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(3) Using (1) and (2), together with the fact that ¥ * is an algebra homomorphism,
the result is established in general by checking it locally on k-forms w restricted
to local coordinate neighborhoods:

w|y = Eail--oik dx;, "..."dxz-k.

(Details are left to the reader,) O

Definitions. Let X be a smooth manifold, A smooth differential form w on X is
closed if dw = 0, Aform w is exact if it is the differential of another form on X;
that is, w is exact if w = d7 for some smooth form 7. (Note that every exact form
is closed, since d® = 0. The converse question is fundamental to our subject.)

Let Zk(X, d) denote the vector space of closed k-forms on X. Let B*(X, d) de-
note the space of exact k-forms on X. Then B*(X, d) C Z*(X, d) because d? = 0.
Let H*(X, d) = Z*(X, d)/B*(X, d). H*(X, d) is called the k-th De Rham cohomology
group of X. Its dimension, which we shall see is finite for compact X, is called
the k-th Betti number of X,

Remavrk. Although these cohomology groups are defined in terms of the manifold
structure of X, they are topological invariants; that is, if two manifolds are homeo-
morphic (by a not necessarily smooth homeomorphism), then they have isomorphic
cohomology groups., In fact, these groups can be defined directly using only the
topological structure of X,

Example 1. HY(X,d) = R! if X is connected. For since there are no forms of
degree less than 0, B% X, d) = 0. Thus

H(X,d) = Z%X,d) = [f e C°(X, RY; df = 0].

If U is any coordinate neighborhood of X, with coordinate functions (x,, ..., x,),
then df = 0 on U means
0=df =2 ——

i1 9%

(f) dx;

that is, (8/8x;)(f) = 0 for all i, But this implies that f is constant on U/. Since X is
connected, and since f is constant on each coordinate neighborhood in X, then f
must be constant on X; that is, Z°(X, d) = [constant functions on X] = R,

Example 2. H'S', d) = R! where S! is the circle. For since there are no non-
zero k-forms on S!for k> 1, Z¥S!, d) = C*(S?, AXSY)). Moreover,

BYS!, d) = [df; f e C*(S, RY)].
Now, if @ denotes the polar coordinate on S! then 8/88 is a non-zero vector field
on S* and its dual 1-form df is a non-zero 1-form on S). (See Fig. 5.4.) Further-
more, df is not exact (in spite of the notation!)—but, given any 1-form w = g(d) dé
on S w — (c df) is exact for some ¢ € R}, Thus
ZYS!, d)/BYSY, d) = [c d6; c € RY] =R,
27
Exercise: Verify the above facts. Take ¢ = "2% / g(8) ds.
Remarks. Let y: X — Y be smooth. Then

p*: ZR(v,d) — zk(x,d) and y*: BR(Y, d) — B*(X, d).
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Fig. 5.4

For if w is a closed k-form on Y, then d(p*w) = p*(dw) = $*(0) = 0. If w =d7 is an
exact k-form on Y, then y*(w) = $*(d1) = d(p*(7)). Thus y* induces a linear map P
on cohomology, such that

V. zZR(, d)/BH(Y, d) — Z*(X, d)/B*(X, d);
that is,
T HR(Y, d) — HM(X, d).

If S$: W—X and T: X — Y are smooth, it is easy to check that (7' ° S)* = S* o T,
and hence (77 o S) =S o T:

r

ey S v T_
w —i- A ——- ’

~

HE(W, d) < HM(X, d) =~ BE(Y, d).

Thus we have attached to each smooth manifold X new algebraic invariants
Hk(X , d) such that given smooth maps between manifolds, there are induced alge-
braic maps between these algebraic objects. As in the case of the fundamental
group, we are thus able to solve certain difficult topological problems by studying
their algebraic counterparts.

Now let us show that H*(R”, d) = 0 for all % > 0. Since R” is diffeomorphic (iso-
morphic as a smooth manifold) with the unit ball B,(1) about 0 in R", we may as
well show that Hk(Bo(l), d) = 0 for all £ > 0. For this we need the following technical
lemma.

