}^{n}\right|_{U_{i} \cap U_{j}} \rightarrow \mathcal{O}^{n}\right|_{U_{i} \cap U_{j}}\left(\text { an iso given by an element of } G L_{n}\left(\mathcal{O}_{U_{i} \cap U_{j}}\right)\right)
$$

If $f(V) \subset U_{i}$ and $f(W) \subset U_{j}$, we have

$$
\left.\left.f^{*}(\mathcal{E})\right|_{V} \xrightarrow{f^{*}\left(\sigma_{i}\right)} \mathcal{O}_{X}^{n}\right|_{V}
$$

with $f^{*}\left(\sigma_{j}\right) f^{*}\left(\sigma_{i}\right)^{-1}=f^{*}\left(\theta_{j i}\right)$. In other words, you can think of a locally free sheaf as being determined by the patching data given by the $\theta_{j i}$, and then we can think of the pullback f^{*} as:

Proposition. $f^{*}(\mathcal{E})$ is determined by the cocycle

$$
f^{*}\left(\theta_{i j}\right) \in G L_{n}\left(\mathcal{O}_{X}\left(f^{-1}\left(U_{i}\right) \cap f^{-1}\left(U_{j}\right)\right)\right)
$$

$\left(X=\bigcup_{i} f^{-1}\left(U_{i}\right)\right)$.
Geometrically, suppose we have a vector bundle

$$
\begin{gathered}
E \\
\downarrow \pi \\
Y=\bigcup_{i} U_{i}=\operatorname{Spec}\left(A_{i}\right) \\
\mathbb{A}_{U_{i}}^{n} \tau_{i} \\
\searrow \pi^{-1}\left(U_{i}\right) \subset E \\
\downarrow \downarrow \quad \downarrow \\
U_{i} \subset Y
\end{gathered}
$$

with $\tau_{i}: \pi^{-1}\left(U_{i}\right) \cong A_{U_{i}}^{n} \cong \operatorname{Spec} A_{i}\left[t_{1}, \ldots, t_{n}\right]$. Over $U_{i} \cap U_{j}$, we require that

$$
\tau_{j} \cdot \tau_{i}^{-1}: \mathbb{A}_{U_{i} \cap U_{j}}^{n} \rightarrow \mathbb{A}_{U_{i} \cap U_{j}}^{n}
$$

is a matrix

$$
\sigma_{j i} \in G L_{n}\left(\mathcal{O}_{Y}\left(U_{i} \cap U_{j}\right)\right)
$$

with

$$
\left(\tau_{j} \cdot \tau_{i}\right)^{*}\left(t_{k}\right)=\sum_{\ell=1}^{n} \theta_{j i}^{k \ell} t_{\ell}
$$

with $\theta_{j i}^{* *}$ entries in the matrix $\theta_{j i}$. We will get to the completely geometric interpretation of locally free sheaves and pullback.

Lecture 24 (March 9, 2009) -

[I walked in late, missing a few notes.]
Standard example: $X=\mathbb{A}_{A}^{n+1}=\operatorname{Spec} A\left[x_{0}, . ., x_{n}\right]$, and $\underline{s}=\left(x_{0}, \ldots, x_{n}\right): \mathcal{O}_{X}^{n+1} \rightarrow \mathcal{O}_{X}$.
The image of \underline{s} is the ideal of origin on $\mathbb{A}^{n+1} \backslash\{0\}$, \underline{s} is surjective, so we have the standard map

$$
\mathbb{A}_{A}^{n+1} \backslash\{0\} \rightarrow \mathbb{P}_{A}^{n} .
$$

Our map $\Sigma: \mathcal{O}_{X}^{n+1} \rightarrow \mathcal{L}$ has image $\mathcal{M} \subset \mathcal{L}$ which is a subsheaf. Now, $\mathcal{M}_{x} \subset \mathcal{L}_{x}$ is the image $\mathcal{O}_{X, x}^{n+1}$, and since $\mathcal{L}_{x}=\mathcal{O}_{X, x} \ell, \mathcal{M}_{x}=g_{x} \mathcal{L}_{x}$, where g is an ideal. This is true in any affine neighborhood of x such that $\left.\left.\mathcal{L}\right|_{U} \cong \mathcal{O}_{X}\right|_{U} \ell$. Globally, $\mathcal{M}=\mathcal{G} \mathcal{L}$ where \mathcal{G} is a sheaf of ideals in \mathcal{O}_{X}. If U is affine open, then im $\left.\underline{s}\right|_{U}=\mathcal{G}(U) \cdot \mathcal{L}(U)$. So, we get a closed subscheme $Y \subset X$, i.e., $Y \subset X$ closed and $\forall U \subset X$ affine open,

