Robert Krzyzanowski Introduction to Togyldl Notes

Lecture 3 (January 16, 2009) - Sheaves and Maps Sfieaves
Maps of sheaves

Recall from last time that if we start withh  a ¢dpgical space anfl'  a presheaf,
we can defindF| , the etale space. Furthermore,osectf|F'| > X form a sheaf™
For all open set&/ C X f € F(U) induces a continuous fap- |F| tlzemtce we
have a map

FU) — F*U)

T T
F(V) — F*V)

with U c V. Exercise. Check that this commutes (by using therdt€in of F*).

So we have a map &f — F# presheaves, wiigte is a sheaf.

Lemma. If Fis a sheaf and® , a sheaf of sectiongFf caisonically isomorphic to
F itself.

Proof. We need a definition: it € X anfl is a (pre)-sheadr X , thestalk F,, ofF’
at x isUIiBmF(U), ie.]J]] F(U)/~ , where ifcteUCV andf € F(V) , then
x U

T <
f~ flv € F(U),ie., thisist—!(z) forr:|F| — X ,s¢f ~g ifthereisanc W C
unv

Theorem. If G is any sheaf of sets anpd: ' — G is a map of preshe&va map of
presheaves, it factors uniquely through
Ffa
N\F* /%
Proof. First, let's show that induces a continuoup rﬁaﬁ |G|. For everyy , we
haveypy : F(U) — G(U) . Hence,
lou|: ou xidy : F(U)xU — G(U) x U.

Here we have to check that these maps are compatiltth the equivalence relations
defining|F'| ,|G| . But this follows from¥" — G being a mappresheaved]

Lecture 4 (January 21, 2009) - Sheaves and Schemes
Recall from last time that giving a shdaf is eqlént to giving F'| , an etale space.
We havell — X withF| 5 X an@ L |F'| (inherg| &  sectionsrof dver )

Maps of presheaves

This simply states for a mdbg G ,thetiCcV
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Fan % cw)
T T
F(V) qb—v> G(V).
If F and G are presheaves of abelian groups, thefwkerlV — ker¢y, cokefo) :
U — cokergy , and Infy) : U —  Infpy) .
Recall that keip) is by definition the pullback dfdr products:
ker¢p — 0
| |
A% B
Similarly (with | replaced withT ( and ker switchemhd ker¢ replaced with
coker¢ ), we can characterize the cokernel if We ta— @, cokerp — @ and ﬂ Q .

Furthermore, (1) im — B is injective, i.e., kee 0 . (R)p factors through any
other subobject/ oB ,thenimCJ .#:F — G is a map ofalres, what are
ker ¢, coker¢ , and i in the category of sheave€M,W1) presheaf kernel af is
already a sheaf and hence is the sheaf kernel,isaonjective as a map of presheaves if
and only if it is injective as a map of sheavBat he presheaf cokernel need not be a
sheaf. Rather, the sheaf cokernel is the shedfditaf presheaf cokernel.

Sheaf cokernel ob =0 < ¢ is an epimorphism in the aate@f sheavess
|¢| : |[F| — |G| is surjective< Vx € X, ¢, : F, — G, s surjective.
Example. Let X = C\{0} and letO = sheaf of holomorphic functions &n and

O* = sheaf of non-vanishing functions oX . Tal(éeip(’)* , with C C*,

feOU)w— exp(f). This is surjective, i.e¥x € C* and for all operighborhoods
xeUCC* andg e O(U) . Furtherd nbhd¥ of withe V CcU ande OU)
such thatexff) =g . Ifwetaké =C* amd=:z ,theAf @nh sS.t(xp=z In .

other words@(C*) — O*(C*) s® — O* has non-zero cokernel as a mppesheavs.
This is the starting point for sheaf cohomology.

Example. The fundamental group, (C*) =~ H,(C*,Z) =~ Z , since we just take paths
around the punctured disk (on the Argand diagram).

Definition. We can have an exact sequence of sheaves on
0-FLGEH—-0

i.e., i is injective and is the kernel efe, is satjve & is the cokernel of (all in the
category of sheaves). But for a givienC X open,

0—-FU)—GU)—HU)—-"HYU,F)" — ..
where the last— need not be surjective.

Schemes
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A scheme is going to be a topological space  eqappith a sheaf of ring® x
such that stalk®x, ateachc X are local rings ("lgaatiged space").

Example. If M is aC* -manifold and/ C M , lef>*(U) be>~ functions BnThen
if ze M, C* =germs of C>* functions o/ . If we look at the nmaal ideal
m, C O, thenm,/m?2 is related to the tangent space.

Affine schemes

If Ris a commutative ring (always with ), then ()" = set of prime ideals in
R, with the following topology: closed sets dréa) twitC R an ideal and’ (a) =
{b|bprimeands C b} . Iff € R ,theW (f) ={b|f b} f* vanishestat ."

Lemma. (1)a ando are ideals witi(ab) = V(a) UV (b)

(2 V(X a)=NV(a).

3) V(a) c V(b) & +/a D /b with the radical defined
Ve={f€eR|3IneNf"€a}.

(4) 0,X are closed with = V(R) an¥l =V ({0})

Exercise. Showthat/a=(] b .

b prime
aChbh
Lecture 5 (January 23, 2009) - SpddR)
Let R be a commutative ring. We wrifé =  SpRA¢ to begéeof prime ideals

p C R. Then we have the Zariski topology. A $&tC X is operans iU = X\V(a)
with a C R an ideal, then in particular fgre R X; = X\V((f)) ={p|f ¢ p} (where

f ¢ pis equivalent to sayinf -~ 0 iR/p ).
Recall localization: it C R is a multiplicative séhen
ST'R={t|reR,seS}/t~Lif3te Ssttsr=tsr.

If f € R, then+ € Ry = {f" |n € N}"'R . Recall that
{primes ofS~1 R} =1 { primes of? disjoint frorfi }

If SCR— S 'RandA* C A withR i A aring homomorphisnf(s) C A* ), then it

factors uniquely through localizatiof; ' R L A .S,  istewmorphic to Spééiy)
If ac S™'R is an ideal with V(a)={p|p D a} l;l{ primes of 'R /a}  with
R — {primes ofS™'R/a} and primes & 'R/a} — S™1R/p

i.e., Primes inR containing k@& — S~'R/a)  correspond withn@s in SR
containinga .
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ForU C X a general open séf,= X\ V(a) V(a)= V((f)) with=> (f) so

f€a fea
thenU =) X;. Here, we think ofX; ={p|f ¢p} - points whee "does not
f€un
vanish". Furthermore X; N X, =Xy, . Hencglg¢p< f¢p anmdtyp . In other

words, theX; form a basis of the topology&n . Tehed;, we have the ring; , and
if X;> X, We have a ring homomorphism : Ry — R, . Why? Certainlgvé
R — Ry, so need that under this m@p maps to a unit,inf this is not the case, there
is a maximal idealm C R, . Sincg/1 € m  that then impligss ¢~ '(m) wloul
contradictX, C X; .

Now we have a presheaf defined on e

(1) X — Ry

(2) Xy O X,, have the restrictios; — = € G
We want to define "functions" on any open8ett X gheltr; &r; have the same
image inRy,, Ry, .

Definition. Ox is the sheaf of sections of the étale spacecedsd toX; — Ry , i.e.,
sections of [[ Xy x R;/~ , where~ is the equivalence relationegeted by

feR
(x7> ~ (yg) If (1) z€X;yeX, @ e=y, X;CX,, @)%~ under
R, — Ry. Ifp e X, ie.aprimeidealDy, ,thestalkofy it difined as
Ox, = lim R; (a direct limit)
pEXf
with respect to inclusionsX; C X, , i.ef € Ry, have some imagin limit

Sdpe X, C XyNXy, =Xypy, St
direct limit above just becomes

% & }—j have same image in Rng. So then the

Lemma. The mapR — [[ R, is injective.
P

Proof. KefR — S'R)={reR|3IseS,rs=0}={re R|SNANN(r)#£0} =
ideal{b € R|ba =0} .Ifa € R,a # 0, therdm a maximal ideal such that Aanc m
(where Anfa) N (R\m) =0 )=a 4+ 0 inR,, .

And, since iff € R, p 2 f .R, = (Ry); (wher@ is corresponding primdip). We get
R; — [I R, is injective.[d

fép
Lemma. If X;C X is one of our basic opens, the m&ph — Ox(X;) is an
isomorphism.

Proof (in a simple case) We want to shé= Ox(X) >«  (whereX — |F| )sThi
implies3open covefX;} ok ang € R, induge and this coaerbe taken to be
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finite and we havélg; suchthaf g;f; =1 . Without loss afegality, (1) = a;/fi ,

1=1
(2) aq anday have the same imageip ;,

(Justification: ConsideX = Spd@ , which is quasi-cantpNotice Spe® = |JU; =
X\ V() NV() =0 >a=R < 3Ja; €a; > o; =1 and this is a finite sum
= 3 finite subset of a;} s.tX = U U, .)

7

Now, seta = Zgiai €ER. Thenfja = Zgiaifj = Zgifiaj = (l)aj . This implies

$= Tj € Ry,.i.e., then; determine a uniques R aRd= Ox(X)

Lecture 6 (January 26, 2009) - Locally Ring Topolagal
Spaces, and Schemes

Answering homework questions

Spe¢R) = ( SpelR)*™**] Ospe¢r) [sheatofringg] - TheW; = SHgc'R) ~» f'R . Then
Basic OpensCc All opens

by takingX; — 'R .

SpecR

Let R — Spe¢R) be a locally ringed topological space, ©g,e¢r) is a sheaf of rings
such that all stalks are local rings (a stal3at Rg ).

