BBC pelevision has a very popular programme called M-12
The Multicoloured Swap Shop- Below, MANIFOLD pre-

sents the Multicoloured Theorem Shop. running the

gamut Of the integers from 1 to 5.

the 1-colour Theorem

JOZEF PLOJHAR

The 1little-known one-colour theorem is due to the persistence of a
long-since forgotten cartographer of about 3 years of age, who
1ike all children of such an age covered his maps in a single wash
of colour. His father immediately realised the significance of
this, and burst into the mathematical journals with:

THEOREM A1l coloured maps are coloured with a single cnlour.

Before reprinting the proof, 2 comment is surely due on the power
of this theorem - unlike later chromatic theorems, it does not ass-
ert that the map may be SO coloured, but rather, that it IS!

Proof (By Mathematical Induction). Let P(n) be the proposition
1311 maps with n regions are 1-coloured".

P(1) is trivially true. We show that P(n) implies P(n+1). Con-
sider a map with n+l regions. Remove one region: by induction the
resulting map is 1-coloured, with colour C, say. :

Again consider the map with n+¥l regions; but now remove & diffe-
rent single region. The remaining n are ]-coloured, with colour K,
say. But K = C as there are some regions which have been 1-colou-
red twice (if you see what we mean!).

‘Hence all n regions are coloured with colour C, and P(n+l) is
true. Hence, by induction, P(n) is true for all n - and all maps -
are one-coloured!

the 2-colour Theorem o1

VIVIENNE HATHAWAY

The infamous 4-colour problem asks, as you are 10 doubt aware, whe-
ther any map on the plane can be coloured using 4 colours so_that
no two adjacent regions have the same cclour. 1t is not:our pur-
pose to g0 into this question here: we set our sights lower and aim
at a theorem about &wo colours. Until MANIFOLD produces 2 colour
supplement, this is more appropriate!

The theorem occurred to me SOmMe years ago, put subsequent delv-
ing into the literature revealed that it is well known. The res-
ult is this:




Suppose a finite number of circles is drawn on the plane. Then
the resulting map can be coloured with two colours so that adjacent
regions have distinct colours.

The theorem generalizes to closed curves rather than circles:

How do we go about proving such a theorem? If we try colouring
a given circle-map, it becomes clear that as soon as one region is
coloured the rest follow automatically. A proof based on this
would have to show that all regions are reached, and that there are
no contradictory choices of colour. This boils down to consider-
ing circuits of regions (regions each touching the next along an
edge, starting and finishing at a given region). Only if all such
circuits contain an even number of regions will the method work.
They do, and it does, but that's not the best way to prove the the-
orem!

a circuit of 8
regions. Is the
number always
even?

It occurred 'to me that the theorem is accessible by Mathematical
Induction on the number n of circles. Ifn=11it is easy to
colour the map: :

So now we assume we can two-colour any map with n circles, and try
to prove that we can two-colour a map with n+l. Now any n+l1 circle
map comes by adding a circle to an n-circle map. The diagram on
the next page is typical. If we can work out how to perform ? in
general, we can prove the theorem. Inspection of the diagram rev-
eals that: .
(a) Each region outside the new circle retains its colour,
(b) Each region inside the new circle changes colour.

To see that this works in general, note that the colours
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obviously change across boundary-lines outside oT inside the new
circle (as they did on the old map: though inside, the colours are
reversed) . And across the new circle's boundary, what was once a
single-coloured region divides into two, of opposite colours. QED!

This is all very well - though not a very practical way to per-
form the colouring - try it - but by analysing the proof, we can
£ind something better. Every time we add a new circle, points
inside it change colour. So points inside an odd number of circ-
les end up black; points inside an even number (or none) white.
This gives us a rule: assign to each region an integer, equal to
the number of circles that contain it. If this number is even,
colour the region white; if odd, colour it black. It is obvious
that this number changes by 1 from a region to the next: this gives
an independent proof. Here's an example of the rule in operat-
ion:

The proof obviously generalizes - e.g. to convex curves rather than
circles. 1f a moral to the tale is needed, it is presumably that
our first ideas of how to solve a problem, based on direct solutio-
ns of special cases, may not be the best way to proceed in general;
and that analysis of a successful method can lead to improvements.

