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Abstract. We give another proof that from large cardinals the failure of SCH

at ℵω is consistent with mutual stationarity at ⟨ℵn ∩ cof(ωk) | k < n < ω⟩ for
all k < ω. This new proof uses extender-based forcing rather than standard

Prikry forcing. We then show that it is consistent for these properties to hold

along with stationary reflection at ℵω+1.

1. Introduction

A subset S of κ is stationary if S intersects every closed and unbounded subset
of κ. Stationary sets have an equivalent model-theoretic definition: given a regular
cardinal κ and a cardinal λ > κ, a set S ⊆ κ is stationary if and only if for every
algebra A on λ, there is an elementary submodel N ≺ A such that sup(N ∩κ) ∈ S.

This characterization was used by Foreman and Magidor [6] to define mutual
stationarity. Given a sequence of regular cardinals ⟨κn | n < ω⟩ with limit κ, a
sequence Sn ⊆ κn of stationary sets is mutually stationary if for every algebra on
κ, there is a single elementary substructure N that simultaneously witnesses the
stationary of each set. In full generality, we have the following definition:

Definition 1.1. Let R be a set of uncountable regular cardinals, and let S⃗ =

⟨Sκ | κ ∈ R⟩ be a sequence of stationary sets with Sκ ⊆ κ. The sequence S⃗ is
mutually stationary if for every algebra A on sup(R), there is N ≺ A such that
sup(N ∩ κ) ∈ Sκ for all κ ∈ R ∩N .

If R is a cofinal sequence in some singular cardinal κ, the statement that every
sequence of stationary sets ⟨Sκ | κ ∈ R⟩ is mutually stationary can be viewed as
property of κ.

It is sometimes useful to only consider certain stationary sets. Suppose R =
⟨κn | n < ω⟩, with limit κ, and let An ⊆ κn for each n < ω. We say that mutual
stationarity holds at ⟨An | n < ω⟩ if every sequence of stationary sets Sn ⊆ An

is mutually stationary. In particular, we might often restrict to stationary sets of
certain fixed cofinality, setting each An to be κn ∩ cof(τ) for some regular τ .

Restricting to stationary sets of countable cofinality, Foreman and Magidor [6]
showed that mutual stationarity always holds at ⟨κn ∩ cof(ω) | n < ω⟩. This
behavior does not generalize to larger fixed cofinalities; they showed that in L,
there is a sequence of stationary sets Sn ⊆ ℵn ∩ cof(ω1) for n > 1 that is not
mutually stationary. This sparked the following question: is it consistent for mutual
stationarity to hold at the ℵn’s, restricted to fixed cofinality greater than ℵ0?

In the past few decades, there have been a number of partial results. Cummings,
Foreman, and Magidor [5] showed that in a generic extension for Prikry forcing
to singularize a cardinal κ, if ⟨κn | n < ω⟩ is the Prikry sequence then every
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sequence of stationary sets Sn ⊆ κn is mutually stationary. Koepke [9] forced
mutual stationarity for ⟨ℵ2n+1 ∩ cof(ω1) | 1 < n < ω⟩ from a measurable cardinal,
and Koepke and Welch [10] showed that a measurable cardinal is necessary to have
mutual stationarity for ⟨κn ∩ cof(ω1) | n < ω⟩.

Recently the question was answered by Ben-Neria [2], who showed that from
countably many supercompacts it is consistent that every sequence of stationary
sets Sn ⊆ ℵn of some fixed cofinality is mutually stationary. His model uses an
iteration of Levy collapses, forcing to make the supercompacts become the ℵn’s. In
this model, the singular cardinal hypothesis holds at ℵω.

In [1], Sinapova and the author showed that it was consistent from three su-
percompact cardinals for SCH to fail at ℵω while mutual stationarity holds at
⟨ℵn ∩ cof(ℵk) | n > k⟩ for all k < ω. The forcing used was a Prikry forcing with
interleaved collapses, singularizing a supercompact cardinal and then using the re-
flection along the Prikry sequence to obtain mutual stationarity. In this model
there are many failures of GCH below ℵω.

Another property stemming from stationary sets is stationary reflection. A sta-
tionary set S ⊆ κ reflects at α if S ∩α is stationary in α; we say that S reflects if S
reflects at some α. We say that stationary reflection holds at κ if every stationary
subset of κ reflects.

From countably many supercompacts, Magidor [11] forced stationary reflection
to hold at ℵω+1. SCH holds in this construction. Combining stationary reflection
with the failure of SCH has been the subject of much recent work. Ben-Neria,
Hayut, and Unger [3] and Poveda, Rinot, and Sinapova [12] independently proved
that it is consistent for SCH to fail at a singular strong limit cardinal κ with the
stationary reflection at κ+. Poveda, Rinot, and Sinapova [13] added collapses to
their construction, showing that stationary reflection at ℵω+1 and and the failure
of SCH at ℵω could consistently coexist.

Their construction is a complicated and intricate iteration scheme, which uses
extender-based forcing as its starting point. Extender based forcing obtains the fail-
ure of SCH by adding many new cofinal sequences to a singular cardinal rather than
singularizing a regular cardinal with large powerset. Collapses can be interleaved
into extender-based forcings, as described by Gitik in [8], and these techniques can
be used to force properties at ℵω that may be difficult or impossible to obtain
by singularizing a cardinal. The construction of [13] uses extender-based forcing
with collapses to violate SCH, and then iterates in a Prikry-type way to destroy all
nonreflecting stationary sets.

