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Abstract. Mutual stationarity for 〈κn | n < ω〉 says that for any stationary

sequence Sn ⊂ κn and any algebra on supn κn, there is a simultaneous witness
for stationarity i.e. an elementary substructure M such that for all n, sup(M∩
κn) ∈ Sn. We prove that mutual stationarity for 〈ℵn ∩ cof(ωk) | k < n < ω〉 is

consistent with the tree property at ℵω+1. Our second theorem is that mutual
stationarity for 〈ℵn ∩ cof(ωk) | k < n < ω〉 is consistent with the failure of

SCH at ℵω . Both theorems use large cardinal hypotheses.

1. Introduction

Stationary sets are a fundamental notion in modern set theory. They are related
to elementary substructures by identifying clubs as algebras as follows. For a regular
cardinal κ and κ < λ, S ⊂ κ is stationary iff for every algebra A on λ, there is an
elementary N ≺ A, such that sup(N ∩ κ) ∈ S. This notion has an analogue for
singular cardinals, called mutual stationarity.

Mutual stationary was introduced in 2001 by Foreman and Magidor in [6], and
was used to show the nonsaturation of the nonstationary ideal on Pω1(λ). It says
that, given an increasing sequence of regular cardinals 〈κn | n < ω〉 with limit κ, for
every sequence of stationary sets Sn ⊂ κn and algebra on κ, there is an elementary
structure N , which witnesses simultaneously the stationarity of each Sn. Here is
the formal definition:

Definition 1.1. Let R be a set of uncountable regular cardinals and S = 〈Sκ |
κ ∈ R〉 be a sequence of stationary sets with Sκ ⊆ κ. The sequence S is mutually
stationary if for every algebra A on sup(R) there is M ≺ A such that sup(M ∩κ) ∈
Sκ for every κ ∈ R ∩M .

Suppose now that R consists of an increasing sequence of cardinals 〈κn | n < ω〉
with limit κ. Given An ⊂ κn, we say that mutual stationarity holds at 〈An |
n < ω〉 if every sequence of stationary sets Sn ⊂ An is mutually stationary.

Restricting to countable cofinality, in [6] Foreman and Magidor showed that
mutual stationarity holds for 〈κn ∩ cof(ω) | n < ω〉. On the other hand, they
showed that this result does not generalize to higher fixed cofinality. In particular,
in L there is a sequence of stationary sets Sn ⊂ ℵn ∩ cof(ω1), n > 1, which is not
mutually stationary. This prompted the question of whether it is consistent to have
mutual stationarity at the ℵn’s for higher fixed cofinality.

Since then there has been a long line of results on this topic. It turns out that
mutual stationarity for uncountable cofinality both follows from large cardinals and
has large cardinal strength. Here are some highlights:
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(1) If each κn is supercompact, then every sequence of stationary sets Sn ⊂ κn
is mutually stationary.

(2) (Cummings-Foreman-Magidor) [3] If P is the Prikry forcing to singularize κ
and 〈κn | n < ω〉 is the corresponding Prikry sequence, then in V [P] every
sequence of stationary sets Sn ⊂ κn is mutually stationary.

(3) (Koepke) [8] From a measurable cardinal, one can force mutual stationarity
for 〈ℵ2n+1 ∩ cof(ω1) | 1 < n < ω〉.

(4) (Koepke-Welch) [9] A measurable cardinal is necessary to obtain mutual
stationarity for 〈κn ∩ cof(ω1) | n < ω〉.

Still, for a long time Foreman and Magidor’s original question remained open.
Then in 2019, Ben Neria [2] gave a positive answer. More precisely, he showed that
from ω supercompacts it is consistent that every sequence of stationary sets Sn ⊆ ωn
of some fixed cofinality is mutually stationary. His model is obtained by forcing with
Levy collapses to make the supercompacts be the ℵn’s. In Ben Neria’s model, SCH
holds at ℵω (and actually GCH is true). Moreover, approachability at ℵω holds
and therefore the tree property at ℵω+1 fails. This raises the questions whether
mutual stationarity at the ℵn’s for a fixed uncountable cofinality is consistent with
the failure of SCH; and whether it is consistent with the tree property. In this
paper we show the answer to both questions is yes.

Theorem 1.2. Suppose that 〈κn | n < ω〉 are ν+-supercompact cardinals, where
ν = supn κn. Then there is a forcing extension where for all k < ω, mutual sta-
tionarity holds for 〈ℵn ∩ cof(ωk) | k < n < ω〉 and the tree property holds at ℵω+1.

Theorem 1.3. Suppose that κ < µ < λ are supercompact cardinals. Then there is
a forcing extension where for all k < ω, mutual stationarity holds for 〈ℵn∩cof(ωk) |
k < n < ω〉 and SCH fails at ℵω.

The first theorem, together with Ben Neria’s model, shows that mutual station-
arity and the tree property are in a sense orthogonal.

