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Lecture Notes Last updated: Saturday, January 19th at 6:30PM

These lecture notes are intended to recapitulate class lectures. Several notational considerations exist.

Namely, appendices to lectures generally provide information not found in the lecture, but are nonetheless

helpful for producing a more rigorous understanding of the material; an * (asterisk) next to a proposition,

definition, theorem, etc. indicates it was not explicitly written (or mentioned) in class, but aids the flow or

completeness of the notes; an to the left of a statement indicates this was given in class as a homeworkÄ

problem or personal exercise; finally, a footnote marked as  will be provided (to the far left of the page if it�

refers to mathematical notation) if an error was found in the lecture.

Lecture 1 (01/14/08) [pp. 10-13]

In this course, the goal is to describe the universe of sets, . In this universe, two definitions hold: (1)•
everything is a , and (2) if  is a set and , then  is a set. In order to begin our study, we will need toset B C − B C
lay down the axioms of the set theoretical approach we will be using, namely, ZFC. We will initially examine

the first five axioms. The language we need at first is merely ._ œ −e f

Axiom 0 (nontriviality)

bB B œ B bB B − B ” B Â Ba b a b, or 

This axiom tells us there is at least one set in our universe. This is merely listed for clarity, as it can be

proved from the other axioms.

However, note that  and  with  prime  are the same sets, despite being\ œ #ß $ß & ] œ B À " Ÿ B Ÿ & Be f e f
described in a separate fashion. In order to know these are the same sets, we need the next axiom.

Axiom 1 (extensionality)

aBaC B œ C Í aD D − B Í D − Ca ba b

This axiom states that a set is uniquely described by its members: if two sets have the same members, they

are the same set.

Now that we have established the nontriviality of our universe and a fundamental property of set equality, we

need some tools to create sets. Since we have no knowledge of how the sets in our universe can look like, we

will use a more general approach. Let  be a formula with free variable . Ideally, we would like to be9a b@ @
able to assert the existence of a set , or more formally, . However, a logicale f a ba b a bB À B bC aB B − C Í B9 9
problem exists with such an attempt. Consider  to be the statement . Then our previous statement9a b@ @ Â @
would assert . This holds for all , and hence specifically , or .bC aB B − C Í B Â B B C bC C − C Í C Â Ca b a b
However, since  is , that is a contradiction. Hence, we cannot merely assert  is a setC Â C c C − C B À Ba b e fa b9
(this is known as Russell's Paradox). However, we can assert a more restricted version.

Axiom 3 (Comprehension-scheme)†

For each formula ,  9 9a b a ba ba b@ß A aA aBbC aD D − C Í D − B • Dß A‡

Here, we say that  is a set with . Note this avoids Russell's Paradox, because C C œ D − B À Dß A D − Be fa b9
ensures  is an existent set, and  is reduced to a mere Boolean condition. Effectively,  is a set thatD Dß A C9a b
contains elements  of  which satisfy  (loosely speaking,  is a subset of ). Initially, this axiom mayD B Dß A C B9a b
seem useless for bootstrapping ourselves a set, as we would still need an initial set  to draw elements from.B

† Note this axiom is numbered 3. These notes will follow the book's notation, namely that axiom 2 is the impractical Foundation

axiom, studied in chapter 3. For clarity, axioms will generally be referred to by name and not number, as to avoid confusion.
‡ Henceforth,  will represent a tuple of free variables, .A A ßA ß ÞÞÞß Aa b" # 8



Robert Krzyzanowski Math 504: Set Theory            Lecture Notes         M

2

However, note we do not need to be explicitly aware of the contents of , merely its existence. From this, weB
can prove the existence and structure of at least one set.

Proposition 1 There exists a unique set with no elements.

Proof. Applying  to Comprehension, we know  . Note 9a b a b@ ´ @ Á @ bC aD D − C Í D − B • D Á D D Á D
is always false, so that ; in other words,  has no elements. Now, let  and  be sets with nocbD D − C C B Ca b
elements. Then , since the precedent  is always false (  has no elements) as is theaD D − B Í D − C D − B Ba b
antecedent . Hence, by extensionality, . D − C B œ C �

Definition 1* The unique set with no elements is called the  and is denoted .empty set g

We have now explicitly constructed a set. Note we can not construct any more sets using just these three

axioms (see the appendix of Lecture 1 for a proof). To construct more, we will need to use the empty set to

create new sets. The next axiom allows us to do this.