If (X,0x) and (Y,0Oy) are locally ringed topological spaces,nth@ morphism
v : (X,0x) — (Y, Oy) of locally ringed topological spaces consists of

(1) acontinuousmap: X — Y
(2) a homomorphism of sheaves of rigds: Oy — ¢, Ox

If Fis a (pre)sheaf oX , withh,F : U — F(g ' (U)) U(CY Ekercise. F isa
sheaf then soig,F .) S¢ isequivalenttb:C Y, ahimgomorphism

¥l - Oy(U) — Ox(p~'(U)).
compatible with restriction maps. Forale X |, tmgliuces maps

90# : OY,go(.?:) - OX,:I;

S.t. (QD#) _1(‘019,;) = My(y) -
Thenz € o1 (U) ifand only ifp(z) € U .
Oy (U) — Ox(¢ 1 (U)) — Ox.-

[Oy ) ZUQ%)OY(U)]

[For local rings(R, m), (S,n) alocal homomorphisgin betweemrthg one such that
¢ (n) =m]
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Theorem. To give a ring homomorphisii: A — B is equivalent to gj\anmorphism
of locally ringed spaces,

Spe¢B) — Sped) .

Proof. Givenf: A — B,wegetSpéef): X = Spgét) —Y =  Spéc  such that if
p C Bis prime, then Spé¢)(p) = f~'(p) = ket — B/p)

[Exercise. The inverse image of an open set is open [soitif closed set is closed].
Hence, you can do this for just the basis of thpwlmgy, i.e., one of thes¥; 's. Then if

g € A, we have Spég¢) ' (Y,) ] .
Recall the relationship betweép  and primes!
Xy 19 tA— fl9)7'B.
Forp € B prime, the induced local homomorphigm. ) — B,
On the other hand, given: X = Spé — Y =  Spéc , we getarimg ho
¢* 1 A=0y(Y) - Ox(g'(Y)) = Ox(X) = B.

These two functions are mutually inverse (we claistqrt withf : A — B . Then since
Pspeca)(SpecA)) = A, the induced map Sper : A — B is equalfto . Given
¢ : Spe€B) — Specd) , we get a ring homomorphispf: A — B and claim
Spedy”) =g . Supposee Spe?) .ThefB) e  Spec

#
Oy(Y) = A 25 B=0x(X)
! !
2

Oy pp = Ap) — By = Oxp,
where the subscripts of the rings (bottom row) mkealization. Sincepjf is a local
homomorphismy, ' (p B,) = (aAdy) = p=a O
This gives us an equivalence
{Rings} «— { Affine schemés®
R «— Spe¢R) .

Definition. A scheme is a locally ringed topological spéée Ox) hsiatX has an
open coverX = |J, U, such thateatti,, Ox|y,) is an affine scheme.

Examples. [of affine schemes] (1) Consider Spéc . This & jurime ideals (i.e(p)
for p a prime number). Fon € Z V((n)) ={ primeideals: € p} . Themif 0,
then this is a finite set of prime divisorsiof nlE= 0, then it's just everything. The point
(0) is not closed, rathef(0)} = Sp& s a "generic poirt’,(a single point in this
topological space whose Zariski closure is the wisplace).

Lecture 6 (January 26, 2009) - More Schemes

Schemes
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Recall these areX, Ox) locally ringed spaces with amapverX = | J, U; =
Spe¢R;) = D Spey 'R;) ,with eadlt/, Ox|U;) by affine schemes.

Definition. Morphisms between schemes. A morphfisniX, Ox) — (Y, Oy) with
(X,0x) > fYU) andU = Spe¢R) C (Y,0Oy) ,and

f71(U) — U = Spe¢R)
T /
Vi
with f~1(U) = U, V; = Specs;) .We thus get a map of locally ringed spaces
Vj = Spe¢S;) — Spedk) =U .

Hence, we have ring homomorphisin— S; . Ther: |J Spe¢S;) =V; Jand
U U =U SpecR;) s.tvj, f(V;) C U; for some, S; — R; . We want maps that
coincide onV;, NV}, = YW, = SpecA4;) , i.e.

Ri — 5j — Wy
commutesr(=1,2 ).

Examples. (1) If f: X — Spe€A) , wherel is some ring (e.g., a fielthen for all
affine opens{/ € X,U = Spé®), we have a ring homomorphf$mA — R ifand
U, C Us, then SpeR;) C SpéR,;) — Spde) ,Bp«— Ry, — A . This is equivalent
to saying thatOx is a sheaf of -algebras (il C X npopge have a ring
homomorphismd — Ox(U) compatible with restriction.

(2) Havef:T = Specd) — X =|J. Spes)=UU; .Then'(U)cC Spep s
open Withf_l(U> = Usome collection of € A Tf , SO we havﬁ_lA — 5

If kis a field, for simplicity lett algebraicalljased, therA}w = Spekt])

(a) Considef(t —a)|a € k} .Eadht —a) is closed. Furti{¢®,)} is\gherg.
Finally, proper closed subsets &éx) , witi 0 . Hehizeis just

V((a)) =V((f)) = {(p) | pi is irreducible factor of }
= finite set of pointst — a; if; 's are zeroes fof
If X — Spedk) is a scheme ovér , thén 9, X, with ﬂ S aXigi% S (on a
categoryC ovelS ), thefry, f1) — (x2, fo) with: X; — Xy, suchthfag= f; . Then
for everyk -algebr& , look at maps of schemes év@pe¢R) — X . We writeX(R)
for this set, and we call this th&" -valued poinitsX (overk )."

R-valued points v.s. points of the scheme

Let Aj(R) for R ak -algebra be such that homomorphismis-alyebrask[t] — R .
Note thatA] (R) = Hom ofc -algebra&(t] — R fé f(t) S R . Sohf=Fk itself,
Al (k) =2 k.

If k& is not algebraically closed, eg=R =T, ,thém®A. =~ generic point
U set of monic irreducible polynomials rjt]
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While (1)A} (k) =k (corresponds to linear pols—a|a € k} ). @K /kis a
finite extension, them\} (k) = k witly : k[t] — k) — ¢(t) . K /k s finite, then
ker(¢) = (p(t)), with p an irreducible monic polynomial. Furthéft]/p(t) is a field
(and in factk C k[t]/p(t) ). Ifp : Sped) — X, k a field, then to get a @mmdus map

we needx, k) — x € X ,and it € Spéd) C X ,then we nebd- k with Jker a
prime ideal inA equal ta: . (So we have mapg:) — paifitX). In the general
situation, X (k) — XP ( as a top space) witlh: Spee z) —x € X K £ k(z) ).
ThenX (k) < (z € X, k(z) — k) . For the affine line,

K = Al(k) — set of monic irreducibles ih[t]
andA! (k) — (K «— k[t]/p(t)) = k((p)) -
What if[K : k] > 1? e.g.irfk =R an& =C ,
A}, = SpedR[t] = {0} U {(t — a) |a € R} U { monic irred quadrafic .
ThenAL(R) < {(t —a)|a € R} andC < AL(C) = C -valued points ¢, . Further,
t—a (@=({t-a)t-a), Cc=K((q).

Grothendieck's EGA: Want to study solutions of polynomial equationsroa field or
rng k:

filtt, osta) = 0

Funltry o tn) = 0.
Consider the functor
k-algebras— Sets.
R — set ofn -tuplegry, ...,r,) € R"
satisfying the equations
=klty, ...y t]/(f1y ooy f) = R

which is equivalent to giving a homomorphismkof geddras. But that is equivalent to
giving Spe¢ ) «— SpeR)

Lecture 8 (January 30, 2009) -

Given a schemeX an® a ring, we haVéR) = R  -valued padfitX =
morphisms Spé&?) — X .e.g.,. X =A) = Spédt,....t,]) akdR) =

ThenX = Sped) and’(R)= ring hom — R

X(R) = Ring Homs Zlty,...,t,] = R = R"(¢ — (p(t1),...,¢(t,))). Recognize
thatR — X (R) is a functor from rings to sets.

If f: R — Sisaring homomorphism, this induces a map
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X(R) — X(S)
(#: Speck — X) — (po Spe(f)) -

Question. Given a functor from rings to sets (okif ifedd, k-algebras— sets), we
can ask if there is a schet¥e  8itR) = X(R) .Wegay" piesented by ."

For example, we could také: R — R*  (the group of unltsfact, this is
represented by the affine scheme:

A homomorphisn¥[z,y]/(zy = 1) — R is the same as giving elements
r=¢(z),s =p(y) s.trs = p(zy) =1 (i.e. giving a unit € R* ).
Thatis,Z[z, 1] , of{a" |n € N} 'Z[a] .

We have shown thak — R* is represented by Spect']) , derdbte We
have a group operation,: R* x R* — R*, 1z ¢ R* , and some axioms, like,
Vr,s,t € R*, u(r, pu(s,t)) = p(p(r,s),t).

How can we get such an operatjon XIfY’ are twin@fchemes, "Spgd) " and
"SpecB) ", thenX(R) x Y(R) = pairs of homomorphisit$ — R, B — R) , which is
the same as giving a homomorphisth® B — R) . Sfec Spec /SpeB
For example,

A x A7) =~ A7 because
SpedZlty, ..., tn]) X Spe@Zlui, ..., un]]) = SpeL[t;]| ® Z[u;]) =  Sp&t;, ui))
Exercise. Verify the previous statement.

Example. The functot? — R* x R* is represented by S@ég,t '] ® Z[u,u™'])
The mapu : R* x R* — R* is a natural transformatiode(ify this! )
Spedzt,u, ¢!, u ) © =" Sper,x 1))

| (byt —r,ur—swlir,se R*)
R

With Spe¢Z[z,z7!]) — R £+ rs ). Hence, we have
Zit,u, t7 L ul — Z[w, 27
p:Gox G — G

m m)

with 1 : Spe — G,, witht — 1 . We can also give an associative law

1 X p
G,, x G,, x G,, — G,, x G,,

L pxl L p

Gm X Gm 7 Gm .

In general, @roup scheme is a scherae , together with maps
w:GxG—G,1:5peZ — G
such that the associative law, identity, inversad Kwith identity given by

SpeZ x G . G x G L @)
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Exercise. What is the correct diagram to express the@xce of inverses?

It is denotedG,, for multiplicativity. You can alscave G, as an additive group
(R — R) (indeed, we can giv&, = Sp&lz]) by G, xG,— G,  through-
r®1+1® x).

An elliptic curve is an example of a group scheme!