$$
Y \cap U=\operatorname{Spec}\left(\mathcal{O}_{X}(U) / \mathcal{G}(U)\right)
$$

that is, $i: Y \hookrightarrow X$ with $i_{*} \mathcal{O}_{Y} \cong \mathcal{O}_{X} / \mathcal{G}$.
Let $\underline{s}: \mathcal{O}_{X}^{n+1} \rightarrow \mathcal{L}$. Then image $\mathcal{M} \subset \mathcal{L}$ and is isomorphic to $\mathcal{G} \mathcal{L}$, where \mathcal{G} is the sheaf of ideals. Let $Y \subset X$. Then $\mathcal{O}_{Y} \cong \mathcal{O}_{X} / \mathcal{G}$ is the subscheme where \underline{s} vanishes on $X \backslash Y$, and this is the open subscheme on which \underline{s} is surjective. We then get an induced $\operatorname{map} X \backslash Y \rightarrow \mathbb{P}_{A}^{n}$.

$$
\begin{aligned}
& U \\
& \cap \\
& X \xrightarrow[?]{\longrightarrow} P .
\end{aligned}
$$

$\Gamma_{\left.f\right|_{U}} \subset X \times P$. Define $\tilde{X}=$ closure $\Gamma_{\left.f\right|_{U}}$. Then

We can do this with schemes. If $X=\bigcup_{i} U_{i}=\operatorname{Spec}\left(R_{i}\right)$, and $P=\bigcup_{j} V_{j}=\operatorname{Spec}\left(S_{j}\right)$, then $X \times P=\bigcup_{i, j} U_{i} \times V_{j}=\operatorname{Spec}\left(R_{i} \otimes S_{j}\right)$. Suppose that $U \subset X$ is an open subscheme (i.e., an open subset, $\mathcal{O}_{U}=\left.\mathcal{O}_{X}\right|_{U}$). If given a map of schemes, $f: U \rightarrow P$, then we know there exists an affine open cover of U, namely $W_{k}=\operatorname{Spec}\left(T_{k}\right) \subset U$ such that $\forall k \exists j$ such that $f\left(W_{k}\right) \subset V_{j}$, and a map $f_{k j}^{*}: S_{j} \rightarrow T_{k}$.

Glueing together the graphs of the maps $\left.f\right|_{W_{k}}: W_{k} \rightarrow V_{j}, W_{k} \rightarrow W_{k} \times V_{j}$ gives a map of schemes $\Gamma_{f}: U \rightarrow U \times{ }_{A} P$. This makes sense for any morphisn of schemes $U \rightarrow P$.

Definition. f is separated if Γ_{f} is the inclusion of a closed subscheme.
In our situation, $U \xrightarrow{f} P$ (with $U \subset X$), we can define a closed subscheme $\tilde{X} \subset X \times P$ such that in each affine open $U_{i} \times V_{j}, U_{i} \subset X$ affine and $V_{j} \subset P$ opens. Then

$$
\tilde{X} \cap\left(U_{i} \times V_{j}\right)=\text { Zariski closure of the graph of }\left.f\right|_{U_{i} \cap U_{j}} \cap\left(U_{i} \times V_{j}\right) .
$$

We shall show this (next lecture) as an explicit ideal.
Suppose we are over a field k

$$
\begin{aligned}
& \mathbb{A}^{2} \backslash\{0\} \\
& \cap \\
& \mathbb{A}_{x, y}^{2} \quad \mathbb{P}_{k}^{1}=\operatorname{Proj}(k[x, y]),
\end{aligned}
$$

with $\tilde{X} \subset \mathbb{A}_{x, y}^{2} \times \mathbb{P}_{k}^{1}=\operatorname{Proj}\left(k\left[x^{\prime}, y^{\prime}\right]\right)$.
Exercise. $\quad \tilde{X} \subset \mathbb{A}_{x, y}^{2} \times \operatorname{Spec} k\left[\frac{x^{\prime}}{y^{\prime}}\right] \cup \mathbb{A}_{x, y}^{2} \times \operatorname{Spec} k\left[\frac{y^{\prime}}{x^{\prime}}\right]:=U_{1} \cap U_{2}$. Hence, $\tilde{X} \cap U_{1}$ has equation $x=\left(\frac{x^{\prime}}{y^{\prime}}\right) \cdot y$. Similarly, $\tilde{X} \cap U_{2}$ has equation $y=\left(\frac{y^{\prime}}{x^{\prime}}\right) x$. Then

$$
\tilde{X} \cap U_{1} \cap U_{2}
$$

we get $x / y=x^{\prime} / y^{\prime}$.