Axiom 4 (pairing)

aB aC bD B − D • C − Da b

In other words, for any two sets  and  there is a set  which contains them. A stronger version of thisB C D
axiom would specifically indicate the existence of the smallest such set: . However, note this can bee fBß C
proven.

Proposition 2* If  and  are sets, there is a unique set  which contains only elements of  and .B C D B C

Proof. To prove the proposition, we must show . By non-aB aC bxD aA ÐA − D Í A œ B ” A œ CÑ
triviality, let  and  be sets. By pairing, . By Comprehension with B C bD B − D • C − D @ ´ @ œ B ”w w wa b a b9
@ œ C,

bD aA A − D Í A − D • A œ B ” A œ C .a ba bw

However, note that  and , soA œ B Ê A − D A œ C Ê A − Dw w

a b a ba bA − D • A œ B ” A œ C Í A œ B ” A œ Cw  , and hence,

aB aC bD aA A − D Í A œ B ” A œ C Ñ(  .

To prove  is unique, let  be another such set. If  is a set,  andD D A A − D Í A œ B ” A œ Cw

A − D Í A œ B ” A œ C A − D Í A − D D œ D Dw w w so therefore . Then by extensionality, , and hence  is

unique. �

Definition 2* If  and  are sets, let  represent  as in Proposition 2. If ,  isB C Bß C D B œ C Bß Be f e f
represented as .e fB

Example 1 By Proposition 2,  exists and is unique. We have now constructed a non-e f e f9 9 9ß œ
empty set! Similarly, , and  exist and are unique.e f e f e fe f e f e fe f9 9 9 9 9 9ß ß ß ß

Ä Using only axioms 0 4, show there exists a set  that has at least  elements. D $

With the aid of Definition 2, we can define ordered pairs (and are assured of their existence by Prop. 2):

Definition 3 If  and  are sets, let  represent , called an .B C ØBß CÙ B ß Bß Ce fe f e f ordered pair

Ä Using only axioms 0 4, prove   . aBaC a? a@ ØBß CÙ œ Ø?ß @Ù Í B œ ? • C œ @a b
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Axiom 5 (union)

�1 aB bC aD aA D − B • A − D Ê A − Ca ba b

Informally, this axiom asserts there is a set which contains the elements of each set in . Intuitively, theB
smallest such set would be the union of all sets in . Although we could simply assert a stronger form of theB
axiom which asserts the existence of the union, it can be proven from the earlier axioms.

Proposition 3* If  is a set, there exists a unique set which has only elements of sets of  .B C B

Proof . . The proposition is proved if we can show IgnoringaB bxC aA bD A − D • D − B Í A − Ca ba b
uniqueness, the first implication is assured by the union axiom; that is, since the union axiom holds for all ,D
there of course exists a  such that:D

aB bC aA bD D − B • A − D Ê A − Cw wa ba b .

By Comprehension with , we know9a b@ß A ß A ´ @ − A • A − A" # " " #

a? a@ aB bC aA A − C Ê A − B • A − @ • @ − ?a ba b .

Choose , and rename  to  and  to . ThenB œ C @ D ? Bw

aB aD bC aA A − C Ê A − C • A − D • D − Ba ba bw .

However, note , so that .a b a b a bA − D • D − B Ê A − C ÐA − C • A − D • D − B Ñ Í A − D • D − Bw w

Applying this to the previous statement, we obtain

  .aB aD bC aA ÐA − C Ê ÐA − D • D − BÑÑ

Finally, since this holds for all , we knowD

  .aB bC aA ÐA − C Ê bDÐA − D • D − BÑÑ

To prove uniqueness, assume for a set  there are two such  and .  Then  andB C C A − C Í bDÐA − D • D − BÑw

similarly . Therefore, . By extensionality, . A − C Í bDÐA − D • D − BÑ A − C Í A − C C œ Cw w w �

Notice the approach for proving uniqueness in the previous proposition was very similar to the proof of

uniqueness in Proposition 2. Henceforth, any such relatively trivial exposition of uniqueness will be simply

referred to as "by extensionality." We can now define set union.