The motivation for the second theorem is that the failure of SCH is an instance
of incompactness, since it requires small powerset below a singular κ and large
powerset at κ. In contrast, mutual stationarity can be viewed as a compactness
type principle, as it is similar in spirit to stationary reflection and follows from large
cardinals. In addition, a corollary of this theorem is that one can reduce the large
cardinal assumption of Ben-Neria’s result in [2].

The paper is organized as follows. In section 2 we go over some preliminaries
and facts which will be used to prove mutual stationarity. In section 3 we prove
Theorem 1.2. Then in section 4 we prove Theorem 1.3.

2. Obtaining Mutual Stationarity From Ideals

In this section we summarize techniques due to Ben Neria [2] we will use through-
out this paper to prove mutual stationarity. For a more detailed exposition of these
techniques, see [2, Section 2]. Note that [2] uses the Jerusalem forcing convention,
which this paper does not.

Definition 2.1. Suppose M ≺ A. We call an extension N of M an end-extension
of M above λ if M ≺ N ≺ A and N ∩ λ = M ∩ λ.

To show that a sequence is mutually stationary, we will work inductively, starting
with Mn and producing an end-extension Mn+1. The following standard result
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shows that it is enough to verify mutual stationarity on a tail, so we can start this
process at any finite stage n.

Fact 2.2. [6, Lemma 23] Let ν be a regular cardinal less than the least element of
a set of regular cardinals K. If {Sκ | κ ∈ K} is mutually stationary, and for all κ,
Sκ ⊆ cof(≤ ν), then for all λ1, . . . , λn greater than ν and not in K, and all sequences
of stationary sets Sλi ⊆ λi ∩ cof(≤ ν), the sequence {Sκ | κ ∈ K} ∪ {Sλi , . . . Sλn}
is mutually stationary.

End extensions will be constructed via ideals.

Definition 2.3. A nonprincipal κ-complete ideal I on κ is µ-closed if I+ has a ≤I -
dense subset D such that the ≤I� D is µ-closed, i.e. closed under < µ-sequences.

An ideal on κ is nonstationary if it extends the nonstationary ideal.

Lemma 2.4. [2, Proposition 2.12] Suppose µ < κ are regular cardinals and A is
an algebra extending 〈Hθ,∈, <θ〉 for some regular cardinal θ > 2κ. Let M ≺ A be a
substructure of size µ closed under sequences of size < µ, and let S ⊆ κ∩ cof(µ) be
a stationary subset of κ in M . Suppose also that at least one of the following holds:

(1) S consists of approachable points or
(2) either κ is inaccessible or κ = τ+ and τ<τ = τ .

If S is positive with respect to some nonstationary κ-complete (µ+1)-closed ideal
on κ, then for every regular cardinal λ ∈ M ∩ κ, there is a µ-closed substructure
N ≺ A of size µ which is an end-extension of M above λ and satisfies sup(N ∩κ) ∈
S.

Remark 2.5. For the proof in the case of the approachability assumption, see [2,
Remark 2.9] for details.

To check that every sequence of stationary sets is mutually stationary, it suffices
to show that these hypotheses are satisfied at each stage of the induction. Next,
we define a principle that captures the key hypothesis of Lemma 2.4.

Definition 2.6. Let ν < θ be uncountable cardinals. We say †νθ holds if for all
stationary S ⊂ θ, there is a nonstationary θ-complete, (ν+1)-closed ideal, for which
S is a positive set. Given a poset Q, we say that †θ,Q holds if 1Q forces that for

all uncountable ν with ν++ < θ, for all stationary Ṡ ⊂ θ, there is a nonstationary
θ-complete, (ν + 1)-closed ideal, for which Ṡ is a positive set.

By the previous lemma, to ensure that mutual stationarity holds below ℵω for
sets of points of cofinality ℵk, it suffices to check that †ℵkℵn holds for cofinitely many
n < ω and that all relevant stationary sets are approachable. More precisely:

Lemma 2.7. Suppose that for some k < ω, for all large n, †ℵkℵn holds and all
stationary sets of ℵn are approachable or GCH holds. Then mutual stationarity
holds for 〈ℵn ∩ cof(ℵk) | k < n < ω〉.

Proof. Fix k > 0 and a stationary sequence Sn ⊂ ℵn ∩ cof(ℵk), for n > k. Suppose
that A is an algebra on ℵω. Construct a sequence of elementary substructures
of A, 〈Mn | k < n < ω〉 by induction on n, as follows. Let Mk+1 be such that
sup(Mk+1∩ℵk+1) ∈ Sk+1. Now, suppose n > k+ 1 and we have defined Mn−1. By

†ℵkℵn , there is a nonstationary ℵn-complete (ℵk + 1)-closed ideal I on ℵn such that

Sn ∈ I+. Then by Lemma 2.4, there is an elementary substructure Mn of A, such
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that Mn is an end extension of Mn−1 above ℵn−1 and sup(Mn ∩ℵn) ∈ Sn. Finally,
let M =

⋃
nMn ≺ A. Then for all n > k, sup(M ∩ ℵn) = sup(Mn ∩ ℵn) ∈ Sn. �

Ideals as above are obtained from large cardinal embeddings.