Example. If E/C is an elliptic curve, then the addition lam E corresponds té&
being a group scheme ov@r E: x £ — C

Example. If R is aring, a finitely generated projectiv@dule P overR is one a direct
summand of a free modulé@ SR Q Iis free). Fixrdrgern > 2 . IfR is a local
ring, then any finitely generated projective modisidree (P is projective ifi/p prime
ideals in R ,the localization?, is free). Then thatpims there exists a function
Spe¢R) — N which takes — Ra(R,) (Exercise. Figure out why this iatesl to
Cartier divisors (Henri claims it is)). Now, (with > 2) we can look at the set of
projective rankl quotients d&" :R" — P =@ P( proj of rahk with R" — @ as
well (where the bold arrows—  represent surjection).

Fact. If f: R — S is a ring homomorphism, thefR” — P) — (S" — S ® p P)
gives a functor from rings to sets. This is repnéseé by: P2~ . (next time, we will see
two different ways of constructing projective spaaed we will see why the previous is
true)

Lecture 9 (February 2, 2009) -

How do we express the inverse property of groupls avidiagram? We have the fiber
product

P — Speck)
| le

Gx@G 7 G .
Then takeP > G withd x ¢ 5 P , and the condition is that issbmorphism.
Projective modules & projective spaces

If R is a commutative ring with unity, aR -moduleis projective if and only if
there is anR -modul® suchthRAts @ s free.

Lemma. Supposer is a local ring with maximal ideal , resdieldk, andP is a
finitely generated projectivR -module. Then igfre

Proof. SinceP is finitely generated, this implies thadre is a surjective map” L P,
andR" = P & Q withQ = kefy) .

10
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RTLE)P
e\
P.
If we letT =10 ¢ : R* — R" so infr) = «(P) , then (notice®? = )
F'=k®prR"=(k®prP)®(k ® Q).

Calk@rP=pandk ® p Q@ =7 . Thep ang arefk. vector spacesnoénsion
m andn (respectively).

SinceR — k is surjective an®®@ is projective, is flsee commutative algebra).
That is,P — > k® P . Choose bases,...,a,, Bf®k and,(,....,a, CQOREK ,
and elements;, ...,a,, € P,a,,.1,...,0, € Q mapping to these basis elementseHenc
we have a map

RTL é) R?L

e, —
A(R™) C P, A(R"™™) C Q.
The matrixX ofA inM,(R) hasimage i, (k) ,the matrix of thap
' = k"= (k@ P)® (k®Q)
€ — Q,

which is an isomorphism. Hence, the image Xof My(k) is invertible if and only if
det(X) € k* & detX) ¢ m < detX) € R* < X € GL,(R) . Hence, this matrix being
invertible impliesA is an isomorphism. Hené&} — P ndsomorphism.

If we look at the proof, suppose th&t is no lanigeal. ThenP is still finitely
generated projective as @ -module, are Spec isTe pdeal. By the lemma,
P,=R,®rP = (R\ p) 'p is free. Thus, there exist elements, ..., a,, € P, which
form a basis. Thatisy;, = a;/f; withf € R\ p .We geta map

28 (fl---fm>_1Rn - (fl---fm)_lpn
€; Q.
We know that if we localize at |, this is an isontogm.

(Exercise. If Ais a Noetherian commutative ring, apd M — N iscemomorphism
of R-modules, and there exigt&  Spé¢  such¢hatM, — N, iscamorphism,

thendg ¢ p such thaMH — N H is an isomorphisnyofA  -modules.)

Hence, induces an isomorphism frdgr!)R" — (g7 ') P for some p . Naw
finitely generated projectivéé -modufe s "locaftee” if X = |J X, = Spe¢f, )R
such thatf, 1P is free (whet® is Spgg D).

Question. Fixn > 1. Consider the functor

11
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P, : Rings— Sets
R — Rank1l projective quotientsaf™+!

i.e., equivalence classes of surjective maps' — P Wiprojective, P, free of rank
1 forallp € Spe¢R) (sothak""! — P and"" — P’ are equivalent if anly if
they have the same kernel).

Example. Letk be a field, and have”(k) : k"' — L  with a one-dimenaio
vector space. For each basis elemtestl L =~ k thraughkt vesgis a matrix for
¢ :a=|ap,...,a,]. Sincep is surjective, not all the are zero. fiedent choice of :

¢t = X\ (¢ € k*) w/ matriceSa, ...,a,] with respect to " times Hfs d local
ring, P"(R) =n+ 1 tuplesa = [ay,...,a,] such that not all € m  which is "at least
one is a unit" modulo bR*

If Ais a general commutative rin§j, need not eeffiHoweverX = Spédl) = |
X, =Spec¢g;'A) =g 'L ,and;! isfree.Sothe mgpR""' — L s represented by
a vectora = [ag, ...,a,] unique to a unit gy'R . We can also asstinaeat least one of
thea, is a unit.

Next time, we will show there is a scheifg (ndina) which "representsP” ,
i.e., there is a map Spet) — P,  with Spé¢ — giving a rankojeptive quotient of
An-i—l_

Lecture 11 (February 6, 2009) -
Examples. (2) In particular, ift is a field,
[T.(k) = (K" \ {0}), k* = UL, A"(k) = {(ao, ..., ai-1, 1, Qjz1, ...y an) | a; € kY.
@) Py = (A7 \{0}) / G
@) Py =) A%/ ~ (where we will specify the equivalence class. )
RecallG,, ; = Speck|[t, t7']) . This is an affine group scher@g, .(R) = R*

Review. Group actions. Classically, fa¥ a group aAd ef & group action is
p:GxX— X, (g,x) — gxrstglhzx) = (gh)x Vg, h antt -z = zVz .

For G a group object in a categd@ty , an actiorrofn ao objecX is a map
1G X p
p:Gx X — X suchthat (17 x G x X — G x X
px1] Lp
G xX A, X
e x 2 x.

Exercise. This is equivalent to giving, for any objéttc C n,a&ction of the group
G(T) (morphismT’ — G ) onX(T') compatible with map$ — T'

Fact. A schemeX is determined by the funddr X (R) (with ring).

12
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Remark. In any categor¢ , an obje&t is completely daeteed by the contravariant
functorhy : T'— Hom{T, X) . GivenX,Y , we have the functérsg and oSkhare
functorsC — Sets. Then by the Yoneda lemma (natusakformationg.xy — hy are in
one-to-one correspondence with majs— Y ), we lookXabr the functorhy
represented by are the same thing.

Actions of G,,, on "other things"

If X =SpedA) is an affine scheme (ov&r ), then an aatioB,, on X is a map
p: G, x X — X. Notice givingG,, x X is equivalent to giving SHé&dt,t '] @ A)
and to giveX is equivalent to giving Spdg . Hence,

A P Alt, 7Y = Z[t, t 71
am Y pila)t]
wherep*(ab) = > pi(ab) t* and (ip is/a ring homomorphism)
AOGCESODWICEES W POACIE
If pis an action, we have "reversal of the diagtaimati s

Alz, 27t y,y 1] — Alt,t71]

T T
Alt,t71] — A

Where the maps abg a;it’' — Y, .pj(a)z’y’ a—= Y p;(0)t',a — Y pr(a)t®,  and
Sopr(a)th — kak(a)(my)k, given in clockwise order starting from the tohws
0 j#1
pi(ai) = { 7

a; ]:Z

Exercise. The fact thate € G,,(Z) acts as identity 30 e;(a) =a , i.e., thepma

Jj=—00

a— Y e;(a)is agrading.
In conclusion, we can say

Proposition. An action ofG,, on an affine scheme= Spe¢A) is the same As a
grading of the ringA .

Remark. An algebraic action &f* on@ -vector sp&Ce nspdy a grading o/ , that
is, @, Vi whereV; is an eigenspace ( acts\by ).

Lecture 12 (February 9, 2009) -

Recall the action ofz,, = Spédt,t"!] on Spa¢=  gradingdof , elgs
k[to, ..., t,]) (Obvious grading\, P) — (Aag — Aa,,) = AP, x; — tx;)

RecallP"(k) = (K"*1\{0})/k* .

13



Robert Krzyzanowski Introduction to Togyldl Notes

In general, letS be a graded ring, i@,, acts pead) .

We can ask, what does it meanheme-theoreticallyo delete{0} ? The origin
corresponds to the idedlz,...,z,) . In general, the comphme Spe¢A) of
V((f1y-ey fn)) = {p| (f1, ..., fn) C p} (but this last set just says, f; € p) . Hence,

XAV((fr, o ) ={p T fi g0}y = Ui {p | fi € p} = U,; SpecA),
where the localization Sped), =  Sg¢c' A).

SoA™\{0} = Spetk|xo, ..., z;, 1/x;,...,z,]) . This is the set of poipts such that

at least oneX; is a unit iz, ..., :cn]p

Notice the grading ork[zo, ..., x,] extends to each localizationue twhenever we
localize with respect td"}/f homogeneous.  ActionGf n A3 induces an
action.

Now look atG,, acting o®/; . We take

Categorical quotient

Let G x X A X with (g,z)— gz. We also have the second projection
G x X — X. If then X — Y, do these two maps have the same imagé? This is
precisely what it means to be the quotient! Sgs the universal object with the property
such thatX — X/G from second projectiokX] — X /G from , aNdG — Y
Indeed, X/G is universal for maps: X — Y  sft- A= f-  proj, if itistg. For
example,G,, acting o\ (with\,a) — Xa ) are orbits of clogedatienal points--
namely the origin, and everything else. This quudtie general isiot a scheme.

Moduli problems deal with parametrizing isomorphic classes of gtlipurves ovefC .
We can embed any elliptic curvés— P?(C) . Then®ifC)) = PGL3(C)  actson
the space of all cubic homogenous polynomials with-zero discriminant. The space of
cubic curves= P? (there are ten coefficients in a @e@ homogeneous polynomial).
FurthermoreA # 0 = Zariski open subsetfdf  is a quotigraction of PG L; .

Returning from our digressiof” is going to be ¢mt(A"*'\{0})/G,, . We form
this as follows. Havé&s,, actoneabh :

(1) Form the quotienV;/G,, = Spec subring ©{U;) , invariantdenG,,). We
shall see that in this case the quotient is a "gobgect.