Definition 4* If  and  are sets, let  represent the set  in Proposition 3 for . This is+ , +  , C B œ +ß ,e f
called the  of  and . For any set of sets , let  represent the set  in Proposition 3.union + , B œ B B Ce f -3 3

Example 2 Take .B œ ß B  C œ ß ß ße f e fe f e f e fe f9 9 9 9 9 9 and . Then C œ ß ße fe fe f9 9 9

Axiom 6 (Replacement-scheme)

�2 † For any formula  , .9 9 9a b c da b a bBß Cß Eß A aEaA aB − EbxC Bß Cß Eß A Ê b] aB − EbC − ] Bß Cß Eß A

Informally, this axiom states if the domain of a function is a set, so is its range. This is yet another set

construction tool. The careful explication (and hence why the axiom seems "long") of the axiom is due to

the goal of avoiding paradoxes. We can now explicitly state the existence of another family of sets.

Definition 5 If  and  are sets, define , the E F E ‚ F ´ Ø+ß ,Ù À + − Eß , − Fe f cartesian product.

�1 The union axiom begins with a universality not existentiality quantifier ( , not ); in the lectures, the latter was used.aB bB
�2 Technically,  is a free variable of , although this was not indicated in the lecture.E 9
† Note that . The latter was used in the lecture.bxB Bß A Í bB BßA • aBaC BßA • CßA Ê B œ C9 9 9 9a b a ba b a ba b a ba ba b a b
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Proposition 4 The product  exists and is unique.E ‚ F

Proof. First, note if  is a set,   by Definition 3. Then by Replacement,C aE aB − EbxD D œ ØBß CÙa b

aEbG aB − EbD − G D œ ØBß CÙa b.

By Comprehension, choose the  such that  only contains elements of the form  (i.e., the image ofG G ØBß CÙ
0 C ´ ØBß CÙ G CBa b ). By extensionality, such a  is unique. This holds for all , so

aF aC − F bxG aEaD − G bxC − F bxB − E D œ ØBß CÙa ba b .

Again, we can apply Replacement to obtain

aF bHaC − F bG − H aEaD − G bxC − F bxB − E D œ ØBß CÙa ba b 

Then  exists and is unique by Definition 4. By Comprehension, there is a  such that all- -
G−H G−HG © G¶

elements in  are of the form  and is unique by extensionality. In other words,¶ D œ ØBß CÙ

aF aEbx aD − b C − F b B − E D œ ØBß CÙ¶ ¶a ba b! ! . �

In conclusion, the entirety of most mathematics can be constructed from several logical rules and axioms. In

the most common system of axioms, Zermello-Fraenkel set theory, the first two axioms--nontriviliality and

extensionality--specify the existence and nature of equality of sets, respectively. The fourth axiom,

Comprehension, is used to specify the existence of sets that are a subset of some larger set and have property

9. Finally, the pair, union, and Replacement axioms are used to construct larger sets.

Appendix

The material here was not discussed in class, but may aid in an understanding of the material or the

completeness of the notes.

When we use set builder notation, we are doing so , and hence it is informal. However, we can provea priori

the functionality of set builder notation.

Proposition A1 If  is a set and  is a formula, there is a unique set  such that  if andE BßEßA F B − F9a b
only if  and .B − E BßEßA9a b

Proof. By Comprehension, there is at least one such set. Let  and  be such sets. Then F F B − F Íw

B − E • BßEßA B − F Í B − E • BßEßA B − F Í B − F9 9a b a b and , so that . By extensionality,w w

F œ F Fw. Hence,  is unique. �

Definition A1 If A is a set and  is a formula,  represents the unique9 9a b e fa bBßEß A B − E À Bß Eß A
set  in Proposition A1.F

Note when we discussed the existence and uniqueness of elements such as  in Example 1,e f e fe f e f9 9 9ß ß
we ignored the possibility that  and that the set notation is masking their true equality.e f e fe f e f9 9 9ß œ
However, this is easily overcome by noting that negating each side of the bijection in extensionality means

we have to find an element in one set that is not in the other; in this case,  for example.9
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Lecture 2 (01/16/08) [pp. 13-15]

Last time, we were introduced to five fundamental axioms of ZFC. Using these axioms, we can define some

"basic" concepts like functions and well-orders. The careful and formal notation of the earlier lecture will be

loosened in all future proofs and discussion. We will begin by proving a certain property of our university:

Proposition 1 There is no set of all sets.