Lemma 2.8. [2, Fact 2.14] Let j : V → M be an elementary embedding with
crit(j) = κ and κM ⊆M . Let P ∈ V be a poset and let G be generic for P. Suppose
that j(P) projects to P, so that every j(P)/G generic contains j”G. Working in
V [G], for every γ ∈ j(κ) \ κ and r ∈ j(P)/G, define an ideal Iγ,r by

Iγ,r = {ẊG | r j(P)/G γ /∈ j(Ẋ)}.

Then this ideal is well defined and has the following properties:

• Iγ,r is κ-complete and nonprincipal.

• Iγ,r is nonstationary iff r  γ ∈ j(Ċ) for every P-name Ċ for a club subset
of κ.
• If j(P)/P is (µ + 1)-closed for some µ < κ, then Iγ,r is a (µ + 1)-closed

ideal.

Proof. We only briefly outline the proof. More details can be found in Foreman’s
chapter in the handbook [5].

First, note that if ẊG = Ẋ ′G, then some condition in j′′G will force that j(Ẋ) =

j(Ẋ ′). Since any generic extension by j(P)/G must contain j′′G, any condition in

j(P)/G will force that j(Ẋ) = j(Ẋ ′). It follows that the ideal is well-defined.
Iγ,r is κ-complete because κ is the critical point of the embedding, and it is

nonpricipal, because γ ≥ κ. The second assertion of the lemma is clear.
The last claim follows from the fact that j(P)/P induces a generic for the poset

(I+γ,r,≤Iγ,r ). For example, if j is derived from a κ-complete measure U , one can

consider the following projection π from j(P)/G below r, to the poset (I+γ,r,≤Iγ,r ).
Let γ = [fγ ]U ; for q = [fq]U ∈ j(P), q ≤ r, set π(q) = {fγ(x) | fq(x) ∈ G}. Clearly,
π(q) is a positive Iγ,r set, since q forces that it is in the dual filter. In particular,

q j(P)/G γ ∈ j( ˙π(q)) := j({fγ(x) | fq(x) ∈ Ġ}); since q ≤ r, r certainly can’t force

γ to not be in j( ˙π(q)), so π(q) /∈ Iγ,r. Also, if q′ ≤ q, then π(q′) ⊂ π(q), so the map
is order preserving.

Finally, we verify that π is indeed a projection. Suppose Y = ẎG ≤I+γ,r π(q). We

claim that (in V ), A := {x | fq(x) 6 fγ(x) /∈ j(Ẏ )} ∈ U . If A is not in U , then

its complement must be, so q j(P)/G γ /∈ j(Ẏ ). Note that the empty condition

of j(P)/G forces γ ∈ j( ˙π(q)) ⇔ q ∈ j(Ġ). It follows that the empty condition

forces γ ∈ j( ˙π(q)) =⇒ γ /∈ j(Ẏ ). We conclude that r  γ /∈ j(Ẏ ) ∩ j( ˙π(q)), so
Y ∩π(q) ∈ Iγ,r. But Y ≤I+γ,r π(q) by assumption, so Y ∩π(q) ∈ I+γ,r, a contradiction.

Since A ∈ U , we can define a condition q′ = [x→ q′x]U ≤ q, such that for all x ∈ A,

q′x  fγ(x) ∈ j(Ẏ ) and if x /∈ A, q′x ⊥ qx. By density, one can find such a condition
in j(P)/G. Then π(q′) = Y . We conclude that π is a projection from j(P)/G to
(I+γ,r,≤Iγ,r ), so a generic for j(P)/G will induce a generic for (I+γ,r,≤Iγ,r ). �

To verify †ℵkℵn , we will need to use embeddings that give sufficiently closed quo-
tients, and we will need to check that the ideals we produce are nonstationary and
meet the requisite stationary set. To do so we will use the following lemma, which
is implicit in [2].
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Lemma 2.9. Let λ ≥ 2κ, and let j : V → M be a λ-supercompactness embedding
with critical point κ. Suppose P is a λ-cc poset such that P and j meet the hypotheses
of Lemma 2.8, and j(P)/P is (µ + 1)-closed. Let G be generic for P over V . Let
S ⊂ κ be a stationary set in V [G]. Then there is a condition r and ordinal γ such
that the ideal Iγ,r given by Lemma 2.8 is (µ + 1)-closed and nonstationary, and
S ∈ I+γ,r.
Proof. Since P is λ-cc, we can enumerate (possibly with repetitions) all P-names

for clubs in κ by ~C = 〈Ċi | i < λ〉. Since j is a λ-supercompactness embedding,

this sequence is contained in M . The sequence j′′ ~C = 〈j(Ċi) | i < λ〉 will also be
in M , and is a sequence of j(P)-names for clubs in j(κ). It follows that the empty

condition of j(P) forces that Ċ∗ =
⋂
i<λ j(Ċi) is a club in j(κ).