In this paper, motivated by that construction, we give another proof that the
failure of SCH and mutual stationarity for a fixed cofinality can consistently hold
at ℵω, using extender-based forcing with interleaved collapses. While this requires
a stronger large cardinal hypothesis, countably many supercompacts rather than
only three, the failure of SCH is in some sense a stronger example of incompactness
than in the model of [1]. In that model, GCH failed at every third cardinal below
ℵω, while in the model in this paper GCH will hold below ℵω.

Finally we will combine these techniques with the construction of [13] to obtain
the same mutual stationarity result, along with stationary reflection at ℵω+1 and
the failure of SCH at ℵw. In particular, we prove the following theorem:

Theorem 1.2. Suppose there is a sequence of indestructibly supercompact cardinals
of length ω + 2. Then there is a forcing extension in which the following hold:
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(1) 2ℵn = ℵn+1 for all n < ω
(2) 2ℵω = ℵω+2

(3) Stationary reflection holds at ℵw+1

(4) Mutual stationarity holds at ⟨ℵn ∩ cof(ℵk) | k < n < ω⟩ for all k < ω.

In Section 2, we will discuss the basic techniques we will use to obtain mutual
stationarity. These techniques were developed by Ben-Neria [2]; they provide a way
to obtain mutual stationarity from the existence of ideals with certain properties.
In Section 3, we define Gitik’s extender-based forcing with interleaved collapses.
Section 4 uses this forcing to give a novel proof that SCH can fail at ℵω while
mutual stationarity holds at the ℵn’s for any fixed cofinality. Finally, in Section 5
we prove the main theorem.

2. Preliminaries

In this section we summarize techniques due to Ben-Neria [2] we will use through-
out this paper to prove mutual stationarity. The key technique in Ben-Neria’s
argument was using the existence of closed nonstationary ideals to construct the
elementary submodels needed for mutual stationarity. We give an overview of these
methods; for more details see [2, Section 2] or [1, Section 2].

Definition 2.1. Let R be a set of uncountable regular cardinals and S = ⟨Sκ |
κ ∈ R⟩ be a sequence of stationary sets with Sκ ⊆ κ. The sequence S is mutually
stationary if for every algebra A on sup(R) there is M ≺ A such that sup(M ∩κ) ∈
Sκ for every κ ∈ R ∩M .

Definition 2.2. Suppose that R is an increasing sequence of cardinals ⟨κn | n <
ω⟩ with limit κ. Given An ⊂ κn, we will say that mutual stationarity holds at
⟨An | i < n < ω⟩ if every sequence of stationary sets Sn ⊂ An is mutual stationary.

Our goal is to construct the witness model inductively. Given some model Nk

witnessing that Sk is a stationary set, we wish to build an extension Nk+1 that
witnesses the stationarity of Sk+1, while still witnessing the stationarity of Sk. The
following definition captures the desired properties:

Definition 2.3. Suppose M ≺ A. We call an extension N of M an end-extension
of M above λ if M ≺ N ≺ A such that N ∩ λ = M ∩ λ.

By the following fact, it is enough to verify mutual stationarity on a tail, so we
can start this process at any finite stage n.

Fact 2.4. [6, Lemma 23] Let ν be a regular cardinal less than the least element of
a set of regular cardinals K. If {Sκ | κ ∈ K} is mutually stationary, and for all κ,
Sκ ⊆ cof(≤ ν), then for all λ1, . . . , λn greater than ν and not in K, and all sequences
of stationary sets Sλi ⊆ λi ∩ cof(≤ ν), the sequence {Sκ | κ ∈ K} ∪ {Sλi , . . . Sλn}
is mutually stationary.

These end-extensions will be constructed using ideals on κ.

Definition 2.5. A nonprincipal κ-complete ideal I on κ is µ-closed if I+ has a
≤I -dense subset D such that the restriction ≤I↾ D is µ-closed. An ideal on κ is
nonstationary if it extends the nonstationary ideal.
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Lemma 2.6. [2, Proposition 2.12 and Remark 2.9] Suppose µ < κ are regular
cardinals and A is an algebra extending ⟨Hθ,∈, <θ⟩ for some regular cardinal θ > 2κ.
Let M ≺ A be a substructure of size µ closed under sequences of size < µ, and let
S ⊆ κ ∩ cof(µ) be a stationary subset of κ in M . Suppose also that at least one of
the following holds:

(1) S consists of approachable points
(2) κ is inaccessible
(3) κ = τ+ and τ<τ = τ .

If S is positive with respect to some nonstationary κ-complete (µ+1)-closed ideal
on κ, then for every regular cardinal λ ∈ M ∩ κ, there is a µ-closed substructure
N ≺ A of size µ which is an end-extension of M above λ and satisfies sup(N ∩κ) ∈
S.

To show that suitable end-extensions exist, it suffices to verify the hypotheses
of Lemma 2.6 at each stage of the induction. To simplify this process, as in [1] we
define a principle which captures the key hypothesis of Lemma 2.6.