(2) Define P" =|JV;. This involves constructing a scheme diying open
subschemes together.

Let S be any graded ring, and fet be a homogenelemseat of positive degree.
Then(f~1S), = subting of degree zero elementg insS

Notice this is still a graded ring. We want to doust the quotient of Spé¢—1S) by

G... In general,A is a graded rinG;, x  Spds = SpecG,, = Spec ngive
by > a;it! — > a;, whered_a;t' € AR Z[t,t7'] = At,t7}] .

So, take Spdg—15)

14
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Proposition.  There is a one-to-one correspondence betweanepideals in
(f~1S), and prime ideals ifi—*S  which are "invariant under #ction ofG,, ".

What does "invariant under the action" mean? WEIlC A"! invariant under
k* < it's a cone < ideal is homogeneous. In our casex X — X herav
G x V — V (this factors througly’ ). Hence, "invariant undes aiction” is saying these
are homogeneous prime ideals.

Proof. (of proposition) For simplicity, assunfe hasrméed , so thaf 'S has a
unit of degred . Legi be a homogeneous prime icat,

p=.Dpi €p & p €pVisp/fi €pVi.
Hencep;/fi € (f~'S),Np , so hence
p € p & itis a sum of elements of the forffy;  withe (f~1S), Np

Lecture 13 (February 11, 2009) - Graded rings?
RecallS = @, Sq is a graded ring.

Proposition. If Ju € S;,d > 1, v a unit, then there is B=1  correspondence betw
homogeneous prime ideals$h and prime ideals)in

So SpeCSO> iS Spé‘s)/@m
Now, givenS a graded ring, consider the localizatig 'S for f homogeneous of
positive degree. So Spé¢—'S),)  is the quotient §pelS)/G,,

If f,gare two such elements, thefi'S),  ((fg9) 'S), 2 (¢7'S), ,andso

Spec/'S) > Spef(fg) 'S) C Spég'S)
Then ProfS) := union Spg¢f—'S),)/ ~ given by the inclusiens . Oles¢hat the

points of ProfS) are simply the set of homogeneousigrideals inS such thatf
homogeneous of positive degree .t p . Thus

S, € pwhereS, =@, (S .
Note Forp < (f~'S), (a prime ideal) we have a 1-1 correspondgncé 'S as well as
paSstfép.

For example, foiS = k[zo, ...,x4] fok a commutative ring, thenjpP$o is the set of
homogeneous prime ideals §h  not containing allatheNow, recall (here the overbars
mean reduction mogl ).

paSstdz; ¢ p & theidealzy,...,z,) B, isthe unitideal

Ui, Spec(k[.:co, ooy Ty x%’ “"xd]dego) ~ A =~ Spek[zr; /]

sincek [z, ..., T, ;- ""xd]dego = k[%, U P %] In other words, this follows since
a line which is not vertical is determined by igp®, and a line which is not horizontal is
determined by the reciprocal of its slope.

Remark If X is a scheme, a closed subschéme X is
(1) aclosed subs&t ¢ X as topological spaces, and

15
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(2)ifi: Y — X is the inclusion, a surjective homomorphisf sheaves of rings,
OX — i*Oy =

sheaf of idealgy € Ox which is the kernel of tiigp.

Fact. For every affine open Spet) C X , anidéalA is comfgawith localiza-
tion (i.e. the ideal inf 1A ig—'1 ).

Note A subscheme of?! = JU; is equivalent ¥ C U, M.N (U NU;) =
Y; N (U; N U;) which is also equiv to giving a homogeneous ided k[zo, ..., z4] S.t.
(zg,...,xq) ¢ a. Thus, ifk is Noetherian,

a=(f1,..., fr) with f; homogeneous polynomials.
Sheaves of modules

If X is a topological space an@ is a sheaf of ringsX, a sheaf o® -modules is a
sheaf element sYU c X M(U) is&U) -module, @dc V M) — M(U)
is a homomorphism of (V) -modules, whetd(U) is@fi”)  -modidethe map
o) — OV).
If S =SpedA) is an affine scheme anfl  is4n -modulegetea sheaf/ :

M (S = Spe¢ftA) = fIM=f"TlAx 4 M .
Obviously if f | g sof A — g 'A and getamagp!M — g-'!M .Defiié to be the

sheaf of sections of the etale space over Spee |J S x f'M wlitvious
identifications.

Theorem. M(S;) = f~'M foranyf € A .

Definition. If X is a scheme, guasi-coherent sheaf d?y -moduLéﬁ is a sheaf of
Ox-modules such that affine open skts= $d¢cc X, M/U =M  Mor Aan -
module.

That is, for all Specd) C X affine opens, we havedan u®dl, s.t.if Spe€d) C
Spe¢B) C X ,theMd @ g Mp = M4y .

Examples of sheaves of modules
(1) O% free of ranks .

(2) P locally free sheaf of rank , i.evlU/ = Spde C X affiopen, P(U) is a
projectiveA -module=Vx € X P, isafre¢ -module.

(3) Invertible sheaves=  rank 1 locally free.

(4) Sheaf of ideal® C Ox

(5) X = Spe€Z) . Considét/27 [tilde]. We want to draw thdeetpace corresponding
to this. Therl/ = Spd&[L1]) = Sp€&)\{(p1),....,(px)} . Then

0 2/n

(Z]22)(U) = n~\Z/2Z = {Z/QZ 2.

We are now in a position to prove the following.
Theorem. There is a one-to-one correspondence between nigghemes ovér

16
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X — Pz,
and rankl locally free quotien‘(@;ﬁ+ l_> £ (= aninvertibleeahl onX together

withd + 1 elementsy, ...,s; € L(X) sYxr € X ,theimages@f..,s; Lin  generate
this rankl free modul®x .

Lecture 15 (February 16, 2009) - Manifolds and Buniés (wha?)
Hatcher: Book on vector bundles on his website.

Definition. A real / complexC* (* manifold/ is a topological spawith an
equivalence class of "atlases" i.e. coverings byrtsh A/ = |, U, , where a chart is a
pair (U, ¢) withU C M open suchthat: U — R" @&" is a homeomorphisito an

open subset, and {U,, ¢.), (Us,¢3) are two charts, we get a hameghismR"™ D

o5} . .
wp(Us N Ug)goif va(UaNUg) CR", and we require thaty,g be continuous,

differentiable of ordek , real analytic (or i@ -oascomplex analytic).

Notice ¢a30 ¥y = Py 1 P (Us NUzNU,) — 0o (U, N Uz N U,). Furthermore,
an atlagV;, ;) is arefinement of an at(ds,, ¢.) {(W.,¢.) C (Vi,¢:)} . Wesayt
atlases arequivalent if they have a common refinement.

Definition. If W C M is open, we say thgt: W — R (re€p ) is continuaiis, C>,
or complex analytic, fa fo o ! : o, (WNU,) — R (resp ) has this property

For example, amap : M — N @™ manifolds is a continuoap raf topological

Y

spaces such that for every pair of ch&to U ? R" M DV —-R" , we have
fov t (VN fHU)) — R
We sayM C N is a submanifold if it is a closed subspaethe inclusion i€’

A submanifoldM C R™ can be described in various waypeeglly by equations.
For examplef(z,y) = 0 gives a curvelitt

Examples of bundles

If we haveM C R" , then we havEM = tangent bundldfo . Réoak have a
bundler: E— M € overM ),E, =7 '({z}) = vector space farc M . Then
(T'M), is simply the tangent space fd R¥ aat . This isuaspace oR" . A
morphism f : E — F of vector bundles over is a continuousp nsuch that (1)
forp=mg, (2)f is alinear on the fibers, () G&,C> , as seey.

Give, avectorbundle : £ — M and: M — E then is a sectiondfs = 1,
Interstingly, sections of tangent bundles is thaesas sections of vector spaces.

Lecture 17 (February 20, 2009) -
Last time, we looked @& asaring, asfan -modulid,
S*(M)=R&M & ... dS*M & ...
the symmetric algebra. Now, any times we have a map

17



Robert Krzyzanowski Introduction to Togyldl Notes

Spe¢sS*(M))
|l ™ T s
Spe¢R) ,
then a section corresponds to a homomorphisi ofgebaas:
S*M — R.
An R-algebra homomorphism from a symmetric algehta anyR -algebraS*M — A
is induced by a uniquB -linear map.

Now, in the previous direct sum f6i* (M) , each of 48/ summands can be sent
into A using f . Hence, sections correspond 1-1 withinear mapsM — R , i.e
elements of\/* . This gives a diagram

Spe¢S* M)
o/ |n
Speca) ; Spe®)
which tells us that maps suchthato = ¢ are in onen®-correspondence wifh -
linear maps\/ A .

Example. Let M = Z/pZ withp # 0 a prime. Then
SpeS*M) = Sped[z]/(pz))

gﬂ@” 1)

— ngg(?ﬂ
1 ()’\—“ﬂ\

7
kaﬁ/t“\— Wm@ﬁ

Example. Let M = R¥/{submodule generatedhy...,r;} , with  the generatbrs
R*. Then

S*M =~ Rz, ..., x| /{ideal generated by the}
If M( =~ RF)is free, then

18
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Spe¢S*M) =~ Ak

|
Spe¢R)

and sections are one-to-one with elements of teerfinke moduld/* . B/ = P Re;
sections are of the forfp, a,e’  (with  the dual basid3/of).

Homework questions
Now, if G is a group and we have a functor taking

Rings— Sets
R — Hom(G,GL,(R))

¥ G Ln(p) ) .
R— S, GL,(R) — "GL,(S), p: G — GL,(R) with p — GL,(p) - p.

We claim there is arin@(G) such that this functas@norphic to

R; — Ring hom$R(G), R) .
Example. LetG =~ Z be infinite cyclic. Thep = picking(g) € GL,(R) . In thtmse
the functor is justGL, , represented m{{xij [1<i<n,1<j<n}- m] the

polynomial ring of matrices with entries;/ det;;)) . Tidsan affine open subset of
A%Q. Then if we have a ring homomorphism from thagjio R given byp , then

PR 7T gD(IL‘ij) €ER
such that détp(z;;)) € R* , i.e. an element®L,, (R)

If G = F,, the free group oy, ...,g,) Or more generally on a §&t) then for
any groupH,
Hom grougG, H) = Hom set¥, H) ~ H*

Then HomG, GL,(R)) = GL,(R)* , and s& — GL,(R)" represented by
GL,Y = Spe((Z[{:c" ceEN, 1<i,j< n} {ﬁ e 2}]) C AL,

ij
If G = (X|T) (generators and relations), thert if T, t = atﬂ), e “tﬁ) . Then if

BSG
peN Lp
GL,(R).