M-9
the [(7+yT+48p)/2]-colour Theorem
Sorry about that. That's what the Heawood Conjecture suggests as

the precise bound on the number of colours needed for maps on a
surface of genus p > 1 (a torus with p holes, or its non-orientable
analogue). It was proved by Ringel and Youngs in 1968.
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the 3-colour Theorem

Now, that's a puzzle! MANIFOLD-12 set it as a competition: Find

t+he 3-colour theorem. Although there are standard 3-colour theo-
rems in graph theory, they all have rather artificial hypotheses.

We're still waiting... ) .

the 5-colour Theorem

was until very recently the best that was known towards that doyen
of mathematical intractability, the 4-colour problem. Which could
have caused us headaches with headlines (in contrast to our custom-
ary neckaches with necklines...). Fortunately, two Illinois math-
ematicians, assisted by a whacking great computer, arrived in the
nick of time with:

the 4-colour Theorem M-18

DOUGLAS WOODALL

In July of 1976, K.Appel and W.Haken, two mathematicians at the
University of Illinois in America, announced the solution of what
was probably the best-known unsolved problem in the whole of math-
ematics: the four-colour map problem. This asks whether the reg-
ions of a map can always be coloured with four colours in such a
way that no two neighbouring regions have the same colour. (Neig-
hbouring here means 'having a jength of common border’. We do not
insist on giving two regions different colours if they meet only at
a finite number of points, like regions D and F in Fig.l1l.)

FPig.l

This prcblem was first proposed in 1852 by a London student, Fran-
cis Guthrie, who is reported to have thought of it while colouring
a map of the counties of England. He noticed that four colours
are sometimes needed (e.g. for regions A,B,C, and D in Fig.l) and
conjectured that four colours always suffice, but was unable to
prove this. The first serious attempt at a proof seems to have
been made in 1879 by A.B.Kempe, & barrister and keen amateur math-
ematician who later became President of the London Mathematical So-
ciety. In that year he published a 'proof' in the American Jour-
nal of Mathematics which seems +o have been generally accepted.
But in 1890 P.J.Heawood, Professor of Mathematics at Durham,
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pointed out that the 'proof' contained 2 flaw. For some years af-
ter that the flaw seems not to have been regarded as serious, and
the theorem was thought to be 'essentially proved'. However, as
the years went by and nobody found a satisfactory way round the di-
fficulty, it gradually became realised that the problem was much
deeper than had been supposed. Since then, almost every mathema-
tician of repute has probably dabbled with the problem at some time
or other, so Appel and Haken's achievement in solving it (in the
affirmative) is a very fine one.

As might be expected of such a refractory problem, the proof is
long. Tt runs to 100 pages of summary, 100 pages of detail, and a
further 700 pages of back-up work, plus about 1500 hours of comput-
er time. (For comparison, the average proof presented in first
year lectures probably does not last more than one page. In the
published literature T would regard a 20-page proof as quite long.)

Preparatory Moves

In common with most recent workers, Appel and Haken tackled the
problem in the form 'show that the vertices of every planar graph
can be coloured with four colours soO that no two adjacent vertices
have the same colour'. A planar graph is a graph (= network)
drawn in the plane without edges crossing: see Fig.Z. It is easy
to show that this version is equivalent to the original map problem
(stick a vertex in the middle of each region of the map, and join
vertices whose corresponding regions are adjacent). It is also
easy to show that it suffices to consider plane triangulations, i.e.
graphs that divide the plane into regions bordered by exactly three
edges (can you see why?). Fig.2 shows the. graph corresponding to
the map in Fig.l, and the same graph made into a triangulatiomn.