LEMMA. Let X be a smooth manifold. Then, for each k, consider the maps

a 00 ' d oG I
C(X, AB(X)| = (X, AR(X))| — C7(X, A®HX)).
~ ~__
Pk hy,
Suppose there exist linear maps
hy: (X, MH(X)) —C*(X,M(X)) (j=k—lork
such that 4 o d +d o hp_, is the identity map on C(X, A*¥(X)). Then H*(X, d) = 0;
that is, every closed k-form is exact,
Proof. Suppose w € C”(X, A*(X)) is closed. Then

w=(hpod+d-e hp_ ) w) = hp(dw) + d(hp_w) = d(hp_w). O
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Remark. If a sequence of such linear maps h; is defined for all j = 0, the se-
quence #; is called a homotopy operator.

THEOIREM 3. (Poincaré’s lemma) Let U = B,(1) C R”", Then Hk(U d) = 0 for all
k>0.

Proof. We shall construct maps kj_,, #; satisfying the conditions of the lemma.
This is done through an integration process. Since these maps are to be linear, it
suffices to define #p_, on forms w = gdx Al A dx,-k; similarly for %;. For such
w, set

hiea@)(x) = ([ "2 g(ex) db)u,

where
Ho= xi]_dxiz A...Adx,;k-— xz-zdx,-l Adxz-s"..."dxz-k
k-
teeet (CDF Ry, dag AL chdxg,
(Note that du = kdx; oA dxg,.)

The map %, is defmed s1m11ar1y by replacmg k everywhere by & + 1,
Now, for w = gdx; (N Mdxy, € CU0, A (U))ander

(_[ £k~ 1o(tx) di) i)
(f tR-1 g(tx) dt)dx Au +([ tR-1 o{tx) dt) du

l_ﬂ

@ o hp ) (w)x) =

H

o exy
(f (g(tx))dt)dxj Al +([; =1 g(t ) dt) dp
]' ( 28 tx)dt)dx Ap +k(L k-1 g(tx)dt) dxg o h v,
and
(hp © d)w)(x) (z; —&dxj Ndxg AL dxik)
4 (f tk—g-(tx)dt)[ X Aeondxg, —dxg Al
Thus,

(d e hpy+hy od)w)x) = [k({ t*-1g(tx) dt)

+ E (L tk a_xgj (tx)xj dt)] dx; ... hdxg,
- Uo [ktk"g(tx) 4tk 6% (g(tx))] dt} dxg ~...Mdxg,

1 d
_ U 4 [tkg(tx)]dt} Ay Ao ndxg
= tkg(tx)|; dxi Ao hdxg,
=g(x)dx; A A dxg,
= w(x) (for all x € U).
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Since d < hp_, + hp ° d acts as identity on such w, it acts by linearity as identity on
all k-forms. ()

Remark 1. The maps hp_, and kg used in this proof were not just picked out of
the air. They were constructed as follows. Given a vector space T and v € T, v de-
fines a map i(v): AR(T*) —A*YT*) by

L))y, ..., vp_) = 0, vy, ..., vp_y).

Note that 7 is a bilinear map 7 X) AR(T*) — A*-}(T*), This map i is called interior
multiplication. The map hp_, was obtained by applying i(x) to w and averaging over
the line through the origin in the direction x.
Remark 2. Theorem 3 is a special case of a more general result, Let U be a
smooth manifold, Suppose there exists a smooth map ¥: U X I, — U, where
I = [r e Ry —¢ <7¥ < 1+¢], such that
¥(u,1)=u (forallu e U),

V(u, 0) =u, (forallue U; some u,e U).

Then H*(U, d) = 0 for all & > 0.

_______
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Fig. 5.5

The map ¥ is a smooth homotopy. This theorem says that if U is smoothly homo-
topic to a point, then the cohomology of U is that of a point.
In the case covered by Theorem 3, a smooth homotopy is given by

¥(x, ) = tx (t € I; x € By(1)).
Note that the above proof of Poincaré’s lemma works equally well for a siav-shaped
region, that is, an open set U such that for some x, € U, the line segment joining
X, to any other point in U lies completely in U.
5.3 MISCELLANEQUS FACTS
THEOREM 1. Let X and Y be smooth manifolds, with X connected, and let

¥: X —Y be smooth, Assume dy = 0. Then y is a constant map; that is, Y(x) = y,
for some y, € Y and for all x € X.