Lecture 28 (March 9, 2009) -

Valuation Rings

Recall if \mathcal{O} is a valuation ring then any finitely generated ideal is principal. Since if $f_{1}-f_{k} \in \mathcal{O}$ then choose i such that $v\left(f_{i}\right)=\min \left(v\left(f_{1}\right), \ldots, v\left(f_{n}\right)\right)$, then $\forall j \neq i$, $v\left(f_{j}\right) \geq v\left(f_{i}\right)$.
(Valuation ring: \mathcal{O} local domain s.t. if $k=$ fraction field of \mathcal{O}, \exists valuation $v: k^{*} \rightarrow \Gamma$ totally ordered subgroup s.t. $v(x y)=v(x)+v(y) \mathrm{w} / v(x+y)>\min (v(x), v(y))$ if $x+y \neq 0$, with $\mathcal{O}=\left\{x \in k^{*} \mid v(x) \geq 0\right\} \cup\{0\}$.)
That implies

$$
v\left(f_{j} / f_{i}\right) \geq 0 \Longrightarrow f_{j} / f_{i} \in \mathcal{O} \Longrightarrow f_{j} \in\left(f_{i}\right) \Longrightarrow\left(f_{1}, \ldots, f_{n}\right)=\left(f_{i}\right) .
$$

Corollary. Let \mathcal{O} be a valuation ring with a fraction field k. Let $P \in \mathbb{P}^{n}(k)$. Then \exists ! point $\tilde{P} \in \mathbb{P}^{n}(\mathcal{O})$ which restrict to P.

Proof. $\quad \exists$ elements $a_{0}, \ldots, a_{n} \in k$ such that $P=\left(a_{0}: \ldots: a_{n}\right) \in \mathbb{P}^{n}(k)$. Then $\exists g \in \mathcal{O}$ such that $\forall i, g a_{i} \in \mathcal{O}$. Hence, we may assume $\forall i, a_{i} \in \mathcal{O}$. By remark above, the ideal $\left(a_{0}, \ldots, a_{n}\right)=\left(a_{i}\right)$ for some i. Thus

$$
P=\left(\frac{a_{0}}{a_{i}}, \ldots, 1, \ldots, \frac{a_{n}}{a_{i}}\right),
$$

(where 1 is in the i th place) for all $a_{i} / a_{j} \in \mathcal{O}$, and this represents an \mathcal{O}-valued point of \mathbb{P}^{n}.
Finally, if $\left(a_{0}, \ldots, a_{n}\right)$ and $\left(b_{0}, \ldots, b_{n}\right)$ are two sequences of elements of \mathcal{O} generate the unit ideal in \mathcal{O} such that viewed as points in $\mathbb{P}^{n}(k)$,

$$
\left(a_{0}: \ldots: a_{n}\right)=\left(b_{0}: \ldots: b_{n}\right)
$$

That implies $\exists c \in k$ such that $b_{j}=c a_{j} \forall j$.
We claim that $c \in \mathcal{O}^{*}$ equivalently $v(i)=0$. Since $\left(a_{0}, \ldots, a_{n}\right)=\left(b_{0}, \ldots, b_{n}\right)=\mathcal{O}$, there exists i such that $v\left(a_{i}\right)=0 \Longrightarrow v(c)=v\left(b_{i}\right) \geq 0$, and $\exists j$ such that $v\left(b_{j}\right)=0 \Longrightarrow$ $0=v(c)+v\left(a_{j}\right) \Longrightarrow v(c) \leq 0$.

Motivation from topology

$f: X \rightarrow Y$ is a map of metric spaces.
We say f is proper if $f^{-1}(k)$ is compact \forall compact k. This implies f is a closed map, i.e., for $Z \subset X$ closed $\Longrightarrow f(Z)$ is closed.

That implies that \forall sequences $a_{n} \in Z$ converging in X, with $\lim _{n \rightarrow \infty} a_{n}=a \in X$, that $a \in Z$.
Suppose that $\left\{b_{n}\right\}$ is a sequence in $f(Z)$ with limit $b \in Y . \exists a_{n} \in Z$ s.t. $f\left(a_{n}\right)=b_{n}$. Further, \exists compact nbhd K of b and so we may assume that $b_{n} \in K \forall n$.
$\Longrightarrow a_{n} \in f^{-1}(K)$ which is compact
$\Longrightarrow a_{n}$ have an accum. point in $f^{-1}(K)$
\Longrightarrow since b_{n} is convergent and f is continuous, $f(c)=b$ so $b \in f(Z)$.
Remark. A topological space is sequentially separated if Cauchy sequences have at most one limit.

If \mathcal{O} is a valuation ring with fraction field k, think of map from $\operatorname{Spec}(k)$ to a scheme X as a sequence, and if map extends to $\operatorname{Spec}(\mathcal{O}) \rightarrow X$ think of the induced map $\operatorname{Spec}(k) \rightarrow X$ as the limit of the sequence.
Result above about \mathbb{P}^{n} says that \mathbb{P}^{n} is "compact".