Let Ṡ be a P-name for S; Ṡ is forced to be stationary by some condition p ∈ G.
Then the empty condition of j(P)/G forces that j(Ṡ) is stationary in j(κ̌). Then

there is a condition r ∈ j(P)/G and an ordinal γ ≥ κ such that r  γ̌ ∈ j(Ṡ) ∩ Ċ∗.
Let I = Iγ,r. By Lemma 2.8, we conclude that I is κ-complete, nonprincipal,

nonstationary, and (µ+ 1)-closed. Since r  γ̌ ∈ j(Ṡ), by the definition of Iγ,r, we
have that S ∈ I+. �

3. Mutual Stationarity and the Tree Property

To obtain the tree property at ℵω+1 along with mutual stationarity below ℵω,
we use the arguments of [11, Section 3]. The main complication is that to use these
techniques, we cannot determine the cardinal that will become ℵ1 in advance.

We will use the following lemma to obtain the tree property.

Lemma 3.1. [11, Lemma 3.6] Let 〈κn | n < ω〉 be a strictly increasing sequence of
regular cardinals with supremum ν. Suppose that the following holds:

• κ0 is ν+-supercompact.
• For each n > 0, there is a generic ν+-supercompactness embedding with

domain V and critical point κn, added by a κn−1-closed forcing.

For each strong limit cardinal µ < κ0 with cof(µ) = ω, let Lµ be the poset Col(ω, µ)×
Col(µ+, < κ0). Then there is µ < κ0 such that in the extension by Lµ, the tree
property holds at ν+.

Theorem 3.2. Let 〈κn | n < ω〉 be an increasing sequence of ν+-supercompact
cardinals, with supremum ν. Then there is a forcing extension in which the tree
property holds at ℵω+1 and for all k < ω, mutual stationarity holds for 〈ℵn ∩
cof(ωk) | k < n < ω〉.
Proof. Let 〈κn | n < ω〉 be an increasing sequence of supercompact cardinals with

supremum ν. Let H = 〈Hn, Ḣ(n) | n < ω〉 be the full support iteration where each

Ḣ(n) is a Hn-name of Col(κn, < κn+1). Let H be generic for H. Note that in V [H],
κ0 remains supercompact and κn+1 = κ+n for all n < ω.

Fix n < ω and let j be a ν+ supercompact embedding in V with critical point
κn. Recall that H decomposes into H = Hn−1 ∗ Col(κn−1, < κn) ∗ (H/Hn); Hn−1
is below the critical point, while Col(κn−1, < κn) ∗ (H/Hn) is κn−1-closed. Note
that the poset j(H) projects to H; this projection is the identity on Hn−1, and
the induced quotient is κn−1-closed. It follows that for all n < ω, in V [H] there
is a generic ν+-supercompactness embedding with critical point κn, added by a
κn−1-closed forcing.



6 WILLIAM ADKISSON AND DIMA SINAPOVA

Applying Lemma 3.1, we see that there exists some strong limit cardinal µ with
cofinality ω so that in the extension of V [H] by a generic L for Lµ := Col(ω, µ)×
Col(µ+, < κ0), the tree property holds at ν+. In V [H][L], ℵn = κn+2 and ℵω = ν,
so the tree property holds at ℵω+1. Note that GCH holds in this model below ℵω.

Remark 3.3. It follows from work of the first author [1] that in this model, the
strong tree property holds at ν+ = ℵω+1. With a slight change, modifying Lµ to
be Col(ω, µ)× Col(µ++, < κ0), we could even obtain the super tree property.

Now we turn our attention to proving mutual stationarity in V [H][L]. Fix k < ω.
We want to show mutual stationarity for 〈ℵn ∩ cof(ℵk) | k < n < ω〉. By Lemma

2.7, since GCH holds in the final model below ℵω, it is sufficient to prove that †ℵkℵn
holds in V [H][L] for all n > k+ 2; this is accomplished by verifying the hypotheses
of Lemmas 2.8 and 2.9.

Fix n > k and in V [H][L], let S ⊆ κn be stationary. In V , let j be a κn+1-
supercompactness embedding with critical point κn. As before, j(H) projects to H
with a κn−1-closed quotient. Since Lµ is below the critical point, j(H×Lµ)/(H×Lµ)
is similarly κn−1-closed. In particular, we meet the hypotheses of Lemma 2.8.