Theny : Fy, — GL,(R) factors througt if and only if for ale T (t) = I,
p(aichypil)) = 1

For eacht ¢ T , we have? equations corresponding toetitdes of this matrix
equation. Then Hold, GL,,(R)) is represented by

Spec(Z l{xfj oEY, 1§i,j§n}7{ ﬁ ‘ oez}
v

ideal generated by entries of matrices correspgnidinthe relations.
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Sub-Example. What are the representationsZgRZ  Gih,  ? Well, = (; j)
such that the determinant is a unit. That is,

GLy =7Z\|z,y, z,w, — c A?

) xw—zy T,Y,z,w"

Then the representations are equivalent to elener@d., such thatd> = I . Then the
Hom(Z /27, G Ly) is given byr? + yz = 1,w? + zy = 1,2y + yw = 0, 22 + wz = 0.0

If A7\{(0,0)},thenR* x RU R x R* is given by

{(f,9) € R*|(f,9) = R},

i.e., Ja,b € R such thataf +bg=1 . For example, Sfgr— A\{(0,0)}, with
x+— 2andy — 3.

Another homework question What does it mean to show something has a natural
scheme structure?

GivenG = SpetR) withi x G — G, R® R — R ,witlk[c] - ke ®1,1®¢] .
What are the elements in this ring? Well, if wedet 1 = ¢’ and1l ® e = ¢” , then they
are of the form

a+ be' + ce” + de'e”.
Check associativity, identity, etc.

GxGxG—-Gxd

! !
GxG—G

Recall the identity will be a map Spee- G
Lecture 18 (February 23, 2009) - Homework questions

Homework questions
For (2b): Ak -derivation is essentially
ay X Spe¢A) — Sped) .

The former is essentially Spéds] @ , A) =  Spég]) , so all we teed is give a
ring homomorphismd — Ale] . So, look at

Q9 X (9 — (9

ke’ e"] « kle]

€ — 8/ + 8//
Speck) — ay
k «— kle]
e—0
Then we can take
e—0
A— Ale] = A
a— a+p(a)e,
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wherey is a ring homomorphism and thus additivethieun, notice

ab — ab+ @(ab)e = (a+ ¢(a)e)(b+ @(b)e) = ab+ (¢(a)b+ ap(b))e

so thatp(ab) = ¢(a)b + ap(b) and hence is a derivation.

k

YR ERN
A — Ale] «— A,

with a — a + Oc forthe | map, and so€ k = ¢(a) =0 . Then we have to check

Q9 X (xg X SpG(ﬁA) — Qg X Spe(04)

l !
ay X Spe¢A) — Spedd)

commutes, which is simply a computation. Say thesvae

a+6(a)e’ +6(a)e” — a+ 6(a)e
T 7

a+6(a)e — a.

Thena + 6(a)e’ + 6(a)e” gets mapped @+ 6(a)e” + (6(a) + 6(6(a))e”) =  (or is

it?).

DigressionIn charp > 0 ,a, = Spe@&[z]/2F) withk —2®1+1®2 . This is a
ring homomorphism by the binomial theorem. dny cheeastic, there is a

correspondence betweek -algebra homomorphigmsA — Ale] shah
v(a) =a+6(a)e, and derivations. In characteristic zero, there aisl—1
correspondence betweet -derivatiorts: A — A , and actiohs Go on

X = SpecA) , where

G. is defined as follows. Recalt, = Spgétr|) with— z 1+ 1®x
Notice that this makes sense on power sekigs}] — k[[z ® 1,1 ® z]]| ssend
power seriesy_ > a,z" — Y > a,(r®1+1®x)". Then rather than take
the tensor products we just take power seriesenetaments (call this diagram
*)
All2l) ® A[[="]]
A[[:c’“x”]] — All«]]
T T
Allz]] < A
Remark k[[2] © k[[2"]] % K[z, z"]]

Thenifa — ¢(a) == > p'(a) ' in the right] in the above diagram, thaites
on the top line will be

pla) =) ¢(a)a’ — iwiwj(a)(ﬂf’)i(w”)j =Y ¢l +a"), (1)

1,5=0

with the conditiony®(a) = a Here, we are usingp® # @ o...op ag -times.
We will explain in what sense we use the notatigr” "momentarily. So,
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coming back tog, , this is similarly defined as @y byt with the diagram
above. Now, notice in (1) above, this is equivatergiving
O =id, o', ..., 0t A— A, ...

such thatvn > 0, Va, @”(a)(x’)i(x”)j(?) = ¢'o" 1(a) with i+ j=a. For
examplep? -2 = ¢! - ¢! |, that isp? = %(gpl)Q (binomial theorerhis is the
sense in which we use the notatiop?. Then notice thap” = %gp"” , Where
P = po...opcomposec times.
Then the claim is as follows.
Proposition. To give a ring homomorphisnp : A — A[[x]] such that
pla) = igp”?(a)a;i with (i) ¢°(a) = a for all a, (ii) the diagram+% ) commutes,

1=0

i..e,
Sl +a") = T ¢l @)
i=0 i J
is, in characteristic 0, equivalent to giving aidation onA .
Hence, going back to the idea of a group schenaallrihis is just verifying that the
diagram below commutes,
GxGxX—-GxX

! !
Gx X —X

with the maps

(g, h, z) — (gh, x)
| |
(9, hz) — ghx
induced by multiplication.
Example. ConsidelC>(R) with derivatiod; . Then if you evaluate
C=(R) — C=(R)][]]
fro S d Lo
at a point =t, INR (i.e., coeffs of a formal poweriggrinx ), then this gives the Taylor
series off at, [J
Previous homework problem
Recall the problem dealing witlX := A7 \ {0} C A7  (in the homewotkwias
n = 2). Of course, {0} = (x1,...,x,) <k[x1,...,x,] s the point corresponding to /
consisting of the maximal ideal generatedebhy..., z,, .Bpointp INA} is inX if and
only if p # (x1,...,z,) Iif and only if 3x; such that:; ¢ p  (sincéry,...,x,) is
maximal). Then

X = UL, Dia) = Spedkfar, ..z,][£])
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(so D(x;) is the line where we deleted the entire line= 0 so for A% it would be
deletion of they -axis if =2 ). Furthermore, notice gorimes in the Spec above are in
one-to-one correspondence with primes z; . Anyway,pif Spe¢R) — X is a
morphism composed witk C A7 , we get: Spe¢R) — A}, or equivalently,

klxi,...,x,) — R withz; — r;.
That is (and we saw this earlier), giving a homaphésm of SpecR) td\}; is equivalent
to giving a ring homomorphism as above. Now, thevabmap will factor through the
open subseX if and only{b} ¢ image &< X =", (%) "(D(z;)) .Now we just
need to know thap is. Callp) ' (D(z;)) = =, . This is just the opahset ofX where
r; are units. We can see this by looking at

R[%] — k[xl, ceey Ty %]

i

T T
R — k[z1, ..., z,)

where we noticé? ® k[I B L]R[:rl, oy Ty] = R[}] , and this diagram corresponds to
(@) (D(x:)) — D(;)
l l
¥

Continuing our < we get if and only if(ry,...,r,) <R is the unit idea> dsy,..., s,

in R with > r;s; =1 (that isVp< R at least ong  maps to unitskin whjch is the

same as saying subschemds;) C X are disjoint).

Lecture 19 (February 25, 2009) - Quasi-coherent, ¢ally free of
rank 1 sheaves

Recall if R is aring, a map Spge) — A"\{0} is the same asw@ple(rq,...,7,)
such that the idedt, ...,r,) = R . This is equivalent to the map

R"— R (xla"wxn) Hzrixi
being surjective. Recall also th&t,, =  SgBg,t']) actsAgn'\ {0} c A" =
SpedZ|xy, ..., z,]) and the quotient® . Affd s the union ofaffi@e open sets
Ui = spedz| %, .., mt ]
Then the degree zero part of the -graded #hg Z [:co, veey Ty %7 e xn} nThe

A™IN{0} = UL, Vi = Spe¢xk] .
Also, G,, acts on eacl; with the quotient equal’fo d famthermore there is a one-to-
one correspondence between prime ideaZS[ﬁ#, “"—} , ambgeneous prime ideals

o3 ceey )

in Y% which do not contain the idegat,, ..., x,,).

Here, P as a set is the set of homogeneous primaside Z[xy, ..., z,] not
containing all ofx, ..., z, . In other word$/; is the sethoimogeneous primgs such
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that z; ¢ p. If R is a ring, a map : Spde) — P} =JU; is given by maps
¢i : ¢~ (U;) — U; whereg ! (U;) is a Zariski open set of SpB¢  such thatpn W;
the mapsp; [w.qw;, ¢;lw.rw, : Wi N W; — U; N U; agree.