Proof. By way of contradiction, assume there is such a universal set . By Comprehension, we can take•
a set . Equivalently, for , . However, for , this implies• • • • •w w w´ B − À B Â B B − B − Í B Â B B œe f
• • • •w w w w− Í Â . This is a logical contradiction, so our original assumption about the existence of a

universal set was invalid. �

If there is no set of all sets, then what is our universe ? We can not call  a set, because it is "too big", and• •
would not satisfy our axioms due to paradoxes such as containing itself. However, we can give a name and

definition to objects like  that are too big to be sets.•

Definition 1 If  is a formula and , then  is a .9 • 9a b e fa b@ß A + − B À Bß + class

Applying Definition 1 with , we know  is a class. Returning to our discussion of properties of9 •´ B œ B
sets, we can define the concept of a linear order and well-order.

Definition 2 Let  be a set. A  of , , is a binary relation  . If ,E E  V © E ‚ E +ß , − Vlinear order † a b
we write . Linear orders have several properties:+  ,

 1)       (+ Î +à anti-reflexive)

 2)    ( )+  , • ,  - Ê +  -à transitive

 3)  +  , ” ,  + ” + œ ,Þ

Definition 3 A linear order  on  is a  of  if for any non-empty set , there is a E E F © Ewell-order

least element  according to  i.e., ., − F  a- − F - Î ,( )a b

Example 1 Consider . Then  is a linear order. If we "stack"  next to  for everya b  ß  
element in , we can also order that, and it is  ordered lexicographically:  a b‚ ß 

a8ß 8 ß7ß 8 − 8ß7  8 ß7 Í 8 − 8 ” 8 œ 8 • 7  8w w w w w w w .a b a b a ba b

Example 2 The set  is not a linear order. The sets , , and  are linear orders, but not well-‚  ‘ ™
orders. For example, for , consider the subset of negative integers: there is no least element.™

We have defined well-orders before anything else because they have some very convenient and beautiful

properties, such as in Propositions 2 and 3 below.

Definition 4* The notation  signifies  is a  and a subset of  with 0 À E Ä F 0 E ‚ F 0 B œ Cfunction a b
denoting , and the property . A function is  if anda b a ba bBß C − 0 aB − EbxC − F C œ 0 B strictly increasing

only if for a well-order , .a b a b a bEß  B  C Ê 0 B  0 C

Proposition 2 If  is a well-order and  is strictly increasing, then .a b a b[ß  0 À [ Ä [ aB0 B   B

† Note  simply implies  for some formula .E © F E œ B − F Àe f9 9
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Proof. By way of contradiction, take  to be non-empty. Then  impliesG œ B − [ À 0 B  B G © [e fa b
G B 0 B  B 0 B − [ 0 B  B 0 B Â G has a least element, say , so that . But  and if  then  since! ! ! ! ! ! !a b a b a b a b
B 0 0 B   0 B 0! ! ! is its least element. Therefore, . However, this contradicts the fact  is strictlya b a ba b
increasing. Therefore, is empty. G �

Definition 5* If  is a well-order, a subset  is an  of  if and only ifa b[ß  M © [ [initial segment

a+ − M , − [ • ,  + Ê , − M M Á [ B − [ [ Ba b a ba b . Such a segment is  if . If , define  to be the proper

set .e fD − [ À D  B

Corollary 1 No well-order is isomorphic  to a proper initial segment of itself.†

Proof. Let  be an isomorphism, where  is a proper initial segment. Then  . But0 À [ Ä M M bB B − [ÏMa b
0 B   B 0 B Â Ma b a b by the previous proposition, so . However, that is a contradiction, so there is no such

isomorphism. �

Proposition 3 Suppose  and  are well-orders. Exactly one of the following is true:a b a b[ ß  [ ß " #

 1)  [ z [" #

 2) There is a proper initial segment  such that .M § [ [ z M
Î

" #

 3) There is a proper initial segment  such that .M § [ [ z M
Î

# "

Lemma 1  If  and  are isomorphic well-orders, there is a unique isomorphism between them.[ [" #

Proof. By way of contradiction, let  be such isomorphisms. Furthermore, assume the set0ß 1 À [ Ä [" #

G œ B − [ À 0 B Á 1 B G Be fa b a b" ! is non-empty. By definition,  has a least element, say . Without loss of

generality, assume . Then there is no  with , since  is certainly not , and any1 B  0 B B 1 B œ 0 B B Ba b a b a b a b! ! ! !

other choice violates the assumption that  is the least element of  (if there is such an , then  andB G B B  B! " " !