Now consider the decomposition Lµ ×H = Lµ ×Hn+1 ∗H/Hn+1. Note that the
quotient H/Hn+1 is κn+1-distributive in V [Lµ], so in particular S is a stationary set
in V [Lµ×Hn+1]. Since Lµ×Hn+1 is κn+1-cc, we apply Lemma 2.9 in V [Lµ×Hn+1]
to conclude that there is some condition r ∈ Lµ × Hn+1 and ordinal γ such that
in V [Lµ × Hn+1], Iγ,r is nonstationary and ℵk + 1-closed and S ∈ I+γ,r. Since the
rest of the forcing is < κn+1-distributive, Iγ,r still has the desired properties in the
full extension. We have verified that †ℵkκn holds for all n > k. Since κn = ℵn+2, we

conclude that †ℵkℵn holds for all n > k + 2, completing the proof. �

4. Mutual Stationarity and the failure of SCH

Suppose that in V0, κ < µ < λ are all supercompact cardinals, with κ indestruc-
tibly supercompact. Let H be Col(κ,< µ) ∗ ˙Col(µ,< λ) ∗ ˙Add(κ, λ) -generic and
let V = V0[H].

Lemma 4.1. 1 There is a normal measure U∗ ∈ V on Pκ(λ+), such that if Uµ is
the projected measure to Pκ(µ), then for every γ < jUµ(κ), γ = jU∗(f)(κ) for some
f : κ→ κ.

Proof. Let jλ+ : V → M∗ be a λ+-supercompact embedding with critical point κ.
Let jµ : V → M be the projected ultrapower to a normal measure on Pκ(µ). Let
V = V̄ [E], where E is the Add(κ, λ)-generic. Let j̄µ : V̄ → M̄ be the restriction
of jµ to V̄ and j̄λ+ : V̄ → M̄∗ be the restriction of jλ+ to V̄ . Since |j̄µ(κ)|V =
|jµ(κ)|V = 2κ = λ, enumerate (in V ) the interval [κ, j̄µ(κ)) = 〈uα | α < λ〉. We
can view the Add(κ, λ)-generic E as a function from λ×κ→ κ, and let Eα : κ→ κ
be Eα(δ) = E(α, δ). Let E∗ = jλ+(E); a function from j̄λ+(λ)× j̄λ+(κ)→ j̄λ+(κ).
Next we make small changes to E∗ to obtain a generic F ∗ for j̄λ+(Add(κ, λ)). Set
F ∗ to be such that for all α < λ, F ∗(j̄λ+(α), κ) = uα, otherwise F ∗ coincides
with E∗. Since the change is captured by a condition, F ∗ is still generic, and by
construction, j̄λ+”E ⊂ F ∗. So now we can lift j̄λ+ to j′λ+ : V = V̄ [E]→ M̄∗[F ∗].

1We do not need this lemma, if we assume a slightly stronger large cardinal hypothesis. See
Remark 4.13.
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Claim 4.2. For every uα, there is a function f : κ→ κ, such that j′λ+(f)(κ) = uα.

Proof. Take f = Eα. Then j′λ+(f)(κ) = F ∗j′
λ+

(α)(κ) = F ∗(j′λ+(α), κ) = uα. �

We make the analogous change to jµ(E) to obtain a generic F for j̄µ(Add(κ, λ)),
such that for all α < λ, F (j̄µ(α), κ) = uα. Here although the change is not quite
captured by a condition, all of its initial segments are, so we still have that F is
generic. This argument is due to Gitik-Sharon [7].

Lift j̄µ to j′µ with respect to F . As in [4, Section 4.1], j′λ+ is obtained by a

normal measure Uλ+ on Pκ(λ+), and j′µ is obtained from its projection to a normal
measure on Pκ(µ).

�

Let Uλ+ be the normal measure on Pκ(λ+) from the above lemma, and let
Uλ be its projection to Pκ(λ). Also let Uµ be its projection to Pκ(µ) and let
U be its projection to a normal measure on κ. Set jλ+ := jUλ+ : V → Mλ+ ,
jλ := jUλ : V →Mλ, jµ := jUµ : V →Mµ, and j := jU : V →M .

Let k : M → Mµ be k([f ]U ) = jµ(f)(κ). Then jµ = k ◦ j, and by construction
each uα is in the range of k. It follows that crit(k) ≥ jµ(κ). And actually, since
jµ(κ) is also in the range of k, crit(k) > jµ(κ), and so j(κ) = jµ(κ).

Similarly, let k∗ : M →Mλ+ be k∗([f ]U ) = jλ+(f)(κ). Then jλ+ = k∗◦j, and by
construction each uα is in the range of k∗. It follows that crit(k∗) ≥ jµ(κ) = j(κ).
Since |j(κ)|V = λ < |jλ+(κ)|V = λ++, we must have crit(k∗) = j(κ).

Let P be the Prikry forcing with respect to U with interleaved collapses and
guiding generics to make κ = ℵω and preserve cardinals above κ. More precisely,
conditions in P are of the form p = 〈d, α0, c0, ..., αn−1, cn−1, A,C〉, where lh(p) = n
and:

(1) 〈αi | i < n〉 is an increasing sequence in κ, A ∈ U ;
(2) d ∈ Col(ω1, < α0) if n > 0; otherwise d ∈ Col(ω1, < κ).
(3) ci ∈ Col(α++

i , < αi+1) if i < n− 1, and cn−1 ∈ Col(α++
n−1, < κ);

(4) dom(C) = A, for each α ∈ A, C(α) ∈ Col(α++, < κ), [C] ∈ K, where K is
a guiding generic for Col(κ++, < j(κ))Ult(V,U).