Notice that eachy; is determined by elemegits.., ¢! (Wite= 1) in Ox(U;)
(whereX = SpegR) ). On

UNU; =SpedZ|2,... =2 % .., 2| (degree part of
J T

’Il7’Ij7 ’,’I,‘i

1 1
Z[azo, e Ty oy e Ty s ...,xn]),

we knowzxy,/z; = xy/x; - xj/z; . To say that; = ¢; oW, N W, meafjs= 53,;5;3 with
531 a unit ancE;ﬁ . §f =1 . In other words, giving is the sam@iaing X = U, U U; and
giving a function& € Ox(Uy) , and a functioff € Ox(U;)  such that@@nn Uy, we
haveclél = 1. Sogl € Ox(UynUyp)* (invertible function, so it's a unitliis open set).
Now, out of this unit, we can construct a localige sheaf of rank £, as follows: 6f
take the (locally) free shedly, =~ Ox|y, .@A ,take =~ Ox|y, . Glussthtogether
onUy N U; by the map:

Ouvylvent, — Oulvgntys  a — afl.
It is a remark here to notice ¥ = U,UU; and,, M, are quasieceht sheaves on
Uy andU; respectively, angl: My |y,~nv, — Milu,nu, IS an isomorphism, weagdteaf
N such thatV'|y, % M, and/|y, 2 M; .F C X isopen, then
N(V) = {<87t) | S MO(UO N V)at € Ml(Ul N V),¢(S> = t}
More generally, givenX =J,.,U; andM; sheaves BGn , then hegewith iso-
morphismsp;; : M|y, — Milvnu, such that, j, k,

Gij |U,;ﬂUJﬂUk : ¢jk|U,ﬂUjﬂUk = Qik
then there is a sheaf  such thafy, =~ M, and sectiongivar by a similar formula.
In particular, if eachM; =~ Oy, , then an isomorphigm : Oy, |v,nv, — Ou,|v.nu, st ju
®ij : Ovinu; — Ouinu, diven by

1e OUiﬂUj(Ui N Uj) — o e OUiﬁUj(Ui N Uj).
Since this is a map of modules, any» au  , and sincean isomorphism,
o€ OU,L.QUJ.(UL‘ N Uj)*,
i.e., ¢;; = multiplication by a unit which we also deadt; € Ox(U; N U,)". Hence, a
collection ¢;; € Ox(U;NU;)" such thaty; =1, ¢;;- ¢ = ¢ € Ox(U; NU; N Uy,)
Vi, j, k (x) (this is called the "co-cycle condition") determén by gluing, a quasi-coherent
sheafl onX suchthat|y, ~ Ox|y, ,i.€, islacally free of rank 1

Conversely, if we are given a quasi-coherent slifieah X such that there exists an
open coverU; and an isomorphism: L|y, = Ox|y, , i£., is lochle of rankl .
Then if we Set;SZ-j =0 O'j_l . 0)(|Uint — OX‘UmUj , then thﬁj S&tii@

U,;ﬁU]ﬂUk,

Now, we want to go back and relate this to proyecspace.
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Proposition. Suppose we are given a scheie , and a locallydrdel sheafl onX
determined by a cocyclg);;}  with respect to an affipen covel/; oX , and a homo-
morphismd : O™ — £ which is surjective.

Remark ForM, N quasi-coherent sheaveés M — N is surjectiemdf only if for
all affine opensM(U) — N(U) .

Next time, we will show thad gives a mapit

Lecture 20 (February 27, 2009) - Constructing map P

Recall from last time that the idea is the follogitf X is a scheme anfl is a sheaf
of locally freeOx -modules of rank , and we are giesurjective homomorphism of
sheaves of modulgs: O"*! — £ , then we get a well-defined map

fo: X =Py
as follows. Recall that by definition, there exists open covet/; oX and an iso-
morphismo; : Ox|y, = L|y, . This is called ddtal trivialization ". Notice that to give

o; is equivalent to giving the section(1) € £(U;) with  an ismphism; in other
words,Vz € U;, 0;(1) € Lx, , whereCx , is a@x -module that is free or rankhat
is, o;(1) vanishes nowhere i}

Reminder. If R is a local ring and. is free of raink , thér L generated, if and
only if £ ¢ mL (for m a maximal ideal oR ) if and only&non-zerd € R/m ® r L .

Given such a local trivializationg; * o ¢ : (ag, ...,an) — > g air; € Ox(U;) for
some(ro, ...,7,) because is surjective. Hence, there existssach thap(a) = 1 , that
is, (ro, ...,mn) C Ox(U;) is the unit ideal, or equivalently; = o; 1o  corresgsno
the map(ro, ..., ) : U; — A"™1\{0} . O; nU; , we have

0j = PjiTi
with ¢;; € Ox(U; NU;)*. Hence, we have two maps
(0

Ui N Uj J ATL+1\{O} X (Grm,
J

wherey; corresponds l(cr((f), - rﬁf)) and correspon((sré@, e r£3'>) . lbetks
at the coordinates of the pull-backs of these nfapgre elements are mapped to).

For (zo, ..., z,,t), eachr 1& r,(j) and,, | r,(f) ,
and under both mags mapsAdp
Observe thaw);(xy) = o; (xx) f5(t) , where we lgt;: U;NU; — G,  (remember it

makes sense to talk about this map). Henige, yante the composition
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m’er\ %h“\ »5 Eﬂ\
f‘ﬁﬂ"g\ w Mmult

Y, N
AN\ §3]

J/fﬂ
SinceP" is the quotient af"™1\{0} by the action®f, , tbenposition of these maps

with proj* toP" are the same.

Now we can ask the question: what happens if wentade a different choice of the
(Ui, 0:)? In other words, considgfV;, 7;)} . Then by what we hasge geen, these will
have to differ by multiplication by a unit, and leenonU; N V; , the maps t&"*1\{0}
associated to; and;, induce the same map’to . Son#pg, : X — P" is not
dependent on these choices (see beginning of éeftiuy, ).

Now that we know about our mafy, , we claim that gieef : X — P", we can
construct a surjective homomorphisp: O — £ such that= f efetC is
locally free of rankl ). Here is the construction.

Step 1. Consider the sheavé®. (k) . Recall that

o 1
= UizO SpeC(Z |:370; ey Liy ooy oo xn} degO)

with homogeneous coordinatés : ... : x,,) (where deg meaks the degre® part
of this guy").Notice thaZ [a:o, s Ty s ,xn} iZ -graded, and it hasnit in degred

(namely,z; ). In general, i§ = @,,., S, is such aring amd S; this unit, we can
multiply by v to getS;, — Si.1 , which will be an isomorphisof Sy-modules. SoS;
(for anyk € Z) is a free rank S, -module generated:by

Lemma. For eachk € Z , the moduléd; of homogeneous elemenegodek in
L\ xg, ..., Tjy %, ey Ty

patch together to give a locally free rahk sheai§.
Proof. Letk € Z. Our goal is to give an isomorphism
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— 1 1 —
Mi =7 Ly eeey Ly T l‘n:| degh — Z|::L‘0, ceey Ly 7—7, ceey l’n:| degh == Mj.

That is,M; = Ox(k)(U;) is the elements ﬁf[mo, s iy s ...,:cn} of degfee . This is
free of rankl over the homogeneous componentsgredezero, and so generated by the
(z;)", that is,

f _ a(xg,...,Tn) .Cl)k

e i

N——
degred)

k
onU;NU; withf - () = (something of degree zero).
J T

Now, we look at the localization dff;  with respestet; and)M; with respect to;
and the intersection with respect to both. Letdlat specifics here.

What doesM; look like? Takg € M; . Theh= M where is ofrdeg
blro.imn)

'1: m

[+ k. Similarly, giveng € M; , it will look likeg =
Now, we want to make ourselves a nice little map
m[3] - 3]

Lj

withb of dgreem + k .

Using the fact:; /z; is a unit off; N U,

k

(L(.’I}Q,...,.’I}n) —s aU(m07"'7m71,) . ﬂ
0 L . ’

X, CE‘J X

]

with aq a function. Now, recall the co-cycle conditin for a locally free sheaf of rank
k
1 (see previous lecture). Then the co-cycle defidia. (k) is (3—7) onU; NU; .

Refer back to our discussion at the beginning isfphoof, and we can extend the
result forf to say that since 6hNU; N U,

() () - (=)'
we have a locally free rarkk  sheaf. [Wait, what?b@ok and look at thisL]]

Notice if £ > 1, then any homogeneous polynomial of degr inx, ..., z,, defines
a global section iDp. (k)(P™) . In other words, if

f(zo, ..., x,) € Zxo, ..., Ty)
is homogeneous of degrée |, then
f - ik : i’
where the first term is homogeneous of dedgree th8se "glue together" as co-cycles.
Notice
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so consider thép;) . Then in particulék(1) has 1 glskationsry, ..., z,, . Hence,
we have constructed

Op™ — Opa(1) given by (ag, ..., a,) — >.a; x; .
Notice further that this map is surjective. On Op:(1) |y, = Oy, trigial, generated
by z; = 0(0, ..., 1,...0).
Step 2 Now given anyf : X — P" , just také = f*(Op:(1)) . We will see this
done next time.

Lecture 22 (March 4, 2009) - Quasicoherent Sheaves

Let X = Spe¢A), M am -module, add  a quasi-coherent sheaf associated
to M. Then

1(x; = sped a[2])) = 2[3] =~ 4, 401
If f: X — Y is a map of scheme$t | there exists a quasireohesheaf oDy -
modules. Defing* M = OxO-1p, f M .
Then there is an equivalence of categories:
guasi-coherent sheaves on sgeec— A -modules.

For X a general scheme, a quasicoherent shedf anequivalent to giving the
following:

For every affind/ = Spédl) C X ah -modulé(U)  s.t.if
V= Spet(A[H) C Specd) =U , withn; € M[fl] , then the map

M) [4] = m(v)
is an isomorphism.
Also, if X =, U;, and given quasi-coherent sheaxds Upn
0;i = Milunu, = M;
satisfyingd,; = 0;;0;; = get a quasi-coheret  &n
Given M a quasi-coherent sheaf@f -modules, defeequasi-coherent shegfM .
We only need to find an open cov&r=JU; , and to defing1 |y, such that these
patch together. Considef: X — Y =|J,U; = Spdg) . Of course we came wri
X =U;V; = Spe¢B)) . Furtheff (V;) C U; for somep(j) idly, is determined by a
mapf; : A,q) — B; such that these are compatible.

Uinu;

So, let's say we have

V = Spe¢B) M U = Sped)

with V c X andU C Y . Then givingf is equivalent to givingy & map of topological
spacesX — Y , (i) for all paird/,V  of affine opens sudlattf(V) C U, a ring
homomorphismf* : Oy (U) — Ox (V) such that Sg¢¢) = f|y , and this is natural
with respect to inclusion of affine opens.
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We can also do this in a category-theoretic say. & can have a quasi-coherent
sheafA// onX , and a quasi-coherent sheaf Y on

Definition. A homomorphism of quasi-coherent sheaves\i — N pver sistorof
giving for all pairsV = Spe¢B), U = Specd) as above, that is, such thfal”) C U,
a homomorphism of abelian groups,

oy MU) — N(V)
which isOx (U) -linear whereN (V) is anOx(U) module via
fov : Oy(U) — Ox(V),
and these homomorphisms are natural with respeictdasionsU’ c U and”’ Cc V' .