Fig.2. B

Kempe's "Proof”

In order to understand Appel and Haken's proof, it will be helpful
to start by translating Kempe's attempted proof into the language
of plane triangulations.  Kempe started with Euler's polyhedron
formula, which states that a plane triangulation T satifies the
relation V-E+F = 2, where V,E,F are the number of vertices, edges,
and faces (regiomns) of T. (Can you prove this?) Since every
face of a triangulation is bordered by three edges, and every edge
borders two faces (the noutside' is thought of as one huge face),
we must have 2E = 3F (why?). If Vi denotes the number of vertices
of valency 1 (the valency of a vertex is the number of edges incid-
ent with it) then clearly vy =V and Tivy = 2E (every edge has 2
ends). Substituting these in Euler's formula now gives

Y (6-1)V; = 12 . 1
or, more longwindedly,
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4V, 577728
1t follows immediately that at least one of VZ’ VS’ V4, and V5 is

+3V5+2V4+V V-2V, -3V,-... = 12,

positive; so T must contain at least one of the four configurations
in Fig. 3.
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Now suppose there exists a counterexample to the 4-colour conject-

ure, and let T be a triangulation that is a minimal counterexample,
so that every graph with fewer vertices than T is 4-colourable, but
T itself is not. We naturally hope to prove this is impossible by
obtaining a contradiction.

If T contains Fig.3(a) or 3(b), we need only remove v from T
(together with the incident edges), 4-colour what is left, and res-
tore V: since v is adjacent to at most 3 vertices, we can find a
colour for it. Thus we have 4-coloured T, a contradiction. So T
cannot, in fact, contain 3(a) or 3(b).

For 3(c) we try the same thing, but this time we are in trouble
if p,q,r, and s all have different colours; in this case we cannot
colour v. However, Kempe ingeniously showed, using what is now
called a Kempe-chain argument, that here we can modify the colour-
ing scheme so that either p and r, or q and s, have the same colour.
Then we can find a colour for v, and again obtain a contradiction.
(You can probably see how this can be done. If p,q,r,s are blue,
green, red, and yellow respectively, then the graph T with v removed
cannot contain both a chain of connected vertices from p to r, all
blue or red, and a chain from q to s, all greem or yellow; for these
chains have to cross somewhere, and they can't.) Thus Kempe showed
that T cannot contain 3(c) either.

If he could have shown that 3(d) was also ruled out, he would
have completed his proof. Unfortunately, he tried to use the same
trick for 3(d) as he had for 3(c), and thereby made his mistake,
because the argument breaks down.

Nevertheless he made a very fine contribution towards the solu-
tion of the problem, often underestimated by later writers. Alth-
ough his 'proof" was fallacious, and hence technically worthless,
the slightest modification of his argument yields a valid demonstra-
tion that five colours suffice; and his arguments have formed the
foundation for most subsequent work on the problem.

The two main steps

To summarize Kempe's argument in modern terminology, he attempted to
exhibit a set U of configurations (3(a)-(d)) such that:

(1) U is unavoidable: every plane triangulation contains one of
the configurations in U;

(ii) Every configuration in U is reducible: it cannot be contain-
ed in a minimum counterexample to the 4-colour conjecture (i.e. any
counterexample containing it also implies the existence of a smaller
counterexample) . ’

If his attempt had succeeded, it would certainly have provided a
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proof. It failed, because he did not show satisfactorily that (d)
is reducible. Appel and Haken have been successful with exactly
the same approach. But while Kempe's unavoidable set contained 4
configurations, theirs contains about 1930. (I say ‘'about' becaut-
se they keep managing the reduce the number by 1 or 2.)  The proof
that these are all reducible involves massive reliance on the compu-’
ter. One of their configurations is shown in Fig.4, and it is
bordered by a circuit of 12 edges. All of
their configurations are bordered by circu-
its of 14 or fewer edges. If they had
used configurations larger than this, they
would probably not have been able to prove
them reducible with the present generation
of computers.
Appel and Haken's proof thus involves
the above two steps: the construction of U,
Fig.4 and the proof that everything in U is redu-
cible. Each step is comparatively straig-
‘htforward on its own: it is the interplay between them that is so- ;
phisticated, and in which Appel and Haken's work goes qualitatively, )
and not just guantitatively, way beyond anything that had been done
before.