Definition 2.7. Let ν < θ be uncountable cardinals. We say †νθ holds if for all
stationary S ⊆ θ, there is a nonstationary θ-complete, (ν+1)-closed ideal, for which
S is a positive set. Given a poset Q, we say that †θ,Q holds if 1Q forces that for

all uncountable ν with ν++ < θ, for all stationary Ṡ ⊆ θ, there is a nonstationary
θ-complete, (ν + 1)-closed ideal, for which Ṡ is a positive set.

By the previous lemma, to ensure that mutual stationarity holds below ℵω for
sets of points of cofinality ℵk, it suffices to check that †ℵk

ℵn
holds for cofinitely many

n < ω and that all relevant stationary sets are approachable. More precisely:

Corollary 2.8. Suppose that for some k < ω, †ℵk

ℵn
holds for all large n, and every

stationary subset of ℵn ∩ cof(ℵk) consists of approachable points. Then mutual
stationarity holds for ⟨ℵn ∩ cof(ℵk) | k < n < ω⟩.

We build the ideals witnessing † via large cardinal embeddings as follows.

Lemma 2.9. [2, Fact 2.14] Let j : V → M be an elementary embedding with
crit(j) = κ and κM ⊆ M . Let P ∈ V be a poset and let G be generic for P. Suppose
that j(P) projects to P, so that every j(P)/G generic contains j”G. Working in
V [G], for every γ ∈ j(κ) \ κ and r ∈ j(P)/G, define an ideal Iγ,r by

Iγ,r = {ẊG | r ⊩j(P)/G γ /∈ j(Ẋ)}.
Then this ideal is well defined and has the following properties:

• Iγ,r is κ-complete and nonprincipal.

• Iγ,r is nonstationary iff r ⊩ γ ∈ j(Ċ) for every P-name Ċ for a club subset
of κ.

• If j(P)/P is (µ + 1)-closed for some µ < κ, then Iγ,r is a (µ + 1)-closed
ideal.

To construct these projections, we will make heavy use of the following standard
lemma regarding absorption of collapsing posets; it is an immediate corollary of [11,
Lemma 3].

Lemma 2.10. Let κ be regular. Let P be a κ-closed separative forcing notion, and
let Q = Col(κ, λ) where λ is the cardinality of the set of dense subsets of P. Then
there is a forcing projection from Q to P with a κ-closed quotient.
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To verify that these ideals are nonstationary and meet the requisite station-
ary set, we use the following lemma. This argument is implicit in [2] and stated
explicitly in [1].

Lemma 2.11. [1, Lemma 2.9] Let λ ≥ 2κ, and let j : V → M be a λ-supercompactness
embedding with critical point κ. Suppose P is a λ-cc poset such that P and j meet
the hypotheses of Lemma 2.9, and j(P)/P is (µ + 1)-closed. Let G be generic for
P over V . Let S ⊂ κ be a stationary set in V [G]. Then there is a condition r
and ordinal γ such that the ideal Iγ,r given by Lemma 2.9 is (µ + 1)-closed and
nonstationary, and S ∈ I+γ,r.

Certain kinds of forcings will preserve the existence of these ideals.

Lemma 2.12. Let V and W be two models of set theory, and let ν < κ be
uncountable cardinals in both V and W . Suppose that P(κ)V = P(κ)W and
P(P(κ))V = P(P(κ))W . Then V |= †νκ if and only if W |= †νκ.

Proof. Suppose †νκ holds in one of the models; without loss of generality, assume
V |= †νκ. Then for all stationary S ⊆ κ, there is a nonstationary κ-complete (ν+1)-
closed ideal IS in V with S ∈ I+S . Since W agrees with V on the powerset of κ,
it has the same stationary subsets of κ, and for each stationary set S, W will also
contain IS . IS will still be a nonstationary ideal in W , since W agrees with V on
P(κ). Moreover, since W agrees with V on P(P(κ)), each IS will be κ-complete
and (ν + 1)-closed. □

As an immediate corollary, noting that we can code elements of P(P(κ)) as
subsets of 2κ, we obtain:

Lemma 2.13. Suppose †νκ holds in V . Let P be a forcing that adds no new subsets
of 2κ, and let G be generic for P over V . Then in V [G], †νκ still holds.

Lemma 2.14. Suppose †νκ holds in V . Let P be a forcing with size < κ, and let G
be generic for P over V . Then in V [G], †νκ still holds.

Proof. Suppose S ⊆ κ is a stationary set in V [G]. Working in V , let Ṡ be a P-name
for S. Since |P| < κ, there is a generic condition p ∈ G such that S0 := {α < κ |
p ⊩P α ∈ Ṡ} is stationary in V .