Let us briefly describe how we get K. The number of antichains in C :=
Col(κ++, < j(κ))Ult(V,U) is κ++; enumerate them by 〈Ai | i < κ++〉. By the
high critical point of k, we have that k(C) = C and for each i, k(Ai) = k”Ai = Ai.
So working in Mµ, which is closed under sequences of length κ+, and satisfies that C
is < κ++-closed, build a decreasing sequence of conditions meeting these antichains.
Then use them to define K.

Let G be P-generic. We have the following standard properties about V [G]:

(1) κ is preserved by the Prikry lemma, and becomes ℵω.
(2) P has the κ+ chain condition, so cardinals above κ are preserved, and

2ℵω = λ = ℵω+2.
(3) G adds a Prikry sequence 〈κn | n < ω〉, with limit κ, such that for all

A ∈ U , for all large n, κn ∈ A;
(4) G adds a sequence 〈c∗n | n < ω〉, such that each c∗n is generic for ColV (κ++

n , <
κn+1).

We will show that V [G] is the desired model for theorem 1.3. To do that we

will show that in V [G], †ℵkℵn holds for all k > 0 and all large n > k and that all
relevant stationary sets consists of approachable points. We only have to worry
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about cardinals of one of the following three types: κn, κ+n , and κ++
n for n < ω, as

the other cardinals below κ are collapsed.
Fix k > 0. Let ν < κ be such that some condition in P forces that ν = ℵ̇k. For

the rest of the section, whenever we talk about V [G] assume we are working below
this condition. We will show that in V [G], for all large n, we have †νκn , †ν

κ+
n

, and

†ν
κ++
n

.

4.1. The Prikry points.

Lemma 4.3. In V , for all regular τ with ν < τ < κ, we have that †νκ,Col(τ++,<κ)

holds. Moreover, there is a measure one set Aτ ∈ U , such that for all α ∈ Aτ ,
†να,Col(τ++,<α) holds.

Proof. Note that †νκ,Col(τ++,<κ) asserts the existence of certain ideals on κ, which

are subsets of 2κ. We will construct these ideals from the supercompactness of κ,
using Lemma 2.8.

Fix τ . Recall that jλ : V → Mλ is the λ-supercompactness embedding with
critical point κ, projecting to U . I.e. U = {A | κ ∈ jλ(A)} is the normal measure
used in the definition of the Prikry forcing. We have that jλ(Col(τ++, < κ)) absorbs
Col(τ++, < κ) and jλ(Col(τ++, < κ))/Col(τ++, < κ) is τ++-closed, so by Lemma
2.8 every ideal Iγ,r will be (ν + 1)-closed. It remains to verify that for any name

for a stationary set Ṡ, there is some choice of (γ, r) such that the ideal Iγ,r is

nonstationary and Ṡ is a positive set with respect to this ideal. This follows from
Lemma 2.9, noting that Col(τ++, < κ) is κ-cc. So, †νκ,Col(τ++,<κ) holds in V .

Since Mλ
λ = M2κ

λ ⊆ Mλ, in Mλ, †νκ,Col(τ++,<κ) also holds. It follows that for

U -many α, †να,Col(τ++,<α) holds in V . �

Now, let Aτ be given by the above lemma for each τ > ν and set A∗ = 4τ<κAτ .
By forcing below A∗, we may assume that each Prikry point κn ∈ A∗.

Lemma 4.4. For all large n, in V , †ν
κn,Col(κ

++
n−1,<κn)

holds.

Proof. Fix n such that it is forced that ν < κn−1. By choice of A∗, we have that
for all τ , for all α ∈ A∗ \ (τ + 1), †να,Col(τ++,<α) holds in V . In particular, for all

α ∈ A∗ with α > κn−1, †ν
α,Col(κ++

n−1,<α)
holds in V . Since κn ∈ A∗ with κn > κn−1,

we have that †ν
κn,Col(κ

++
n−1,<κn)

holds in V . �

As a corollary, by definition of †, we have that:

Lemma 4.5. For all large n, †νκn holds in V [c∗n−1].

Lemma 4.6. For all large n, †νκn holds in V [〈c∗i | i < n〉].

Proof. As before, fix n large enough, so that κn−1 is above ν. We use that 〈c∗i | i <
n− 1〉] is generic for a forcing of size κn−1; denote this poset by C<n−1.