Now, backtracking a little, iff : R — S is a ring homomorgim, and)M is aR -
module (left if these are noncommutative), then wisaS ® p M ? We have two
categories, Mog modules ov8r and Mod modules &eaind there is the forgetful
functor (think universal algebra):

forget
MOdS —g> MOdR

N — F(N)
where we viewV a® -modules.
Exercise Homz(M,N) =~ Homy(S ® M, N)
Then we can define
MV) =0x(V)® o,y M)

for all pairsV,U withf(V) C U , and the maps fof C U  where tbstriction map is
simply induced by x (V) — Ox (V') :

Ox(V) @ M(U) — Ox (V') @ M(V).
Notice if V = Spe¢B), V' = Spe(cBH), U= Sped) ,then

BH ® 5 (B® A M(U)) gB[i] ® A M(U) gBWM(U}H.

In particular, if€ is a locally free of rank sheaf}Y (sod an open covér = |J, U;
such thav;£|y, = OV |y, ), then for every affineCc X such tfg’) c U;

[rE)lv = O%lv.
That is,0x (V) ® o,(u;,)Ov(U;)" = Ox(U)" . Then
0ji - ojo; "+ O"|uau, — O"|uau, (@n iso given by an element@fL, (Oynv,) )
If f(V)cC U;andf(W) C U, we have

FEl Do,

with f*(aj)f*(o—i)‘1 = f*(0j). In other words, you can think of a localleé sheaf as
being determined by the patching data given byftheand then we can think of the
pullback f* as:
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Proposition. f*(€) is determined by the cocycle
f1(033) € GL.(Ox(f1(U) N f7H(U)))
X =U, 1))
Geometrically suppose we have a vector bundle

FE
lm
Y =U,U; = Sped,)
Ap L a YU CE
N !
U; cCY
with 7; : 7= 1(U;) = Ap = Spedi;[ty, ..., t,] . Ovel/; N U; , we require that
7T Ay, = Al
IS a matrix
0 ji € GLn(Oy(Ul N Uj»
with

(73 )" () = Y04t
(=1

with 7 entries in the matri¢; . We will get to thenopletely geometric interpretation
of locally free sheaves and pullback.

Lecture 24 (March 9, 2009) -

[l walked in late, missing a few notes.]
Standard example¥ = A, = Spéro, ., z,] , ane (zo, ..., z,) : OF" — Ox
The image of is the ideal of origin é*'\{0}, s is surjeetso we have the standard
map
ATTN{0} — P
Our mapX : (9;;“ — L has imag81 c £ which is a subsheaf. Nbwy, C £, hdas't
imageO}tj , and sinc€, = Ox ¢, M, =g, L, ,whege is an ideal. This is iimuany
affine neighborhood of such théty =~ Ox|y¢ . Globaly = GL wh@ris a sheaf
of ideals inOx . IfU is affine open, then igly = G(U) - L(U) . So, get a closed
subschem& C X ,i.eY, C X closedand C X affine open,
Y NU = SpecOx(U)/G(U)) ,
thatis,i : Y — X withi,Oy =~ Ox/G .
Lets: O%'! — L. ThenimageM C £ and is isomorphicd , whére thés
sheaf of ideals. Let" ¢ X . Thefly =~ Ox/G is the subscheme wheamishes on

X\Y, and this is the open subscheme on whkich isdiuge We then get an induced
mapX\Y — P .
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U
n o\
X 7P.

'y, C X x P.DefineX = closurd’;, . Then

UcX—P
NS
X.
We can do this with schemes. ¥ =J,U; = SpRg , dnd={J,V;= Spec

then X x P =J;;U; x V; = SpefR; ® S;) . Suppose that C X is an open sub-
scheme (i.e., an open subs8; = Ox|y ). If given a maglémesf : U — P , then
we know there exists an affine open covet/of , g, = Sped7;,) C U such that
Vk 3j such thaf (Wy) C V; , and a mgj; : S; — Tj

Glueing together the graphs of the mgpg, : Wi, — V;, W, — W, x V; gives a
map of scheme$';: U — U x 4, P . This makes sense for any morgfisthemes
U— P.

Definition. f is separated if'; is the inclusion of a closed subsui
In our situationV L P (withU C X ), we can define a closetbschemeX ¢ X x P
such that in each affine opéh x V;, U; Cc X  affine andc P opehsnT
X N (U; x V;) = Zariski closure of the graph Fv.nv, N (Ui x V)
We shall show this (next lecture) as an explicaid
Suppose we are over a figtd

A*\{0}
N\
A%y IP)]:(LJ = P(rbﬂlf» y]) )

with X c A2 x P} = Proj(k[z’, y']).
Exercise. X C A2 x Spedc[ﬂ UAZ, x Spek[%} =U,NU, .Henc&NU; has
equationr = (jj—) T Similarlyf(m U, has equatign= (f—)x . Then

XNU, NU,
we getr/y = 2'/y .

Lecture 28 (March 9, 2009) -

Valuation Rings

Recall if O is a valuation ring then any finitely rggrated ideal is principal. Since if
fi— fr € O then choosei such thai(f;) =  rff),...,v(f,)) , théfy#£1,
v(fj) = o(fi)-
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(Valuation ring: O local domain s.t.Af= fractiorefd of O ,3 valuation : k* — T’

totally ordered subgroup su(zy) = v(z) + v(y) Wz +y)> nifz),v(y)) if
r+y#0,withO ={z € k*|v(x) > 0} U{0}.)

That implies
o(fi/fi) > 0= fi/fi € O = f; € (fi) = (f1,-, Ju) = ([fi).

Corollary. Let O be a valuation ring with a fraction fiekd .t4& € P"(k). Then3!
point P € P"(O) which restrict taP .

Proof. 3 elementsy,...,a, € k such th@& = (a:...:a,) € P"(k) .ThémeO
such thatvi, ga; € O . Hence, we may assuttiea; € O . By remark altbgeadeal
(ag, .-, a,) = (a;) for somei . Thus

P= (200,05,
(wherel is in theth place) for all/a; € © , and this représ anO -valued point of
P".
Finally, if (ag,...,a,) and(b,...,b,) are two sequences of element®cofenerate the
unit ideal inO such that viewed as pointit(k),

(ag : ..t an) = (by : ... 0 by).
That impliesdc € £ such that = ca; Vj

We claim thatc € O* equivalently(i) =0 . Sincey, ..., a,) = (by, ..., b,) =
exists i such thaw(a;) = 0= v(c) =v(b;) >0 , andj such thab;)
0 =v(c) +v(a;) = v(c) <0.

Motivation from topology

O |, there

f: X — Y is a map of metric spaces.

We sayf is proper if “'(k) is compa¢t compact . Thiplies f is a closed map,
i.e., forZ C X closed= f(Z) Iis closed.

That implies thatv sequences € Z convergingXin , Jitha, = a € X, that
a€ /.

Suppose tha{b,} is a sequencefif?) with lim& Y Ja, € Z Blt,) = by,
Further,3 compact nbhd o6f and so we may assuaié,te K Vn.

= a, € f~1(K) which is compact
— a, have an accum. point jfT!(K)
— sinceb,, is convergentand is continuofig;) =b bsof(7)

Remark A topological space is sequentially separatediaifichy sequences have at most
one limit.

If O is a valuation ring with fraction field , thinf map from Sped) to a schetxe as
a sequence, and if map extends to §pgc— X think ahtheeed map Spék) — X
as the limit of the sequence.

Result above abolt* says tifdt  is "compact".
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In topology, a "nice" topological spacé is compiatvery open cover has a finite
subcover. In algebraic geometry: consider for eXemi.. The open sets here are
complements of finitely many poinfa\!\S , with finitdhis implies any open cover
has a finite subcover.

For example, the projectign: A2 k, Al given bl] — k[z,y] , projectioox -axis,

is not a closed map (closed sets closed setseXample, the hyperboley =1 has
open imagé/ (zy — 1) = A\ {0} .

Consider the discrete valuatiéh= klt] ,, C k(t) = K and Spec— A? with ¢
andy — t~1. Then Spék[t,t!]) ~ C c A? . The induced mapf : $pec— Al
extends to a map Sp&e;) — A, and S(riéa:] (I)) . But  Gpee—s A? does
not extend since(f*(y)) = —1

Recall that a morphisny : X — Y iseparated iA:X — X xy X is a closed
immersion.

Definitions: (i) f: X — Y is of finite type if Y has an affine open @vY =
U SpecA;) , and’i, f~'( Speéd;)) has a finite affine open coyern (Shecwith
B;; an A; -algebra of finite type.

(i) f: X — Yis universally closedif Vg : T — Y, the induced mag, : T'x y X — T
is closed, i.e., closed sets to closed sets.

Definition. f: X — Y is proper if it is separated, of finite typedauniversally closed.

Theorem. If Y is Noetherian (i.e., has a finite cover by adfiopensSpe¢B;) with the
B; Noetherian), then a morphish: X — Y is proper if for @dlluation rings® and
mapsa : Spedk) — X, 3: Spe@) — Y ithk fraction field ad ),

Spec¢k) & X

| l

Spe¢O) ﬁ Y
such thatfa = G| Speck) . Thed! v: Spd@®) — X making the diagram commute.
Corollary. P7 is proper overSpe¢z) .

Lecture 30 (March 30, 2009) -

Valuative Criterion of Properness

Recall ifk is a field© C k is a valuation ring if egalently,3 a valuatiow : £\{0} —
I' a totally ordered group such th@t= {z|v(x) > 0} U {0} , 6r, is makiamong
local ringR C K with respectt® < S thg N R =mp

Valuative Criterion of Seperatedness

Theorem. If f: X — Y with X Noetheriar{ given the union of a finiBpecA) ,A
Noetherian , therf is separated if and only if adlon ringsO , and all commutative
squares
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Spec¢k) hox
il LS
SpecO) 7 Y,

3 at most one map: Spe¢O) — X ( lift in the diagra/n making the squammute.