By assumption, V |= †νκ; let I0 be the corresponding ideal with S0 ∈ I+0 . In
V [G], we generate an ideal I from I0, defined by I := {X ⊆ κ | ∃X0 ∈ I0, X ⊆ X0}.
I is a κ-complete ideal. Since S0 ∈ I+0 and S0 ⊆ S, we see that S ∈ I+. Now let
A ⊆ κ be nonstationary in V [G]. Since |P| < κ, there is a nonstationary A0 ∈ V0

with A ⊆ A0; we conclude that A ∈ I, so I is a nonstationary ideal. Finally, recall
that I+0 had a (ν + 1)-closed dense subset D; this induces a closed dense subset of
I+. Since I has all the desired properties, we conclude that V [G] |= †νκ. □

3. Extender-Based Forcing with Interleaved Collapses

In this section we define the forcing we will use. It is a variation on standard
extender-based forcing, adding interleaved collapses. This construction was devel-
oped by Gitik [8]; our exposition will follow the description given in [13, Section
4].
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3.1. Setup. Suppose ⟨κn | n < ω⟩ is an increasing sequence of supercompact
cardinals with supremum κ. Let µ = κ+ and λ = κ++; suppose µ<µ = µ and
λ<λ = λ. For all n < ω, let σn = κ+

n−1 (where we define κ−1 := ℵ0).
Suppose κn is (λ+1)-strong for each n < ω. In particular, there is a (κn, λ+1)-

extender En with an associated embedding jn : V → Mn, such that Mn is a
transitive class with κnMn ⊆ Mn, Vλ+1 ⊆ Mn, and jn(κn) > λ.

For each n < ω and α < λ, define En,α := {X ⊆ κn | α ∈ jn(X)}. If α ≥ κn,
En,α is a nonprincipal κn-complete ultrafilter over κn. Note that En,κn is also
normal.

Definition 3.1. For each n < ω, define an ordering ≤En on λ as follows. We say
β ≤En α iff β ≤ α and there exists a function f : κn → κn such that jn(f)(α) = β.

This gives a partial order on λ. For all β ≤En α we fix a witnessing map
πα,β : κn → κn; we set πα,α to be the identity. Since the restriction of ≤En to κ2

n

is the identity, we will only concern ourselves with λ \ κn.

3.2. The Forcing. The forcing is built up from two modules, called Qn0 and Qn1,
which will be defined first. For all n < ω, fix a map sn : κn → κn representing µ in
the normal ultrapower given by En,κn

. That is, jn(sn)(κn) = µ.
First we define the modules used in standard extender-based forcing, without

interleaving any collapses. We will call these modules Q∗
n0 and Q∗

n1. We follow the
description given in [7, Section 2].

Definition 3.2. Q∗
n1 is the set of partial functions from λ to κn of size ≤ κ. We

define an ordering ≤∗
1 on Q∗

n1 by reverse inclusion.

Definition 3.3. Q∗
n0 is the set of triples (a,A, f) satisfying the following conditions:

(1) f ∈ Q∗
n1.

(2) a ⊆ λ, such that:
• |a| < κn

• a ∩ dom(f) = ∅
• a contains a ≤En

-maximal element, which we will denote mc(a).
(3) A ∈ En,mc(a)

(4) For all α, β, γ ∈ a, if α ≥En β ≥En γ, then παγ(ρ) = πβγ(παβ(ρ)) for every
ρ ∈ πmc(a),α[A].

(5) For all α > β in a and all ν ∈ A, πmc(a),α(ν) > πmc(a),β(ν).

Definition 3.4. We define the order ≤∗
0 on Q∗

n0 by (a,A, f) ≤∗
0 (b, B, g) iff:

(1) f ⊇ g
(2) a ⊇ b
(3) πmc(a),mc(b)[A] ⊆ B.

With these defined, we build the modules Qn0 and Qn1 needed for defining the
full forcing.

Definition 3.5. Qn0 = (Qn0,≤n0) is the set of p := (ap, Ap, fp, F 0p, F 1p, F 2p)
satisfying the following conditions:

(1) (ap, Ap, fp) is an element of the module Q∗
n0. We also require that κn, µ ∈

ap and that ap ∩µ contains a ≤En -greatest element denoted by mc(ap ∩µ).
(2) For i < 3, dom(F ip) = πmc(ap),mc(ap∩µ)[A

p]. For ν ∈ dom(F ip), setting
ν0 := πmc(ap∩µ),κn

(ν), we have:
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(a) F 0p(ν) ∈ Col(σn, < ν0);
(b) F 1p(ν) ∈ Col(ν0, sn(ν0));
(c) F 2p(ν) ∈ Col(sn(ν0)

++, < κn).

The ordering ≤n0 is defined by q ≤n0 p iff (aq, Aq, fq) ≤Q∗
n0

(ap, Ap, fp) and for

each ν ∈ dom(F iq), F iq(ν) ⊇ F ip(ν′), where ν′ := πmc(aq∩µ),mc(ap∩µ)(ν).

Definition 3.6. Qn1 := (Qn1,≤n1) is the set of p = (fp, ρp, h0p, h1p, h2p), satisfy-
ing the following:

(1) fp is a function from some x ∈ [λ]≤κ to κn;
(2) ρp < κn is an inaccessible cardinal;
(3) h0p ∈ Col(σn, < ρp);
(4) h1p ∈ Col(ρp, sn(ρ

p));
(5) h2p ∈ Col(sn(ρ

p)++, < κn).

We define the ordering ≤n1 as follows: q ≤n1 p iff fq ⊇ fp, ρp = ρq, and for i < 3,
hiq ⊇ hip.

We codify the interaction between these modules in the following way.