Suppose that S ⊂ κn is a stationary set in V [〈c∗i | i < n〉] = V [〈c∗i | i <
n − 1〉][c∗n−1] = V [c∗n−1][〈c∗i | i < n − 1〉]. Work in V1 = V [c∗n−1]. Let Ṡ ∈ V1
be a C<n−1-name for S. Since C<n−1 has size κn−1, there is a generic condition

c ∈ C<n−1, such that S1 = {α | c V1

C<n−1
α ∈ Ṡ} is stationary.

Let I1 be the ideal given by †νκn in V1 applied to S1. Now, going back to
V [〈c∗i | i < n〉] = V1[〈c∗i | i < n − 1〉], let I be the ideal obtained from I1. More
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precisely, I = {X ⊂ κn | ∃X̄ ∈ I1, X ⊂ X̄}. Then I is a κn-complete ideal, since
the size of C<n−1 is less than the completion of I1. Also, since S1 ∈ I+1 , and S1 ⊂ S,
we have that S ∈ I+. Also if A ⊂ κn is nonstationary, since C<n−1 is small enough,
there is a nonstationary A1 ∈ V1 with A ⊂ A1, and so A ∈ I. Finally, let D be the
(ν + 1)-closed dense subset of I+1 . This induces a closed dense subset of I+.

It follows that I is as desired. �

Lemma 4.7. In V [G], for all large n, †νκnholds.

Proof. First note that V [G] projects to V [〈c∗i | i ≤ n〉] by a quotient that does
not add subsets of κn+1 (this is [10, Theorem 3.2]), and †νκn is a statement about
subsets of P(κn). So if †νκn holds in V [〈c∗i | i ≤ n〉], then in also holds in V [G].

Next we show that †νκn holds in V [〈c∗i | i ≤ n〉]. Suppose that S ⊂ κn is a
stationary set in V [〈c∗i | i ≤ n〉] = V [〈c∗i | i < n〉][c∗n]. Here c∗n is generic for
Col(κ++

n , < κn+1), and so S ∈ V [〈c∗i | i < n〉]. Let I ∈ V [〈c∗i | i < n〉] be the
nonstationary κn-complete, ν + 1-closed ideal on κn, with S ∈ I+, given by †νκn
in that model. Since Col(κ++

n , < κn+1) does not add new subsets of κn, I is still
a non stationary ideal in the bigger model V [〈c∗i | i < n〉][c∗n]. Moreover, since
Col(κ++

n , < κn+1) is κ++
n -closed, I is still κn-complete and ν + 1-closed. So I is as

desired. �

4.2. The first successors, κ+n .

Lemma 4.8. In V [G], we have that for all large n, †ν
κ+
n

holds.

Proof. Note that 2κ
+
n = κ++

n . Since the quotient to get from V [G] from V [〈c∗i |
i ≤ n〉] does not add subsets of κn+1, it is enough to show that †ν

κ+
n

holds in

V [〈c∗i | i ≤ n〉]. Also, since 〈c∗i | i ≤ n − 1〉 is a generic for a forcing of size
κn, by similar arguments as in Lemma 4.6, it is enough to show †ν

κ+
n

holds in

V [c∗n] = V [Col(κ++
n , < κn+1)].

Claim 4.9. For all large n, †ν
κ+
n

holds in V .

Proof. Recall that V is the extension of V0 by the poset Col(κ,< µ) ∗ ˙Col(µ,<

λ) ∗ ˙Add(κ, λ). Let i : V0 → M0 be a 2µ = λ-supercompactness embedding with

critical point µ. Note that i(Col(κ,< µ)∗ ˙Col(µ,< λ)∗ ˙Add(κ, λ)) absorbs Col(κ,<

µ) ∗ ˙Col(µ,< λ) ∗ ˙Add(κ, λ) and the quotient is κ-closed.

By Lemmas 2.8 and 2.9, noting that Col(κ,< µ)∗ ˙Col(µ,< λ)∗ ˙Add(κ, λ) is λ-cc
and κ-closed, we conclude that †νµ holds in V .

Now we use the λ-supercompactness embedding with critical point κ, jλ : V →
Mλ. Since 2µ = λ and Mλ

λ ⊂ Mλ, we also have that †νµ (i.e. †νκ+) holds in Mλ.
Then there is a measure one set A ∈ U such that for all α ∈ A, †να+ holds in V . It
follows that for all large n, κn ∈ A, and so †ν

κ+
n

holds in V . �

Claim 4.10. For all large n, †ν
κ+
n

holds in V [c∗n].

Proof. Let n be such that †ν
κ+
n

holds in V . Suppose that S ⊂ κ+n be a stationary set

in V [c∗n]. Since Col(κ++
n , < κn+1) does not add any subsets of κ+n , S is a stationary

set in V . Let I ∈ V be a nonstationary, κ+n -complete, (ν + 1)-closed ideal on κ+n
with S ∈ I+, given by †ν

κ+
n

in V . Since Col(κ++
n , < κn+1) is κ++

n -closed, I remains

a nonstationary, κ+n -complete, (ν + 1)-closed ideal in V [c∗n]. �
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�

4.3. The second successors, κ++
n .

Lemma 4.11. In V , †νλ,Col(λ,<τ) holds for all τ > λ.