Theorem. LetX be Noetherian. If is of finite type and etherian, thery is
proper if and only iH exactly one lift .

Proof. Assumef is proper. Then given
Xo — X
[l s
Spe¢O) 7 Y
let f': Xo — Spe¢O) be the pullback ¢f along .
Now just consider

Speck) J, Xo
i\, f'] ft.,sep
Spe¢O) .

We would like to show there is an extension of gextion Spe@) — Xp . Let
U =Spe¢K) and let = Spé®) .L& be the Zariski closurg@f) C X» Since
U is Spe¢ afield U isirreducible. So really,= {u}, andu}) € affine open set
Spe¢B) with KernélK — B) closed subscheme defined by priteals. Therd/ is an
integral subscheme (all its coordinate rings ategiral domains). Hencg' (V) C S is
closed and non-empty singe is proper (in fadtoittains a generic point Sgé¢  of ).

Sof'(V) = Spe¢k) C S which is just
U—V CXo
N\, 7™ | proper
S.

Since{s} € S is a closed point 6f 7, }(s) is a closed subkgt @ scheme of f.t. over
s = Spe¢k) withk fraction field o . By the Nullstelensathere exist closed points
v € V such thatr(v) = s . (Note: For residue fieldls(v) : k(s)] < oo ).

Essentially, we now want to shaw is an isomorphigme 7—1(s),
™:0=05,— 0y, Ck
is a local homomorphism, but they have the sametidma field. Hence, sinc® is a
valuation ring,msy is an isomorphism, and since thigue for all points abovs , itis

easy to check that exactly one point abseve (add¢, O Oy ,). Hence)y =S and
sowe getamaf — X lifting L

Example. Consider the nodal cubic=t> —1 apd=t(t* —1) so tifat 22(x + 1)
and hence we havg: Al — A2~ witi'({0,0}) =2  points. Théa p is not a
valuation ring.
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Amazing stuff (finally, some geometry!!)

Remarks. (1) If X is a curve over a field, thexi  is naneslar if and only if all the
local ringOx p forP € X closed, are valuation rings anelytlare in fact d.v.r.'s.

(2) dmX) > 1,P € X ,X finite type over a field X irreduciblen if P is a closed
pointOx p is never a valuation ring.

e.g. If we takg0,0) € A2

Oxp = {fla,y) € kla,y) | = g/h, g,h € klz,y], h(0,0) # O},

Exercise. This is not a valuation! [Hint: complement oflvaion must be consistent
with reciprocal of ideal.]

=z ,then

Bl,,(Bl,(X)) « ...
with p, € Bl,(X) — p € X, then O,, is a valuation ring.
Next time: "Zariski-Riemann Space”

Lecture 31 (April 1, 2009) -

Cohomology
Goal: (1) Describe the cohomology of sheaves oliagroups.

(2) (i) CohomologyH(X,F) =0 forX a scheme of finite typeeoa Noetheria nring
andi > 0.

(i) H(X,F) = 0if Xis affine andF is quasi-coherent.

(3) if X is projective ovelS = Spéd) amBl is a coheshwaf onX thedl(X;.F)
is a finitely A -module for ali > 0 .

Cohomology of sheaves of abelian groups

SupposeX is a topological space, and considerdtegyaryAby = sheaves of abelian
groups onX . We thus have a functor

I: AbX — Ab
F—T(X,F)=F(X).

This functor is not exact, i.e.,f— F — G — H — 0 is an exaajsence of sheaves
of abelian groups, then we have

0—-I(X,F)—=-I(X,0) - T'(X,H)
is exact, but the last map need not be surjective.
Recall an exercisd:(X,I") — I'(X,H) is surjectiveAf is flasque.
Remark. In general, we have the notion of derived furgto

Idea. SupposeF : A — B is a left exact functor between abeimtegories. A5 -
functor is a sequence of functors

Fi:A—B,i>0, F'=F
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and for every exact sequence
0—>A1—>A2>A3—>0
in A, mapsd’ : F(A3) — F'""(A;) such that we have a long exact sequence

0 1
0 = F(A)) — F(4y) — F(43) & F1(A) = FL(4y) — F'(45) & F2(4)) — ..
and the) 's are "natural” with respect to the mdgxact sequences.

Derived functor§ R'F',9'),i > 0 , are (if they exist) the univéi@dunctor
extendingF' , i.e., foran§ -funct@r a unique tramnsfation ofd -functors

(R'F,0") — (F',0).
Injective objects
If Ais an abelian category, then an objéet A isdtiye ifV diagrams
B
foori
1 7 A

with 7 a monomorphism, there exists;én making thgrdm commute.
Lemma. I is injective iff every exact sequence

0I5 A5 B0
splits, i.e.ds: A— I suchthat-i=1dy sé~I¢ B

Corollary. If F: A — B is a left exact additive functor arid is aneidjive object id ,
and

0—1— Ay — A3 —0
is exact inA , then
0— F(I) - F(Ay) — F(A43) — 0
is exact.
Proof. Follows from lemma and fact additive functoregerve direct sums. (exercisge)

Suppose thatl has "enough” injectives. ie., a@bjdcc A, 31 and a monomorphism
A — I. If so, every object has an injective resolution:

0 A->1"=>T1 — .

i.e., an exact sequence with  injective for 0

1
Lemma. Given two injective resolution$ 510 amds J° 3, a map ofheoe cxs

(,00 . IO N JO
such thatpoe =¢' , thatisd — I° — J' — .. and — J — J' — . with?, o’
betweenthd and 's,amd— I° aAd— J°

If o, : I — J%are 2 such maps, then they are chain homotopic.
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Corollary. If JY is also an injective resolution of , the : J' — I  exing the
identity onA , and) o o is chain homotopic to the idgndf/ , andp oy ~ Id; .

SupposeF : A — B is a left exact functor. Pick an injectresolution of A € Q,

A — I° and consider the complex'(I°) iB . Observe up to rcHamotopy
equivalence, this does not dependion , and anyctains ofe ory induces chain
homotopic maps F'(I) — F(J) andF(J)— F(I) . Hence, we get canonical
isomorphismsi‘(F(I)) — H'(F(J)) foi> 0 , and so we can define

R'F(A) = H(F(I))

for any choice of injective resolutian  df
Lecture 33 (April 6, 2009) -

Definition. H(X,F) = H(['(X,ZI%)).
(By previous discussion, this is (up to canonisa) indep of choice ¢f*
f« : Ox-modules — Oy -modules.
This is left exact, since

LFWU) =F(fH(w),
and in general not exact, e.g.Yif=  pt, then  isJus¥,_ ).

We can defineRif, : Ox -moduless Oy -modules given Wy— H'(f.(Z*)) (a
complex of sheaves @y -modules).

Remark. The object one should "really" consider is the vehodbmplexf,(Z*) . This is
well-defined up to chain-homotopy equivalence, &mahce up to quasi-isomorphism.
This is the map of complexes which induces an igpimem on cohomology.

Derived Category

DU(X, Oy). Start with the category of cochain complexe©gqf modules, wherg] can
be either "bounded”, "bounded belowW(# 0  only for fi@y manyi , andd*(F?) = 0
for i < 0, respectively), and "qc sheavéx,O,) . Then, inwt the quasi-
isomorphisms (and you g@J(X, Oy) ). (That impliesFif— 7* iseaolution, then
F andZ* iso. inD(X) ).

Rf.: D(X) — D(X)
with F* = T* = R f.(F) = f.(Z%).
Warning.A priori, R’ f, may depend on what category of modules gre working with.

If A— R is a ring hom with/ an injectiveR -module, thevhat is injective over
[diagram]. - May depend on choice®@f  and on paldicoategory of modules.

Lemma. Any injective shedf @y -modules is flasque.

Proof. IfU C X is open, considei: U — X ,and g0y  be the extamély zero of
Oy, i.e., ifV C U, thenOp(v) = Op(v) = Ox(v) andiV £ U , thepOy(v) =0

Exercise. Homp, (jiOy, F) = F(U).
The natural map Oy — Ox is injective. Hence, sidce iedtiye,
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Hom(Ox, Z) — Hom(;:Oy, I)
is surjective.
Proposition. If F is a flasque sheaf @y -modules&n , th&X,F) =0 ifor0

Proof. Choose) - F -7 — G — 0 withZ injective. Recall f is flasquben
Z(X) surjects intoG(X) . Sinc€ is injectivé/*(X,Z) =0 for-0 (itits own
injective resolution).

Now look at the long exact sequence:

0 — F(X) = I(X) — G(X) — H'(X,F) — H'(X,T) — H'(X,G) & m*(x, F)..
Hence H'(X,F) =0 fori > 1 .Bug is flasque. Then

l !
FU)—gU)

where the bottom row is a surjection. Hence by atidn, H'(X,F) = 0 fori > 0. i.e.,
flasque sheaves acylic as indeed  flasque impligsF = 0 fori > 0.0

Exercise R'f.(U)= H'(f~1(U),F).
Exercise. R f, = sheaf assoc to preshéaf— H'(f1(U), F)

Proposition. SupposeF is a sheaf©@fy -modules, e A is a resalatiF by
acyclic sheaves. Thei'(X, F) =~ H!(['(X, A*))

Proof. Look at
0—-F—A" =g’ —0.
Then

H(X,F) — H'(X, A" — H(X,G%) 2 HY(X,F) = H'(X, A = 0 — ...
And in generaH(X,A%) =0 foi >1 ,
(1) HY(X,F) = CokefH'(X, A%) — H°(X,G")) (%)
HTY(X,F)~ H(X,G") (%)
Look at resolution
0—F— A" - A — A2 — .
So
0—-G" > A = A% — .
is a resolution. Left exactnessEf  implies
* = HI(['(X, A%)),
andsx % andk imply by induction that
H(X,F)=H'(X,Gg) = H(I'(X, A)).
Hence, we can use any acyclic resolution to compait@mology L[]
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