In topology, a "nice" topological space X is compact if every open cover has a finite subcover. In algebraic geometry: consider for example $\mathbb{A}_{\mathbb{C}}^{1}$. The open sets here are complements of finitely many points ($\mathbb{A}^{1} \backslash S$, with S finite). This implies any open cover has a finite subcover.
For example, the projection $p: \mathbb{A}^{2} \xrightarrow{k} \mathbb{A}^{1}$ given by $k[x] \hookrightarrow k[x, y]$, projection onto x-axis, is not a closed map (closed sets \rightarrow closed sets). For example, the hyperbola $x y=1$ has open image $V(x y-1)=\mathbb{A}^{1} \backslash\{0\}$.
Consider the discrete valuation $\mathcal{O}=k[t]_{(t)} \subset k(t)=K$ and $\operatorname{Spec}(K) \rightarrow \mathbb{A}^{2}$ with $x \mapsto t$ and $y \mapsto t^{-1}$. Then $\operatorname{Spec}\left(k\left[t, t^{-1}\right]\right) \cong C \subset \mathbb{A}^{2}$. The induced map $p \cdot f: \operatorname{Spec}(K) \rightarrow \mathbb{A}_{x}^{1}$ extends to a map $\operatorname{Spec}\left(\mathcal{O}_{K}\right) \rightarrow \mathbb{A}_{x}$ and $\rightarrow \operatorname{Spec}\left(k[x]_{(x)}\right)$. But $f: \operatorname{Spec}(K) \rightarrow \mathbb{A}^{2}$ does not extend since $v\left(f^{*}(y)\right)=-1$.
Recall that a morphism $f: X \rightarrow Y$ is separated if $\Delta: X \rightarrow X \times_{Y} X$ is a closed immersion.

Definitions: (i) $f: X \rightarrow Y$ is of finite type if Y has an affine open cover $Y=$ $\bigcup \operatorname{Spec}\left(A_{i}\right)$, and $\forall i, f^{-1}\left(\operatorname{Spec}\left(A_{i}\right)\right)$ has a finite affine open cover $\bigcup_{j=1}^{n} \operatorname{Spec}\left(B_{i j}\right)$ with $B_{i j}$ an A_{i}-algebra of finite type.
(ii) $f: X \rightarrow Y$ is universally closed if $\forall g: T \rightarrow Y$, the induced map $f_{T}: T \times{ }_{Y} X \rightarrow T$ is closed, i.e., closed sets to closed sets.
Definition. $f: X \rightarrow Y$ is proper if it is separated, of finite type, and universally closed.
Theorem. If Y is Noetherian (i.e., has a finite cover by affine opens $\operatorname{Spec}\left(B_{i}\right)$ with the B_{i} Noetherian), then a morphism $f: X \rightarrow Y$ is proper if for all valuation rings \mathcal{O} and maps $\alpha: \operatorname{Spec}(k) \rightarrow X, \beta: \operatorname{Spec}(\mathcal{O}) \rightarrow Y$ (with k fraction field of \mathcal{O}),

such that $f \alpha=\beta \mid \operatorname{Spec}(k)$. Then $\exists!\gamma: \operatorname{Spec}(\mathcal{O}) \rightarrow X$ making the diagram commute.
Corollary. $\mathbb{P}_{\mathbb{Z}}^{n}$ is proper over $\operatorname{Spec}(\mathbb{Z})$.

Lecture 30 (March 30, 2009) -

Valuative Criterion of Properness
Recall if k is a field, $\mathcal{O} \subset k$ is a valuation ring if equivalently, \exists a valuation $v: k \backslash\{0\} \rightarrow$ Γ a totally ordered group such that $\mathcal{O}=\{x \mid v(x) \geq 0\} \cup\{0\}$, or, \mathcal{O} is maximal among local ring $R \subset K$ with respect to $R<S$ if $\mathfrak{m}_{S} \cap R=\mathfrak{m}_{R}$

Valuative Criterion of Seperatedness

Theorem. If $f: X \rightarrow Y$ with X Noetherian (given the union of a finite $\operatorname{Spec}(A), A$ Noetherian), then f is separated if and only if \forall valuation rings \mathcal{O}, and all commutative squares