Proof. Let τ > λ. Let V ′ be a generic extension of V0 by Col(κ,< µ), and let
j : V ′ →M be a τ -supercompact embedding with critical point λ. Since j(Col(µ,<

λ) ∗ ˙Add(κ, λ) ∗ ˙Col(λ,< τ)) projects to Col(µ,< λ) ∗ ˙Add(κ, λ) ∗ ˙Col(λ,< τ),

we can lift j to j : V ′[Col(µ,< λ) ∗ ˙Add(κ, λ) ∗ ˙Col(λ,< τ)] → M∗. Moreover,

P := Col(µ,< λ) ∗ ˙Add(κ, λ) ∗ ˙Col(λ,< τ) is τ -c.c.

Let S be stationary in V ′[Col(µ,< λ) ∗ ˙Add(κ, λ) ∗ ˙Col(λ,< τ)]. By Lemma
2.9 that there is some condition r ∈ j(P)/P and ordinal γ ∈ j(κ) \ κ so that the
ideal Iγ,r is nonstationary and S ∈ I+γ,r. Note also that the quotient j(Col(µ,<

λ)∗ ˙Add(κ, λ)∗ ˙Col(λ,< τ))/(Col(µ,< λ)∗ ˙Add(κ, λ)∗ ˙Col(λ,< τ)) is κ-closed. Since
ν < κ, from Lemma 2.8, we can conclude that Iγ,r is λ-complete, nonprincipal, and
(ν + 1)-closed.

Since V is the extension of V ′ by Col(µ,< λ) ∗ ˙Add(κ, λ), we conclude that in
V , †νλ,Col(λ,<τ) holds. �

Remark 4.12. By the same argument as above, we can get †νλ,Col(λ,<γ) in V even

if γ is not a cardinal. We just have to use a |γ|+-supercompact embedding with
critical point λ.

Remark 4.13. Next we will use Lemma 4.1. We note that we do not need it if we
assume a slightly stronger large cardinal hypothesis that there is a normal measure
on Pκ(λ), such that for measure one many τ < κ, τ is < j(κ)-supercompact in the
ultrapower.

Lemma 4.14. For all large n < ω, in V [G] we have that †ν
κ++
n

holds.

Proof. As before, it is enough to show that †ν
κ++
n

holds in V [c∗n].

Recall that we chose a λ+-supercompact embedding with critical point κ, jλ+ :
V →Mλ+ , so that the corresponding k∗ : M →Mλ+ has critical point j(κ). (Here
M = Ult(V,U) where U is the projected normal measure on κ, used in the definition
of the Prikry forcing).

Claim 4.15. There is a measure one set A ∈ U such that for all α ∈ A and all τ
with α++ < τ < κ we have †να++,Col(α++,<τ) holds in V .

Proof. Let λ < γ < j(κ), γ a cardinal in M . By Lemma 4.11 and the subsequent
remark, we have that †νλ,Col(λ,<γ) holds in V . Since |γ|V ≤ λ, 2λ = λ+, and

(Mλ+)λ
+ ⊂Mλ+ , we also have that, †νλ,Col(λ,<γ) holds in Mλ+ .

By the high critical point of k∗, k∗(γ) = γ, so by the elementarity of k∗, M |=
†νλ,Col(λ,<γ).

We have shown that in M , for all τ with λ < τ < j(κ), †νλ,Col(λ,<τ) holds. So

there is A ∈ U , such that for all α ∈ A, and all τ with α++ < τ < κ we have
†να++,Col(α++,<τ) holds in V . �

It follows from the claim that for all large n, V |= †ν
κ++
n ,Col(κ++

n ,<κn+1)
. So for all

large n, †ν
κ++
n

holds in V [c∗n]. �
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4.4. Mutual stationarity in the final model. We can finally prove the main
theorem of the section:

Theorem 4.16. In V [G], we have the failure of SCH at ℵω and mutual stationarity
for 〈ℵn ∩ cof(ℵk) | k < n < ω〉 for every k < ω.

Proof. Clearly SCH at ℵω fails. Fix k < ω. It is a well-known fact due to Shelah [12]
that for all n > k + 1, ℵn ∩ cof(ℵk) is approachable. Mutual stationarity follows

since in V [G], we have †ℵkℵn for all large n. �

We end with the following open questions:

Question. Do the analogues of our two main theorems hold for singular cardinals
of uncountable cofinality? In particular, for any countable ρ, can we obtain mutual
stationarity for 〈ℵη ∩ cof(ℵρ+1) | ρ+ 1 < η < ω1〉 together with the failure of SCH
at ℵω1

? What about together with the tree property at ℵω1+1?

Question. Can we obtain a model where mutual stationarity for 〈ℵn ∩ cof(ℵk) |
k < n < ω〉 holds together with reflection at ℵω+1 and the failure of SCH at ℵω?
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