Definition 3.7. Define Qn := (Qn0 ∪ Qn1,≤n). We define the ordering ≤n by
q ≤n p iff

• either p, q ∈ Qni for some i ∈ {0, 1} and q ≤ni p, or
• q ∈ Qn1, p ∈ Qn0, and for some ν ∈ Ap, q ≤nq p ↷ ⟨ν⟩, where
p ↷ ⟨ν⟩ := (fp ∪ {⟨β, πmc(ap),β(ν)⟩ | β ∈ ap}, ν̄0, F 0p(ν̄), F 1p(ν̄), F 2p(ν̄)),

with ν̄ := πmc(ap),mc(ap∩µ)(ν).

Finally, we define the full poset P.

Definition 3.8. Extender-Based Forcing with Collapses (EBFC) is the poset P =
(P,≤) defined as follows:

(1) Conditions in P are sequences p = ⟨pn | n < ω⟩ ∈
∏

n<ω Qn.
(2) For all p ∈ P ,

• There is n < ω such that pn ∈ Qn0;
• For every n < ω, if pn ∈ Qn0, then for all m ≥ n, pm ∈ Qm0 and
apn ⊆ apm .

(3) For all p, q ∈ P , p ≤ q iff pn ≤ qn for all n < ω.

Definition 3.9. We define the length of a condition p by l(p) := min{n < ω | pn ∈
Qn0}.

Let G be generic for P. Note that in V [G], GCH holds below ℵω, and SCH fails
at ℵω. G adds (among other objects) a generic sequence ⟨ρn | n < ω⟩, given by
ρn = ρpn for some p ∈ G with l(p) ≥ n.

Let C0
n = Col(σn, < ρn), C1

n = Col(ρn, sn(ρn)), and C2
n = Col(sn(ρn)

++, < κn).
Let Cn = C0

n×C1
n×C2

n. For n < m < ω, we will use C[n,m] to represent the product∏
n≤i≤m Ci. G adds generics for these posets, which we will denote by C0

n, C
1
n, and

C2
n.
We will make heavy use of two important properties of P. The first fact follows

immediately from a general lemma about Prikry-type forcings, [13, Lemma 3.14].

Fact 3.10. Let G be P-generic. If a ∈ V [G] is a bounded subset of κ, then a is in
V [C[0,m]] for some m < ω.
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For our construction, we can refine this result further.

Corollary 3.11. Let G be P-generic. If a ∈ V [G] is a subset of σn+1, then a is in
V [C[0,n]].

Proof. By the previous fact, a is in V [C[0,m]]. For some m < ω. If m > n, then
since C[n+1,m] is κn-distributive, a must be in V [C[0,n]]. □

The second property we will use is the existence of a generic cofinal sequence
reflecting the properties of the sequence ⟨κn | n < ω⟩. In particular:

Lemma 3.12. Let ⟨An | n < ω⟩ be a sequence with An ∈ En,κn
. Then for all large

n, ρn ∈ An.

Proof. We claim that the set D = {p | ∀l.n πmc(ap
n∩µ),κn

[Ap
n] ⊆ An} is dense.

Let p be a condition with length less than n. Let A′
n = π−1

mc(ap
n),κn

[Ap
n]. Then for

each n > lh(p), A′
n ∈ En,mc(ap

n). Extend p to a condition p′ so that for all n > lh(p),

Ap′

n = Ap
n ∩A′

n. Then πmc(ap
n∩µ),κn

[Ap
n] ⊆ πmc(ap

n∩µ),κn
[A′

n] = An.
SinceD is dense andG is generic, there is some p ∈ D∩G, with length k. Then for

all p′ ≤ p with length greater than k, ρp
′

n ∈ πmc(ap
n∩µ),κn

[Ap′

n ] ⊆ πmc(ap
n∩µ),κn

[Ap′

n ] ⊆
An. Note also that ρp

′

n is the same for all p′ ∈ G, so we conclude that for all n > k,
ρn ∈ An. □

4. Mutual Stationarity in EBF with Interleaved Collapses

In this section we give a new proof that mutual stationarity for a fixed cofinality
can hold at ℵω along with the failure of SCH at ℵω, using extender-based forcing
with interleaved collapses. The failure of SCH in this construction is a stronger
example of incompactness in this model than in the model of [1], since GCH will
hold below ℵω.

4.1. Setup. In a model V0 of GCH, let ⟨κn | n < ω⟩ and ⟨σn | n < ω⟩ be increasing
sequences of supercompact cardinals such that σn < κn < σn+1 for all n < ω. Let
κ = supn κn, and let µ < λ both be supercompact with κ < µ.

Let Ln denote the σn-directed closed Laver preparation to make κn indestructible
under κn-directed closed forcings that preserve GCH. Each Ln will itself preserve
GCH, and has size κn. This poset is constructed using standard techniques; for
details see e.g. [13, Lemma 8.2].

In V0, let H be the full-support iteration ⟨Hn,H(n) | n < ω⟩, where for each n,

H(n) is a Hn-name for Col(κn−1, < σn)∗L̇n. (For the case n = 0, we set κ−1 = ℵ0.)

Let H be generic for H over V0. In V0[H], force further with Col(κ+, < µ)∗ ˙Col(µ,<
λ). Call the final model V . Note that in V , κ++ = µ and µ+ = λ.