1 B  0 B 1 B Â 1 1 1a b a b" ! ! or  would not be strictly increasing). Hence, img , so  is not surjective. Therefore, 

is not an isomorphism, so  must be empty and there is only one such isomorphism. Note this lemma impliesG
an automorphism  is unique: the identity. 0 À [ Ä [ �

�3 Proof. (of Proposition 3) By Corollary 1 with Lemma 1, the three statements of Proposition are mutually

exclusive. Let . Then in the first case, we need to prove0 œ Bß C − [ ‚ [ À [ B z [ Ce fa b a b a b" # " #
‡

aB bxC ” cbC Bß C − 0a b a ba b .

Suppose that . Then  and . Therefore, . Ifa b a b a b a b a b a b a b a bBß C ß Bß D − 0 [ B z [ C [ B z [ D [ C z [ D" # " # # #

C Á D C  D [ D, assume without loss of generality that . However,  is then a proper initial segment of#a b
[ C Bß C Bß D 0 C Á DÞ

#
a b a b a b, so  this contradicts Corollary 1 . Therefore, we cannot have both  and  in  for �4

Similarly,  implies . For a continuation of the proof, see the next lecture.a b a bCß B ß Dß B − 0 C œ D

Appendix

There is one basic but nonetheless important result whose careful consideration was ommitted in the lecture

and above proofs, but is crucial to the proof of Proposition 3 and other developments.

Proposition A1 If  is a well-order and , then  is a well-order.a b a b[ß  \ © [ \ß  l\

† Where isomorphism is the usual existence of a bijective function. See page 14 of Kunen for a more careful treatment.

�3 In class,  was written; of course, this is not valid, as it is not necessarily true .[ B z [ B B − [" # #a b a b
‡ Where  denotes there is at most one .bxC ” cbC C
�4 In the lectures, it was said this contradicts Lemma 1; however, it is the Corollary which applies.
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Proof. By definition,  has a least element, so it has a  least element, say . Let \ © [   l B E © \\ !

be non-empty. Then , and hence has a least element, call it . Since , . Hence,E © [  B E © \ B  l B" ! \ "

E  l \ß  l has a  least element. By definition,  is a well-order. \ \a b �
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Lecture 3 (01/18/08) [pp. 15-17]

Previously, we introduced the definition and properties of well orders. We will continue our exposition on

well orders, and next examine ordinals.

Proof. (of Proposition 2.3, cont.) For the second case, consider dom  and . Then we mustB − 0 B  Bw

prove dom . By definition of , we know there is an isomorphism  from  to . Then B − 0 0 2 [ B [ 0 B 2w
" #a b a ba b

restricted to  is an isomorphism with . Hence, . This holds for all , so[ B [ 2 B B ß 2 B − 0 B  B" #
w w w w wa b a b a ba b a b

2 œ 0 C − 0 C  C C − 0 0 © [. Similarly, we can show if img  and , then img . Note dom  is an initialw w
"

segment, as is img  (not necessarily proper).0 © [#

To show either case 2 or 3 holds, we must prove dom  or img . By way of contradiction,0 œ [ 0 œ [" #

assume not. Then there is a least element dom  and a least element img . Furthermore,B − [ Ï 0 C − [ Ï 0" #

[ B œ 0 [ C œ 0 0 [ B [ C" # " #a b a b a b a bdom  and img , and then  is an isomorphism from  to . In other words,

a bBß C − 0 B − 0 B − [ Ï 0, which implies dom . However, this contradicts our earlier assumption that dom ."

Therefore, dom  or img . 0 œ [ 0 œ [" # �

The properties of well-orders illustrated in the Propositions in the previous lecture offer useful tools for

construction of further concepts. We will now turn our attention to ordinals.