\exists at most one map $\tilde{g}: \operatorname{Spec}(\mathcal{O}) \rightarrow X$ (lift in the diagram) making the square commute.
Theorem. Let X be Noetherian. If f is of finite type and Y is Noetherian, then f is proper if and only if \exists exactly one lift \tilde{g}.
Proof. Assume f is proper. Then given

$$
\begin{aligned}
X_{\mathcal{O}} & \rightarrow X \\
f^{\prime} \downarrow & \downarrow f \\
\operatorname{Spec}(\mathcal{O}) & \xrightarrow[g]{Y}
\end{aligned}
$$

let $f^{\prime}: X_{\mathcal{O}} \rightarrow \operatorname{Spec}(\mathcal{O})$ be the pullback of f along g.
Now just consider

$$
\begin{gathered}
\operatorname{Spec}(k) \xrightarrow{j} X_{\mathcal{O}} \\
i \underset{f^{\prime} \downarrow \text { f.t., sep }}{ } \\
\operatorname{Spec}(\mathcal{O}) .
\end{gathered}
$$

We would like to show there is an extension of the section $\operatorname{Spec}(\mathcal{O}) \rightarrow X_{\mathcal{O}}$. Let $U=\operatorname{Spec}(K)$ and let $S=\operatorname{Spec}(\mathcal{O})$. Let V be the Zariski closure of $j(U) \subset X_{\mathcal{O}}$. Since U is $\operatorname{Spec}($ a field), U is irreducible. So really, $U=\{u\}$, and so $j(\{u\}) \in$ affine open set $\operatorname{Spec}(B)$ with $\operatorname{Kernel}(K \leftarrow B)$ closed subscheme defined by prime ideals. Then V is an integral subscheme (all its coordinate rings are integral domains). Hence $f^{\prime}(V) \subset S$ is closed and non-empty since f is proper (in fact, it contains a generic point $\operatorname{Spec}(k)$ of S). So $f^{\prime}(V)=\overline{\operatorname{Spec}(k)} \subset S$ which is just S.

$$
\begin{gathered}
U \hookrightarrow V \subset X_{\mathcal{O}} \\
\searrow \pi \downarrow \text { proper } \\
S .
\end{gathered}
$$

Since $\{s\} \in S$ is a closed point of $S, \pi^{-1}(s)$ is a closed subset of V, a scheme of f.t. over $s=\operatorname{Spec}(k)$ with k fraction field of \mathcal{O}. By the Nullstelensatz, there exist closed points $v \in V$ such that $\pi(v)=s$. (Note: For residue fields, $[k(v): k(s)]<\infty)$.

Essentially, we now want to show π is an isomorphism. $\forall v \in \pi^{-1}(s)$,

$$
\pi^{*}: \mathcal{O}=\mathcal{O}_{S, s} \rightarrow \mathcal{O}_{V, v} \subset k
$$

is a local homomorphism, but they have the same fraction field. Hence, since \mathcal{O} is a valuation ring, $\pi_{S, V}$ is an isomorphism, and since this is true for all points above S, it is easy to check that \exists exactly one point above s (notice $\mathcal{O}_{V, v^{\prime}} \supset \mathcal{O}_{V, v}$). Hence, $V \cong S$ and so we get a map $S \rightarrow X$ lifting g.
Example. Consider the nodal cubic $x=t^{2}-1$ and $y=t\left(t^{2}-1\right)$ so that $y^{2}=x^{2}(x+1)$ and hence we have $f: \mathbb{A}_{t}^{1} \rightarrow \mathbb{A}_{x, y}^{2}$ with $f^{-1}(\{0,0\})=2$ points. Then $\mathcal{O}_{C, P}$ is not a valuation ring.

Amazing stuff (finally, some geometry!!)

Remarks. (1) If X is a curve over a field, then X is non-singular if and only if all the local ring $\mathcal{O}_{X, P}$ for $P \in X$ closed, are valuation rings and they are in fact d.v.r.'s.
(2) $\operatorname{dim}(X)>1, P \in X, X$ finite type over a field k, X irreducible, then if P is a closed point $\mathcal{O}_{X, P}$ is never a valuation ring.
e.g. If we take $(0,0) \in \mathbb{A}_{x, y}^{2}=x$, then

$$
\mathcal{O}_{X, P}=\{f(x, y) \in k(x, y) \mid f=g / h, g, h \in k[x, y], h(0,0) \neq 0\} .
$$

Exercise. This is not a valuation! [Hint: complement of valuation must be consistent with reciprocal of ideal.]

$$
\mathrm{Bl}_{p_{2}}\left(\mathrm{Bl}_{p}(X)\right) \leftarrow \ldots
$$

with $p_{2} \in \mathrm{Bl}_{p}(X) \rightarrow \mathrm{p} \in X$, then $\bigcup \mathcal{O}_{p_{i}}$ is a valuation ring.
Next time: "Zariski-Riemann Space"