Fact 4.1. In V , the following hold:

(1) GCH
(2) σn = κ+

n−1

(3) Each κn is indestructible under κn-directed closed forcings that preserve
GCH.

Note that in this model, the supercompactness of each κn remains indestructible
under κn-directed closed forcings that preserve GCH.

For each n < ω, let jn : V → Mn be a λ+-supercompactness embedding with
critical point κn, and let En be the associated (κn, λ+ 1)-extender. In particular,
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we define En,α := {X ⊆ κn | α ∈ jn(X)}. Note that En,κn
is a normal measure on

κn.
Working in V , let P be the extender-based Prikry forcing with interleaved col-

lapses defined in the previous section, with respect to these extenders. Let G be
generic for P.

Let ν < κ be such that some condition forces ν̌ = ℵ̇k. For convenience, assume
that we are forcing below this condition.

By Corollary 3.11, for any n < ω, any bounded subsets of σn+1 are present in
V [C[0,n]]. If ν < τ are uncountable cardinals and 2τ ≤ σn+1, then by Lemma 2.12
†ντ holds in V [G] if and only if it holds in V [C[0,n]].

In the final model V [G], there are five types of cardinals below κ that are pre-
served: σn, ρn, sn(ρn)

+, sn(ρn)
++, and κn. We have to verify the appropriate ver-

sion of † for each type. The powerset of each has size at most σn+1, so by the
previous paragraph it suffices to show that the appropriate version of † holds in
V [C[0,n]].

In each case, we will use Lemma 2.10 to verify the existence of the forcing
projections required to apply Lemma 2.9. The arguments involved are standard;
see e.g. [4]. We will provide the details in the most complicated case (Lemma 4.2
and omit them for the rest.

4.2. Cardinal type 1: σn.

Lemma 4.2. In V [C0
n], †νσn

holds for all large n.

Proof. Fix n such that κn > ν. Recall that V [C0
n] is the extension of V0 by H ∗

˙Col(κ+, < µ) ∗ ˙Col(µ,< λ) ∗ C0
n. This is a λ+-cc poset. Note that in V0[Hn], σn

remains supercompact.
Let j : V0[Hn] → M be a λ+-supercompactness embedding with critical point

σn. The remainder of the setup poset H factors as H/Hn = Col(κn−1, < σn) ∗
L̇n ∗ H/Hn+1. Consider j(Col(κn−1, < σn)). This poset factors as Col(κn−1, <
σn)× Col(κn−1, [σn, j(σn))).

The forcing Ln∗(H/Hn+1)∗ ˙Col(λ,< µ)∗ ˙Col(µ,< λ)∗Ċ0
n, is σn closed (and thus

κn−1-closed), and has size λ. In particular, it has at most 2λ = λ+ dense subsets.
Applying Lemma 2.10, we see that Col(κn−1, λ

+) projects to Ln ∗ (H/Hn+1) ∗
˙Col(λ,< µ) ∗ ˙Col(µ,< λ) ∗ Ċ0

n, with a κn−1-closed quotient.
Since j is a λ+-supercompactness embedding, we have that j(σn) > λ+. It

follows that Col(κn−1, [σn, j(σn))) projects to Col(κn−1, λ
+) with a κn−1-closed

quotient. From here, we see that there is a projection from j(Col(κn−1, < σn)) to

(H/Hn) ∗ ˙Col(λ,< µ) ∗ ˙Col(µ,< λ) ∗ Ċ0
n with a κn−1-closed quotient. We conclude

that j((H/Hn) ∗ ˙Col(λ,< µ) ∗ ˙Col(µ,< λ) ∗ Ċ0
n) projects to (H/Hn) ∗ ˙Col(κ+, <

µ) ∗ ˙Col(µ,< λ) ∗ Ċ0
n via a κn−1-closed quotient.

Applying Lemma 2.11 we see that in V [C0
n], †νσn

holds. □

Lemma 4.3. In V [Cn], †νσn
holds for all large n.

Proof. The remaining generics to add are C1
n and C2

n. Each is generic for a ρn-closed
forcing, so the conclusion follows from Lemma 2.13. □

Lemma 4.4. In V [C[0,n]], †νσn
holds for all large n.

Proof. Immediate from Lemma 2.14, noting that the remaining poset, C[0,n−1], has
size less than σn. □
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4.3. Cardinal type 2: ρn.

Lemma 4.5. Suppose n < ω is such that σn > ν. Then

{ρ < κn | V |= †νρ,Col(σn,<ρ)×Col(ρ,sn(ρ))
} ∈ En,κn

.

Proof. Consider the poset Col(σn, < κn) × Col(κn, < jn(sn)(κn)) = Col(σn, <
κn)×Col(κn, < κ+). This poset is µ-cc, and there is a projection from jn(Col(σn, <
κn)×Col(κn, < κ+)) to (Col(σn, < κn)×Col(κn, < κ+)) with a σn-closed quotient.
By Lemma 2.11, we conclude that V |= †νκn,Col(σn,<κn)

.

Since Mn is sufficiently closed, Mn |= †νκn,Col(σn,<κn)×Col(κn,<κ+). Then for

En,κn
-many ρ, †νρ,Col(σn,<ρ)×Col(ρ,<sn(ρ))

holds in V . Let An be the set of all such

ρ. □

Lemma 4.6. In V [C0
n × C1

n], †νρn
holds for all large n.