Contruction of an Unavoidable Set -

To illustrate the first step, we show how Appel and Haken's method
proves the set of configurations in Fig.5 unavoidable. The idea
is due to Heesch.

= A X

(a) (b) (c) (d) (e)
Fig.5

Suppose there exists a triangulation T not containing any of these.
Assign to each vertex of T of valency i the number (6-i). Appel
and Haken like to think of this as (6-i) units of electrical charge;
so a 5-valent vertex receives charge +1, a 7-valent vertex charge
-1, an 8-valent vertex charge -2, and so on. By (1), the total
charge is positive (12 units).

We now redistribute the charge round T, without creating or des-
troying any, according to the following simple discharging algorithm:
move 1/3 unit of charge for each vertex of valency 5 to each adjac-

ent vertex of valency 7 or more. T still has positive total char-
ge. But it is easy to check, using the fact that T contains none
of 5(a}-(e), that no vertex of T can have positive charge! For T

has no vertex of valency < 4; any vertex of valency 5 is adjacent

to at least three of valency 7 or more, so loses all its unit of
positive charge; vertices of valency 6 are unaffected, ending up
with charge 0, where they began; a vertex of valency 7 can have at
most three neighbours of valency 5 (or two of them would be adjacent)
and so recieves at most 1 unit of charge, remaining negative; and so
on. This is a contradiction, so T must contain one of 5(a)-(e).
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(Strictly speaking, this does not prove that one of 5(a)-(e) occurs
in T with all of its vertices distinct. It is easy to get round
this for small configurations, but for larger ones it is a serious
technical problem, the immersion problem, and Appel and Haken had
to deal with it.)

Appel and Haken proved their much larger set U unavoidable in
this way, but using a more complicated discharging algorithm.

Reducibility

To illustrate this step we again take an example, showing that 6(a)
is reducible. )

: b b

; ' a c

i - al\c

f g d

? é e

: : (a) (b) (c) (d)

a
Fig.6

Let T be a triangulation that is a minimal counterexample to the
conjecture, and suppose T contains 6(a). Let T' be the graph ob-
tained from T by removing the four vertices inside the hexagon in
6(a); that is, replace 6(a) by 6(b). "By minimality of T, T' is
¢ 4-colourable. List the possible colour schemes for the vertices
. abcdef.  There are 31 of them:

121212 121213G 121232 121234G 121312G 121314 1213236
121324G 121342G 121343G 123123 123124  123132G 121313
123134 123142 123143 1232126 1232136 123214G 1232326
123234 123242 123243 123412 123413  123414G 123423
123424G 123432G  123434G.

(Here the numbers 1234 are the colours, listed in order on vertices
abcdef. The G will be explained-below. Note that 121211 and
121231 are not listed, since they give adjacent vertices the same
colour (1); and 121214 is not listed since it comes from 121213 by
permuting colours. Possibly not all of these can actually occur
in T', but we don't know which do, so we have to consider them all.)

Some of these colour schefes can be extended to colourings of
6(a), so giving rise to 4-colourings of T. Call these good (which
is what the G stands for). If all colour schemes are good, then
6(a) is clearly reducible (because we can 4-colour T, a contradic-
tion). However, this never happens in practice.

e The next step is to try to use Kempe-chain arguments to convert
bad schemes into good ones. For example, 121232, which is bad,

can always be converted by [13][24] interchanges into one of 121434,
5 121234, 121432, or 123232 - all good. If every bad colour scheme

i converts to a good one like this, then again 6(a) is reducible: we
say a configuration that can be proved reducible this-way is
D-reducible.