Lecture 31 (April 1, 2009) -

Cohomology

Goal: (1) Describe the cohomology of sheaves of abelian groups.
(2) (i) Cohomology $H^{i}(X, \mathcal{F})=0$ for X a scheme of finite type over a Noetheria nring and $i \gg 0$.
(ii) $H^{i}(X, \mathcal{F})=0$ if X is affine and \mathcal{F} is quasi-coherent.
(3) if X is projective over $S=\operatorname{Spec}(A)$ and \mathcal{F} is a coherent sheaf on X then $H^{i}(X ; \mathcal{F})$ is a finitely A-module for all $i \gg 0$.
Cohomology of sheaves of abelian groups
Suppose X is a topological space, and consider the category $A b_{X}=$ sheaves of abelian groups on X. We thus have a functor

$$
\begin{gathered}
\Gamma: \mathrm{Ab}_{X} \rightarrow \mathrm{Ab} \\
\mathcal{F} \mapsto \Gamma(X, \mathcal{F})=\mathcal{F}(X) .
\end{gathered}
$$

This functor is not exact, i.e., if $0 \rightarrow \mathcal{F} \rightarrow \mathcal{G} \rightarrow \mathcal{H} \rightarrow 0$ is an exact sequence of sheaves of abelian groups, then we have

$$
0 \rightarrow \Gamma(X, \mathcal{F}) \rightarrow \Gamma(X, \mathcal{G}) \rightarrow \Gamma(X, \mathcal{H})
$$

is exact, but the last map need not be surjective.
Recall an exercise: $\Gamma(X, \Gamma) \rightarrow \Gamma(X, \mathcal{H})$ is surjective if \mathcal{F} is flasque.
Remark. In general, we have the notion of derived functors.
Idea. Suppose $F: A \rightarrow B$ is a left exact functor between abelian categories. A δ functor is a sequence of functors

$$
F^{i}: A \rightarrow B, i \geq 0, F^{0}=F
$$

and for every exact sequence

$$
0 \rightarrow A_{1} \rightarrow A_{2}>A_{3} \rightarrow 0
$$

in A, maps $\partial^{i}: F^{i}\left(A_{3}\right) \rightarrow F^{i+1}\left(A_{1}\right)$ such that we have a long exact sequence

$$
0 \rightarrow F\left(A_{1}\right) \rightarrow F\left(A_{2}\right) \rightarrow F\left(A_{3}\right) \xrightarrow{\partial^{0}} F^{1}\left(A_{1}\right) \rightarrow F^{1}\left(A_{2}\right) \rightarrow F^{1}\left(A_{3}\right) \xrightarrow{\partial^{1}} F^{2}\left(A_{1}\right) \rightarrow \ldots
$$

and the ∂ 's are "natural" with respect to the maps of exact sequences.
Derived functors $\left(R^{i} F, \partial^{i}\right), i \gg 0$, are (if they exist) the universal ∂-functor extending F, i.e., for any ∂-functor \exists a unique transformation of ∂-functors

$$
\left(R^{i} F, \partial^{i}\right) \rightarrow\left(F^{i}, \partial\right)
$$

Injective objects

If A is an abelian category, then an object $I \in A$ is injective if \forall diagrams

with i a monomorphism, there exists an \tilde{f} making the diagram commute.
Lemma. I is injective iff every exact sequence

$$
0 \rightarrow I \xrightarrow{i} A \xrightarrow{\varepsilon} B \rightarrow 0
$$

splits, i.e., $\exists s: A \rightarrow I$ such that $s \cdot i=\operatorname{Id}_{A}$ so $A \cong I \oplus B$.
Corollary. If $F: A \rightarrow B$ is a left exact additive functor and i is an injective object in A, and

$$
0 \rightarrow I \rightarrow A_{2} \rightarrow A_{3} \rightarrow 0
$$

is exact in A, then

$$
0 \rightarrow F(I) \rightarrow F\left(A_{2}\right) \rightarrow F\left(A_{3}\right) \rightarrow 0
$$

is exact.
Proof. Follows from lemma and fact additive functors preserve direct sums. (exercise) \square
Suppose that A has "enough" injectives. i.e., \forall objects $A \in A, \exists I$ and a monomorphism $A \hookrightarrow I$. If so, every object has an injective resolution:

$$
0 \rightarrow A \rightarrow I^{0} \rightarrow I^{1} \rightarrow \ldots
$$

i.e., an exact sequence with I^{j} injective for $j \gg 0$.

Lemma. Given two injective resolutions $A \xrightarrow{\varepsilon} I^{0}$ and $A \xrightarrow{\varepsilon^{1}} J^{0}, \exists$ a map of cochain cxs

$$
\varphi^{0}: I^{0} \rightarrow J^{0}
$$

such that $\varphi \circ \varepsilon=\varepsilon^{\prime}$, that is, $A \rightarrow I^{0} \rightarrow J^{1} \rightarrow \ldots$ and $A \hookrightarrow J^{0} \rightarrow J^{1} \rightarrow \ldots$ with φ^{0}, φ^{1} between the I and J 's, and $A \rightarrow I^{0}$ and $A \rightarrow J^{0}$.
If $\varphi, \varphi^{\prime}: I^{0} \rightarrow J^{0}$ are 2 such maps, then they are chain homotopic.