Proof. Immediate from the previous lemma and Lemma 3.12. □

Lemma 4.7. In V [Cn], †νρn
holds for all large n.

Proof. Follows from Lemma 2.13, noting that C2
n is generic for a sn(ρn)

++-closed
forcing, and 2ρn < sn(ρn)

++. □

4.4. Cardinal type 3: sn(ρn)
+.

Lemma 4.8. Suppose n < ω is such that ν < κn. Then

{ρ < κn | V |= †νsn(ρ)+} ∈ En,κn .

Proof. Recall that V is the extension of V0[H] by Col(κ+, < µ) ∗ ˙Col(µ+, < λ).
Note also that in V0[H], µ is supercompact.

In V0[H], let i be a λ-supercompactness embedding with critical point µ. Note

that Col(κ+, < µ) ∗ ˙Col(µ+, < λ) is λ-cc, and i(Col(κ+, < µ) ∗ ˙Col(µ+, < λ))

projects to Col(κ+, < µ)∗ ˙Col(µ+, < λ) via a κ+-closed quotient. Applying Lemma
2.11 we see that in V , †νµ holds.

Since Mn is closed under λ-sequences, †νµ holds in Mn as well. By definition,

jn(sn)(κn)
+ = κ++ = µ. We conclude that the set {ρ < κn | †νsn(ρ)+} ∈ En,κn

. □

Lemma 4.9. In V , †νsn(ρn)+
holds.

Proof. Immediate from the previous lemma and Lemma 3.12. □

Lemma 4.10. In V [C[0,n]], †νsn(ρn)+
holds.

Proof. This follows from Lemma 2.13 and Lemma 2.14, noting that |C[0,n−1]×C0
n×

C1
n| < sn(ρn)

+ and C2
n is sn(ρn)

++-closed. □

4.5. Cardinal type 4: sn(ρn)
++.

Lemma 4.11. Suppose n < ω is such that ν < κn. Then

{ρ < κn | †νsn(ρ)++,Col(sn(ρ)++,<κn)
} ∈ En,κn

.

Proof. Let K be generic for Col(κ+, < µ), and recall that V is an extension of
V0[H][K] by Col(µ,< λ). In V0[H][K], λ is supercompact. In this model, let
i be a jn(κn)-supercompactness embedding with critical point λ. Consider the

poset Col(µ,< λ) ∗ ˙Col(λ,< jn(κn)). This is a jn(κn)-cc poset, and i(Col(µ,<
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λ) ∗ ˙Col(λ,< jn(κn)))/Col(µ,< λ) ∗ ˙Col(λ,< jn(κn)) is µ-closed, so by Lemma
2.11, we conclude that V |= †νλ,Col(λ,<jn(κn))

.

Since Mn is sufficiently closed, †νλ,Col(λ,<jn(κn))
will also hold in Mn. By def-

inition, jn(sn)(κn)
++ = κ+++ = λ. So by elementarity, the set {ρ < κn |

†νsn(ρ)++,Col(sn(ρ)++,<κn)
} ∈ En,κn

. □

Lemma 4.12. In V [C2
n], †νsn(ρn)++ holds.

Proof. Immediate from the previous lemma and Lemma 3.12. □

Lemma 4.13. In V [C[0,n]], †νsn(ρn)+
holds.

Proof. This follows from Lemma 2.13 and Lemma 2.14, noting that |C[0,n−1]×C0
n×

C1
n| < sn(ρn)

++. □

4.6. Cardinal type 5: κn.

Lemma 4.14. In V [C2
n], †νκn

holds.

Proof. In V , let i : V → M be a λ-supercompactness embedding with critical point
κ. The lemma follows from Lemma 2.11, noting that C2

n is κn-cc and i(C2
n) can

project to C2
n via a sn(ρn)

++-closed quotient. □

Lemma 4.15. In V [Cn], †νκn
holds.

Proof. The remaining piece of the forcing, C0
n × C1

n, has size < κn, so we apply
Lemma 2.14. □

Lemma 4.16. In V [C[0,n]], †νκn
holds.

Proof. V [C[0,n]] = V [Cn][C[0,n−1]]. In V [Cn], †νκn
holds; since |C0,n−1| < κn, by

Lemma 2.14 we have †νκn
in the full extension. □

Putting all of this together, we can prove the full theorem:

Theorem 4.17. Let G be generic for P. In V [G], mutual stationarity holds for
⟨ℵn ∩ cof(ℵk) | k < n < ω⟩ for all k < ω.

Proof. Clearly SCH holds. In V [G], each ℵn is of the form σi, ρi, si(ρi)
+, si(ρi)

++,

or κi for some i < ω. Let k < ω. By the previous lemmas, †ℵk

ℵn
holds in V [C[0,n]]

for all n > k. By Lemma 2.12, it follows that †ℵk

ℵn
holds in V for all n > k.