The first thing the computer checks for is D-reducibility. (You
should now see why the size of the outer ring is cruciall) If not,
the next step is to note that we don't actually have to consider
all 31 schemes on the list. By minimality, we can replace 6(a) by
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any configuration with fewer vertices, such as 6(c): the result T"
must be 4-colourable. The effect of this substitution, here, is
that we need consider only colour schemes where a and ¢ have the
same colour, and d and f are different: this rules out all but 6
of the schemes listed. If (as in this case) all the remaining sch-
emes are good, or can be made so by Kempe-chain modifications,
then again we get reducibility. There are many choices in place
of 6(c) - another example is 6(d), which shows we need consider
only schemes using 3 or fewer colours on abcdef. If any such
substitution works, we call the original configuration C-reducible.
The program used by Appel and Haken, largely written by a post-
graduate student John Koch and using algorithms of H.Heesch, first
checked for D-reducibility; if this failed, it.tried a few ways of

proving C-reducibility. If these didn't work it was abandoned and
the unavoidable set U modified appropriately. This may seem a
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very cumbersome approach - especially since circuits like abcdef
but with up to 14 vertices were involved. (Appel estimates that
the amount of work goes up by a factor of 4 for each extra vertex
in the circuit.) It might seem that it is better to test for
C-reducibility first. But in practice this involves a lot of dup-
lication of effort if the first substitute configuration doesn't

work; and it is quicker to start by listing all the colour schemes
to see which can be made good.

Conclusion

The main point I have not explained is the method by which the dis-
charging algorithm and the unavoidable set were modified every time
a configuration could not quickly be proved reducible. These mod-
ifications relied on a large number of empirical rules which have
still not been given adequate theoretical justification, discovered
in the course of a lengthy process of trial and error lasting over
a year. By then Appel and Haken had develeped such a good feeling
for what was likely to work (even though they couldn't always expl-
ain why) that they were able to construct the final unavoidable set
without using the computer at all. This is the crux of their
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achievement. Unavoidable sets had been constructed before, and
configurations proved reducible; but no one could complete the mon-
umental task of constructing an unavoidable set consisting entirely
of #xreducible configurations.

The length of the proof is unfortunate, for two reasons. First,
it makes it hard to verify. A long proof may take a long time to
check, and be intellectually accessible to only a few people. This
is particularly true if a computer is involved. Before the intro-
duction of computers into mathematics, every proof could be checked

by anyone possessing the necessarymental apparatus. Now an expen-
sive computer may be needed too. Appel estimates that it would
take 300 hours on a big machine to check all the details. Few

mathematicians in Britain have access to this much machine time.

The other big disadvantage of a long proof is that it tends not
to give much understanding of why the theorem is true. This is
exacerbated if the proof involves numerous separate cases, whether
it needs a computer or not. Lecturers may tend to give students
the impression that proving theorems is the objective of pure math-
ematics; but I am sure that many of us agree that proofs are only
a means to an end - understanding what is going on. Sometimes a
proof is so illuminating that one feels immediately that it explains
the 'real reason' for the result being true. It may be unreasona-
ble to expect every theorem to have a proof of this sort, but it
seems nonetheless to be a goal worth aiming for. " So undoubtedly
much work will be done in the next few years to shorten Appel and
Haken's proof, and possibly find a more illuminating one. (It is
doubtful that their method can be shortened enough to avoid massive
use of the computer.)

In fact, there remain a number of conjectures that would imply
the truth of the 4-colour theorem, but do not follow from it. One
of these in particular (Hadwiger's Conjecturé) is (in my opinion)
most unlikely to be provable by the sort of technique that Appel
and Haken have used: possibly a shorter proof of the 4-colour theo-
rem may be found from an attack on Hadwiger's Conjecture. None
of this, of course, detracts in any way from Appel and Haken's
magnificent achievement.
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Early news of Appel and Haken's achievement was greeted by the math-
ematical community with less than unrestrained enthusiasm. One
reason for caution is of course the computer involvement: it is ex-
tremely easy to make slips in long and involved programs. Now, 5
years later, no such slips have been found; and the program has

been checked by a great many people. The expert view is that, if
there are any errors, they do not occur in the computer part of the
proof. As for the lack of elegance, MANIFOLD-19 remarked: "maybe
most theorems are true for rather arbitrary and complicated reasons.
Why not?"
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