Corollary. If J^{0} is also an injective resolution of A, then $\exists \psi: J^{0} \rightarrow I^{0}$ extending the identity on A, and $\psi \circ \varphi$ is chain homotopic to the identity of I, and $\varphi \circ \psi \sim \operatorname{Id}_{J}$.

Suppose $F: A \rightarrow B$ is a left exact functor. Pick an injective resolution of $A \in \mathbb{Q}$, $A \rightarrow I^{0}$, and consider the complex $F\left(I^{0}\right)$ in B. Observe up to chain homotopy equivalence, this does not depend on I^{1}, and any two chains of φ or ψ induces chain homotopic maps $F(I) \rightarrow F(J)$ and $F(J) \rightarrow F(I)$. Hence, we get canonical isomorphisms $H^{i}(F(I)) \rightarrow H^{i}(F(J))$ for $i \gg 0$, and so we can define

$$
R^{i} F(A):=H^{i}(F(I))
$$

for any choice of injective resolution I of A.

Lecture 33 (April 6, 2009) -

Definition. $H^{i}(X, \mathcal{F})=H^{i}\left(\Gamma\left(X, \mathcal{I}^{*}\right)\right)$.
(By previous discussion, this is (up to canonical iso) indep of choice of \mathcal{I}^{*}.
$f_{*}: \mathcal{O}_{X}$-modules $\rightarrow \mathcal{O}_{Y}$-modules.
This is left exact, since

$$
f_{*} \mathcal{F}(U)=\mathcal{F}\left(f^{-1}(u)\right),
$$

and in general not exact, e.g., if $Y=\mathrm{pt}$, then f_{*} is just $\Gamma(X, \ldots)$.
We can define $R^{i} f_{*}: \mathcal{O}_{X}$-modules $\rightarrow \mathcal{O}_{Y}$-modules given by $\mathcal{F} \mapsto H^{i}\left(f_{*}\left(\mathcal{I}^{*}\right)\right)$ (a complex of sheaves of \mathcal{O}_{Y}-modules).
Remark. The object one should "really" consider is the whole complex $f_{*}\left(\mathcal{I}^{*}\right)$. This is well-defined up to chain-homotopy equivalence, and hence up to quasi-isomorphism. This is the map of complexes which induces an isomorphism on cohomology.

Derived Category

$D^{\square}\left(X, \mathcal{O}_{X}\right)$. Start with the category of cochain complexes of \mathcal{O}_{X}-modules, where \square can be either "bounded", "bounded below" ($\mathcal{F}^{i} \neq 0$ only for finitely many i, and $H^{i}\left(\mathcal{F}^{i}\right)=0$ for $i \ll 0$, respectively), and "qc sheaves $\left(X, \mathcal{O}_{x}\right)$. Then, invert all the quasiisomorphisms (and you get $D^{\square}\left(X, \mathcal{O}_{X}\right)$). (That implies if $\mathcal{F} \rightarrow \mathcal{I}^{*}$ is a resolution, then \mathcal{F} and \mathcal{I}^{*} iso. in $D(X)$).

$$
R f_{*}: D(X) \rightarrow D(X)
$$

with $\mathcal{F}^{*} \cong \mathcal{I}^{*} \Longrightarrow R f_{*}(\mathcal{F})=f_{*}\left(\mathcal{I}^{*}\right)$.
Warning. A priori, $R^{i} f_{*}$ may depend on what category of modules you are working with.
If $A \rightarrow R$ is a ring hom with I an injective R-module, then what is injective over [diagram]. - May depend on choice of \mathcal{O}_{X} and on particular category of modules.
Lemma. Any injective sheaf \mathcal{I} of \mathcal{O}_{X}-modules is flasque.
Proof. If $U \subset X$ is open, consider $j: U \hookrightarrow X$, and let $j_{!} \mathcal{O}_{U}$ be the extension by zero of \mathcal{O}_{U}, i.e., if $V \subseteq U$, then $j_{!} \mathcal{O}_{U}(v)=\mathcal{O}_{U}(v)=\mathcal{O}_{X}(v)$ and if $V \nsubseteq U$, then $j_{!} \mathcal{O}_{U}(v)=0$.
Exercise. $\operatorname{Hom}_{\mathcal{O}_{X}}\left(j_{!} \mathcal{O}_{U}, \mathcal{F}\right)=\mathcal{F}(U)$.
The natural map $j_{!} \mathcal{O}_{U} \rightarrow \mathcal{O}_{X}$ is injective. Hence, since \mathcal{I} is injective,