Since ℵn ∩ cof(ℵk) is approachable for all n > k + 1 (see [14]), the theorem follows
immediately from Corollary 2.8. □

5. Mutual Stationarity, Stationary Reflection, and the Failure of
SCH

Before we proceed to the main theorem, it is worth reflecting on the arguments
in the previous section. In particular, note that the proof of Theorem 4.16 only
used a few key properties of the forcing. In particular, we needed the following:

(1) Every bounded subset of κ is added by the collapses.
(2) Every cardinal in the final model is either supercompact in an inner model,

or reflects the properties of a supercompact in an inner model.
(3) A suitable collapsing structure, to ensure that †ℵk

ℵn
will hold in V [C[0,n]].
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While the final property requires direct analysis of the collapsing poset to verify,
the other two can be easily arranged for many Prikry-type posets (see e.g. stan-
dard Prikry forcing with interleaved collapses in [1]). This suggests that the same
argument will work for similar constructions that share these properties, especially
if they have the same collapsing structure.

In [13], an iteration scheme was developed for Prikry-type forcings with addi-
tional forcings interleaved. This scheme was used to force stationary reflection and
the failure of SCH at ℵω. In this section, we show that the forcing used to obtain
this result can be easily modified to obtain the same key properties we used in
the previous section. As a consequence, we can use this modified version to force
stationary reflection and the failure of SCH at ℵω, along with mutual stationarity
at ⟨ℵn ∩ cof(ℵk) | k < n < ω⟩ for all k < ω. We restate the main theorem:

Theorem 5.1. Suppose there is a sequence of indestructibly supercompact cardinals
of length ω+2. Then there is a forcing extension in which the following properties
hold:

(1) 2ℵn = ℵn+1 for all n < ω
(2) 2ℵω = ℵω+2

(3) Stationary reflection holds at ℵw+1

(4) Mutual stationarity holds at ⟨ℵn ∩ cof(ℵk) | k < n < ω⟩ for all k < ω.

Proof. Let V be the model described in Section 4. In this model, we build the
forcing defined in [13] to kill all nonreflecting stationary sets while preserving the
failure of SCH. In particular, we apply the following result:

Lemma 5.2. [13] Suppose GCH holds, and suppose ⟨κn | n < ω⟩ and ⟨σn | n < ω⟩
satisfy the conclusion of Fact 4.1. Then there is a generic extension in which
stationary reflection holds at ℵω+1, SCH fails at ℵω, and GCH holds below ℵω.

Let Q be the forcing giving rise to this generic extension. Q is defined using a
complicated iteration scheme. Informally, first one forces with EBFC, and then one
iterates with Prikry-type forcings to kill nonreflecting stationary sets. Fortunately
for the page count of this paper, we do not need a detailed description of the poset;
instead, we will only require a few properties. See [13, Section 8] for details.

Fact 5.3. Q projects to the poset P defined in Section 3. In fact, we can as-
sume that the extenders used to build P in this projection are derived from λ+-
supercompactness embeddings as described in Section 4.

Combining this fact with our analysis of P from the previous section, we obtain
two immediate corollaries:

Corollary 5.4. Q adds a sequence ⟨ρn | n < ω⟩ with ρn < κn, such that if
⟨An | n < ω⟩ is a sequence of sets in En,κn , ρn ∈ An for all large n, where En,κn

is the normal measure on κn as described in the previous section.

Corollary 5.5. Q adds a generic C[0,n] to the poset C[0,n] described in the previous
section.

The analogous properties to Fact 3.10 and Corollary 3.11 also hold in this setting.
As in the previous section, these follow from [13, Lemma 3.14].

Fact 5.6. Let G be Q-generic over V . If a ∈ V [G] is a bounded subset of κn, then
a is in V [C[0,m]] for some m < ω.
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Fact 5.7. Let G be Q-generic over V . If a ∈ V [G] is a subset of σn+1, then a is
in V [C[0,n]].

We force over V with Q. The following lemma finishes the proof.

Lemma 5.8. Let G be generic for Q. Then in V [G], the following properties hold:

(1) 2ℵn = ℵn+1 for all n < ω
(2) 2ℵω = ℵω+2

(3) Stationary reflection holds at ℵw+1

(4) Mutual stationarity holds at ⟨ℵn ∩ cof(ℵk) | k < n < ω⟩ for all k < ω.

Proof. The first three items follow immediately from Lemma 5.2, so it suffices to
verify mutual stationarity. The argument is identical to the proof of Theorem 4.17,
using Corollary 5.4, Fact 5.6 and Fact 5.7 in place of Lemma 3.12, Fact 3.10, and
Corollary 3.11 respectively. □

□

As previously mentioned, the arguments in this paper are not dependent on the
details of the forcing, and instead rely on a few core properties: the existence of
a generic sequence reflecting the properties of supercompact cardinals, an analysis
of bounded sets that allows us to only consider the interleaved collapses, and the
structure of the collapses themselves. These properties are characteristic of Prikry-
type forcings. While we modified the construction of [13] slightly, the basic forcing
was unchanged; we simply introduced some extra large cardinals into the ground
model and required slightly stronger properties from the extenders used. Thus we
may hope that other more complicated Prikry-type forcings (in particular, iteration
schemes like those described in [13]) will be equally susceptible to this kind of
argument, allowing mutual stationarity to be neatly added to consistency results
involving the failure of SCH without requiring significant modification of the forcing
posets in question.
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