Definition 1 A set  is if .B C − B • D − C Ê D − Btransitive 

Example 1 The empty set  is transitive. So is ; ; ; . Ag g gß g gß g ß g gß g ß gß ge f e f e f e fe f e f e f e f e fe f e f
non-transitive set is ; for example,  but .e f e f e fe f e fg g − g g Â g

Definition 2 A set  is an  ifB ordinal

   is transitive, and1) B

   is well-ordered by .2) B −

Example 2 The empty set  is an ordinal. So is . On the other hand,  isg gß g gß g ß ge f e fe f e f e fe f
transitive but not an ordinal, since .g Â ge fe f

Informally, we know ordinals are numbers that are used for counting, such as "first", "second", etc. However,

the above definition (due to Von Neumann) mirrors that concept in a set theoretic manner, as we will see

soon. We can now prove several results about ordinals.

Theorem 1 Every well-order is isomorphic to a unique ordinal.

With this result, note if  is an ordinal and  is transitive,  is an ordinal since subsets of well-orders! " ! "©
are also well-orders. The theorem will be proved in the next lecture.

Lemma 1  The following are all properties of ordinals.

   The empty set is an ordinal.1)

   If  is an ordinal, and ,  is an ordinal.2) ! " ! "−

   If ,  are ordinals and  then .3) ! " ! " ! "§ −
Î

 If ,  are ordinals,  or   or  or .%)  ! " ! " " ! ! " ! " " !© © œ − −a b
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Proof. (2) By transitivity of , . Now, suppose . Since  is transitive,  and .! " ! " ! ! !© B − C − B − C −
Now,  is a linear order of , so that implies . Hence,  is transitive. Well-ordering of  follows from− B −! " " "
Proposition 2.A1 (subsets of well-orders are well-ordered).

(3) Set membership  is a well-ordering on  and , so there exists a least member . If , then− − Ï B −! " # " ! !
either , , or . If , then by transitivity of , , and if , . However, thisB − − B B œ C − B − B œ −# # # ! # ! # # !
is a contradiction, so . Conversely, if , then since  is the least element of  and is well-B − B − Ï# # # " !
ordered by , we necessarily have . Hence,  and  share the same elements and are thus the same− B − ! ! #
set, so that .! "−

(4) Define  (where intersection is defined on page 13 of Kunen). Since  and  are transitive,# ! " ! "œ 
! " ! " # ! # " # © ß Á Á is transitive. Assume and . Then  and Therefore,  is an ordinal. By# ! # "§ §

Î Î
. 

the previous property,  and . By definition of intersection, . However, is a linear order of# ! # " # #− − − −
" # " # # # ! # " ! " and since , . Hence, we have a contradiction, so  or . In other words,  or− Â œ œ ©
" !© . �

Corollary 1 If  are ordinals, then .! " ! "Á zÎ

Proof. First, note  is a well-order of the ordinals. By Lemma 1.4, without loss of generality we can say−
! " !− G − G. Now let  be a non-empty set of ordinals. We can show there is a least ordinal. Let . If

! ! ! G œ g G, then  is the least element of . Otherwise,  is well-ordered and so it has a least element, which

is also the least element of . In other words,  is an ordinal. Hence, it is well-ordered by  and transitive,G G −
so  implies or  with . ! " ! " " ! ! "Á − − zÎ �

Finally, we can introduce a proposition about the set of all ordinals much similar to Proposition 2.1.

Proposition 1 The collection is an ordinal  is not a sete f! !À ´ S8 .

Proof. Assume it is. Then , since  would be an ordinal as in the proof of Corollary 1.S − S S8 8 8

However,  can not be an ordinal and a member of itself, as that would violate the linear order of .S −8

Hence,  is not a set. S8 �

In summary, we finished the proof which intuitively said there is only one unique well-order of a given

"size." Next, we introduced transitive and ordinal sets, and provided several properties. Ordinal sets are well-

ordered by set membership. Finally, in another attempt to describe our universe, we precluded the existence

of a collection of all ordinals, much like we earlier dismissed the existence of a set of all sets.
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Lecture 4 (01/23/08)

These lecture notes will be finished Wednesday or Thursday.