$$
\operatorname{Hom}\left(\mathcal{O}_{X}, \mathcal{I}\right) \rightarrow \operatorname{Hom}\left(j_{!} \mathcal{O}_{U}, \mathcal{I}\right)
$$

is surjective.
Proposition. If \mathcal{F} is a flasque sheaf of \mathcal{O}_{X}-modules on X, then $H^{i}(X, \mathcal{F})=0$ for $i>0$.
Proof. Choose $0 \rightarrow \mathcal{F} \rightarrow \mathcal{I} \rightarrow \mathcal{G} \rightarrow 0$ with \mathcal{I} injective. Recall if \mathcal{F} is flasque, then $\mathcal{I}(X)$ surjects into $\mathcal{G}(X)$. Since \mathcal{I} is injective, $H^{i}(X, \mathcal{I})=0$ for $i>0$ (it is its own injective resolution).

Now look at the long exact sequence:
$0 \rightarrow \mathcal{F}(X) \rightarrow \mathcal{I}(X) \rightarrow \mathcal{G}(X) \rightarrow H^{1}(X, \mathcal{F}) \rightarrow H^{1}(X, \mathcal{I}) \rightarrow H^{1}(X, \mathcal{G}) \xrightarrow{\partial} H^{2}(X, \mathcal{F}) .$.
Hence, $H^{1}(X, \mathcal{F})=0$ for $i>1$. But \mathcal{G} is flasque. Then

$$
\begin{aligned}
\mathcal{F}(X) \rightarrow \mathcal{I}(X) & \rightarrow \mathcal{F}(X) \\
\downarrow & \downarrow \\
\mathcal{F}(U) & \rightarrow \mathcal{G}(U)
\end{aligned}
$$

where the bottom row is a surjection. Hence by induction, $H^{i}(X, \mathcal{F})=0$ for $i>0$. i.e., flasque sheaves acylic as indeed \mathcal{F} flasque implies $R^{i} f_{*} \mathcal{F}=0$ for $i>0$.
Exercise. $R^{i} f_{*}(U)=H^{i}\left(f^{-1}(U), \mathcal{F}\right)$.
Exercise. $R^{i} f_{*}=$ sheaf assoc to presheaf $U \mapsto H^{i}\left(f^{-1}(U), \mathcal{F}\right)$.
Proposition. Suppose \mathcal{F} is a sheaf of \mathcal{O}_{X}-modules, and $\mathcal{F} \xrightarrow{\varepsilon} \mathcal{A}^{*}$ is a resolution of \mathcal{F} by acyclic sheaves. Then $H^{i}(X, \mathcal{F}) \cong H^{i}\left(\Gamma\left(X, \mathcal{A}^{*}\right)\right)$.
Proof. Look at

$$
0 \rightarrow \mathcal{F} \rightarrow \mathcal{A}^{0} \rightarrow \mathcal{G}^{0} \rightarrow 0
$$

Then

$$
H^{0}(X, \mathcal{F}) \rightarrow H^{0}\left(X, \mathcal{A}^{0}\right) \rightarrow H^{0}\left(X, \mathcal{G}^{0}\right) \xrightarrow{\partial} H^{1}(X, \mathcal{F}) \rightarrow H^{1}\left(X, \mathcal{A}^{0}\right)=0 \rightarrow \ldots
$$

And in general $H^{i}\left(X, A^{0}\right)=0$ for $i \geq 1$,
(1) $H^{1}(X, \mathcal{F})=\operatorname{Coker}\left(H^{i}\left(X, A^{0}\right) \rightarrow H^{0}\left(X, \mathcal{G}^{0}\right)\right)(\star)$
$H^{i+1}(X, \mathcal{F}) \cong H^{i}\left(X, \mathcal{G}^{i}\right)(\star \star)$
Look at resolution

$$
0 \rightarrow F \rightarrow \mathcal{A}^{0} \rightarrow \mathcal{A}^{1} \rightarrow \mathcal{A}^{2} \rightarrow \ldots
$$

So

$$
0 \rightarrow \mathcal{G}^{0} \rightarrow A^{1} \rightarrow A^{2} \rightarrow \ldots
$$

is a resolution. Left exactness of H^{0} implies

$$
\star=H^{i}\left(\Gamma\left(X, A^{*}\right)\right),
$$

and $\star \star$ and \star imply by induction that

$$
\mathbf{H}^{i}(X, \mathcal{F})=H^{1}\left(X, \mathcal{G}^{i-1}\right)=H^{i}\left(\Gamma\left(X, A^{*}\right)\right)
$$

Hence, we can use any acyclic resolution to compute cohomology.

