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P =3). We construct a new lens &’ having screw angle 2m¢’ /p from these pieces. The tetrahedron
%, has a triangle 4, in common with the lower lens cap and has a triangle 4; in common with the
upper lens cap. The lens axis b is common to all ¥,. The lens edges lying opposite to b are all
equivalent to one another and form one and the same edge a in the lens space. The triangles are’
equivalent in pairs to one another, as a consequence’of the association of the lens caps. In
particular, 4; is equivalent to &, g0 Where i + ¢ is to be reduced mod p if necessary, We now
construct the new lens X' from the p tetrahedra. To do this we first join tetrahedron I, , to
tetrahedron ¥, by identifying the equivalent triangles &, . g and Ay We then join £, .5, t0 T),,
by identifying triangles K,”q and A 44, and so forth. We ultimately arrive at a lens ' which
differs from the original lens only in the fact that the edges a and b have interchanged their roles.
If 224’ /p is the screw angle of ¥, then in the cyclic sequence T, X4,y ..., Ly, ... in which
the tetrahedra are arranged about the axis a of &', the tetrahedra &; and T,, of which the latter
coincides with I, , ,,, will differ by ¢’ places on one side and will differ by p — ¢’ places on the
other side. Consequently, the difference of indexes of T, ., ,, and &, in the cyclic sequence will be
equal to gq" or g(p — ¢'), respectively, But this difference is also equal to (2 + xp) — 1. Thus,

Q+xp)-1=¢qq or  Q+xp)—-1=4q(p-7q)
which gives .

qq' = =1 (mod p).

Thus the lens spaces (7, 2) and (7, 3) are homeomorphic for example because 23 = — 1 (mod
7). But one cannot decide from Theorem Il whether the lens spaces (p, 1) and (p,2) are
homeomorphic. We shall later (§77) introduce an invariant which is not associated to the
fundamental group and which permits certain lens spaces to be distinguished. It can show, for
example, that (5, 1) and (5, 2) are distinct spaces. On the other hand, Theorem II does not
distinguish between (7, 1) and (7, 2).

It should be noted that every lens space can be decomposed into two full rings having a torus
as their common boundary. Bore a full cylinder B out of the lens by boring along (and
concentric with) the lens axis b. After identification of the lens caps, B will close to form a full
ring. The same is true for the complementary space % which remains after boring out 8. To see
this we need only to decompose the lens £ into p tetrahedra as previously and to assemble the
lens £’ from them. The complementary space 3 then becomes a cylinder in & which surrounds
the axis a of . When equivalent points are identified, % will close to form a full ring (cf. §63).
As another example we shall investigate the spherical dodecahedron space (Kneser [8, p. 256]).
This space arises from a dodecahedron when one twists opposite lying pentagons by = /5 radians
relative to one another and then identifies them. The edge network of the dodecahedron, which
completely determines the space, is drawn in Fig. 112. There exist a® = 5 nonequivalent vertices
O, P, Q, R, S. There are ten nonequivalent edges, each formed by identifying three equivalent
edges. The Euler characteristic is N = ~5 + 10 — 6 + 1 = 0; thus we are dealing with a manifold.
We select O as the initial point of the closed paths and we select the paths a, h, f~1, f~'d as
auxiliary paths leading to the vertices P, @, R, S, respectively. The generating path classes of the
fundamental group will then be represented by the closed paths

A=aa"!, B=abh™!,
C = hef, D=f"Yd(d"),
E=(f"'d)e, F=f"Y,
G=(f")ga", H=hh~},
J = aif, K =hk(d~'f).
The relations of type (I) follow after one writes the right-hand sides of the above equations in

capital letters instead of lower case letters. We then get 4 = D = F= H =1 and the remaining
relations become trivial.



224 IX. 3-DIMENSIONAL MANIFOLDS

FIG. 112

By running around the pentagons we get the following six relations of type (II):

ABCDE = | BCE=1
BKEF~YJ '=1} BKEj ‘=
AJDK"H-1=1 or J=K
C/I-'G-'EH = CI7'GE=1
BH-'F-DG =1 B=G™!
AG 'K~'\CF=1 G- 'Kk-c=1

Elimination of G and X gives
BCE=1,
BJEJ~'= 1,
CJ"'BE=1,
BI-\C=1,

From the first and fourth of these relations we get
E=C-B-!, J=CB.
Using these to eliminate E and J from the second and third relations, we get
BCBC-'-B~%"'=| Q)]
and ’
CB-'C~'BC~'B~'=1. 1)

We determine the first homology group from these two relations by making relations (I) and
(1) Abelian! As always, we use additive notation for Abelian groups, and we denote the elements
of the homology group by means of symbols with bars. We get

C=0, 40)
—'E—F-O; (ﬁ)

thus B = C = 0. That is, the first homology group consists of the null element alone. Since the
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dodecahedron space is orientable, we have the following values for the Betti numbers:
pi=1  pl=p*=0, p=L
There are no torsion coefficients.

The numbers above are just the numerical invariants of the 3-sphere. Thus the homology
groups are not in themselves sufficient to distinguish whether the 3-sphere does or does not
coincide with the dodecahedron space. To decide this we examine whether the fundamental
groups of these spaces differ. To do so we transform the somewhat untransparent relations (I)
and (II) further. We set (II) into (I) at the position indicated by the dot in (I). In place of (I) we
get the relation

BCBC-!'-CB-'C~'BC~'B-'.B"C"V=],
or, after shortening this,
BXC-'B-C-'=1. I

By introducing a new generator U into (1) and (II) where U is defined by C = U ~ !B, we get

B:-B-W.B-3.B-W=],
U-'B-B-'.B-W.-B.-B-WW-B~'=1
or
B*= UBU, U?=BUB
or also
BS=(BU)*= U, )y

We recognize from the relations (111) that the dodecahedron space is not homeomorphic to the
3-sphere. That is because the fundamental group does not consist of the unit clement alone.
Instead, the relations (III) are satisfied by the icosahedral group, if one interprets B as a rotation
of 27/5 radians about a vertex of the icosahedron and interprets U as a rotation of 27/3
radians, having the same sense of rotation, about the midpoint of a triangle adjoining that vertex.
The icosahedral group is therefore either the group (ILI) itself or a factor group of (III). In either
case the fundamental group does not consist of just the unit element alone. It is possible to show,
by the way, that (IIT) is of order 120 and is the “binary icosahedral group.”*

The spherical dodecahedron space is a manifold which has the same
homology groups as a 3-sphere without, however, being homeomorphic to it.
Such a manifold is called a Poincaré space. Infinitely many Poincaré spaces
are known. But the spherical dodecahedron space is the only one known
which has a finite fundamental group.®*

The homology groups are not sufficient to characterize the 3-sphere.
Whether the 3-sphere is characterized by its fundamental group is the content
of the “Poincaré conjecture,” which remains unproven to this day. Since the
fundamental group of the 3-sphere consists of the unit element alone, we can
also state the problem as follows: Aside from the 3-sphere do there exist other
3-dimensional closed manifolds such that each closed path can be contracted
to a point (is null homotopic)?**

® Jahresber. Deutsch, Math.-Verein. 42 (1932), problem 84, p. 3.

** Editor’s Note: As of January 1979, this famous problem is still open! However, new
(unpublished) results of W. Thurston have established the following weak version: If a simply
connected 3-manifold M is a cyclic branched covering space of S3, then M is in fact
homeomorphic to $3.



Figure 97 - The Dodecahedral Space as Identification space
from a Solid Dodecahedron




