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The signed graphs of tangles or of tunnel links (special links in {R>-two parallel
lines)) are two terminal signed networks. The latter contain the two terminal
passive electrical networks. The conductance across two terminals of a network is
defined, generalizing the classical electrical notion. For a signed graph, the
conductance is an ambient isotopy invariant of the corresponding tangle or tunnel
link. Series, parallel, and star triangle methods from electrical networks yield
techniques for computing conductance, as well as giving the first natural interpre-
tation of the graphical Reidemeister moves. The conductance is sensitive to
detecting mirror images and linking. The continued fraction of a rational tangle is
a conductance. Algebraic tangles correspond to two terminal series parallel net-
works. For tangles, the conductance can be computed from a special evaluation of
quotients of Conway polynomials and there is a similar evaluation using the
original Jones polynomial. ® 1993 Academic Press, Inc.
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268 GOLDMAN AND KAUFFMAN
1. INTRODUCTION

In this paper, we show how a generalization of the conductance of a
classical electrical network gives rise to topological invariants of knots and
tangles in three-dimensional space. The invariants that we define are
chirality sensitive and are related, in the case of tangles, to the Alexan-
der-Conway polynomial at a special value. The most general class of
invariants defined here are the conductance invariants for special tunnel
links. A tunnel link is an embedding of a disjoint collection of closed
curves into the complement (in Euclidean three-space) of two disjoint
straight lines or tubes.

We were led to these invariants by an analogy between the Reidemeis-
ter moves in the theory of knots and certain transformations of electrical
networks. A knot or link projection is encoded by a (planar) signed graph
(a graph with a +1 or a —1 assigned to each edge). The signed graphs are
a subset of the signed networks (graphs with a nonzero real number
assigned to each edge). These networks can be viewed as generalizations
of passive resistive electrical networks, where the number on an edge is a
generalized conductance. The series, parallel, and so-called star-triangle
(or delta-wye) transformations of an electrical network, leave the conduc-
tance across two terminals unchanged. These notions generalize to invari-
ance of a generalized conductance across two terminals of a signed
network under corresponding transformations. When specialized to planar
signed graphs, these transformations are the graph-theoretic translations
of the Reidemeister moves for link projections (see Fig. 2.6 for a glimpse
of this correspondence). Hence the invariance of conductance across two
terminals of our graph yields an ambient isotopy invariant for the corre-
sponding special tunnel link or tangle. Note that this electrical setting
yields the first “natural” interpretation of the graph-theoretical version of
the Reidemeister moves.

The paper is organized as follows. Section 2 gives background on knots,
tangles, and graphs, and the translation of Reidemeister moves to graphi-
cal Reidemeister moves on signed graphs. The notion of a tunnel link is
introduced and we discuss the relation with tangles. Section 3 reviews the
background in classical electricity which motivates the connection between
graphical Reidemeister moves and conductance-preserving transforma-
tions on networks. In Section 4, we define conductance across two termi-
nals of a signed network in terms of weighted spanning trees. This
coincides with the classical notion in the special case of electrical net-
works. We prove the invariance of conductance under generalized series,
parallel, and star-delta transformations which then gives us the topological
invariant for the corresponding tangles and special tunnel links. In Section
5, we show how the conductance invariant behaves under mirror images
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and we provide numerous examples. We also treat the relation between
continued fractions, conductance, and Conway’s rational tangles. Sec-
tion 6 shows how, for tangles, the conductance invariant is related to the
Alexander-Conway polynomial. The proof uses a combination of state
models for the Conway polynomial and the Jones polynomial. Finally, a
short appendix traces the flow of ideas from classical electrical calculations
to spanning trees of networks.

2. KnoTs, TANGLES, AND GRAPHS

The purpose of this section is to recall basic notions from knot and
tangle theory, introduce the new notion of a tunnel link and to show how
the theory is reformulated in terms of signed planar graphs. This will
enable us to pursue the analogy between knot theory and electrical
networks via the common language of the graphs.

A knot is an embedding of a circle in Euclidean three-space R>. (The
embedding is assumed to be smooth or, equivalently, piecewise linear [6].)
Thus a knot is a simple closed curve in three-dimensional space. The
standard simplest embedding (Fig. 2.1) will be denoted by the capitol
letter U and is called the unknot. Thus in this terminology the unknot is a
knot! Two knots are said to be equivalent or ambient isotopic if there is a
continuous deformation through embeddings from one to the other. A
knot is said to be knotted if it is not ambient isotopic to the unknot. The
simplest nontrivial (knotted) knot is the trefoil as shown in Fig. 2.1. As
Fig. 2.1 illustrates, there are two trefoil knots, a right-handed version K
and its left-handed mirror image K*. K is not equivalent to K* and both
are knotted [16).

A link is an embedding of one or more circles (a knot is a link).
Equivalence of links follows the same form as for knots. In Fig. 2.2 we
illustrate an unlink of two components, the Hopf link, consisting of two
unknotted components linked once with each other, and the Borommean
rings, consisting of three linked rings such that each pair of rings in
unlinked.

& D

Unknot  Right Trefoil Left Trefoil

Figure 2.1
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FIGURE 2.2

As these figures show, it is possible to represent knots and links by
diagrammatic figures ( projections). These projections are obtained by a
parallel projection of the knot to a plane so that the strands cross
transversely (Figs. 2.1, 2.2). The projections can also be thought of as
planar graphs where each vertex (crossing) is 4-valent and where the
diagram also shows which strand crosses over the other at a crossing.

Not only can one represent knots and links by diagrams, but the
equivalence relation defined by ambient isotopy can be generated by a set
of transformations of these diagrams known as the Reidemeister moves.
Reidemeister [21] proved that two knots or links are equivalent (ambient
isotopic) if and only if any projection of one can be transformed into any
projection of the other by a sequence of the three Reidemeister moves
(shown in Fig. 2.3) coupled with ordinary planar equivalence of diagrams
given by homeomorphisms (i.e., continuous deformations) of the plane.
We indicate the latter as a type-zero move in Fig. 2.3 (zero is indicated in
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Fic. 2.3. Reidemeister moves.
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the Roman style by two parallel lines), showing the straightening of a
winding arc. Each move, as shown in Fig. 2.3, is to be performed locally in
a disc-shaped region without disturbing the rest of the diagram and
without moving the endpoints of the arcs of the local diagrams that
indicate the moves. In Fig. 2.4 we illustrate the use of the Reidemeister
moves in unknotting a sample diagram.

We now translate this diagrammatic theory into another diagrammatic
theory that associates to every knot or link diagram an arbitrary signed
planar graph (a planar graph with a +1 or —1 assigned to each edge) as
follows. Recall that a planar graph is a graph, together with a given
embedding in the plane, where we usually do not distinguish between two
such graphs that are equivalent under a continuous deformation of the
plane.

Let K be a connected knot or link projection (i.e., it is connected as a
4-valent planar graph). It is easy to see (via the Jordan curve theorem [15]
or by simple graph theory [22, Theorem 2-3]) that one can color the
regions of K with two colors so that regions sharing an edge of the
diagram receive different colors. Call such a coloring a shading of
the diagram. Letting the colors be black and white, we refer to the black
regions as the shaded regions and the white regions as the unshaded ones.
To standardize the shading, let the unbounded region be unshaded. We can
now refer to the shading of a connected diagram (Fig. 2.5).

Now there is a connected planar graph G(K) associated to the shading
of K. The nodes (or vertices) of G(K) correspond to the shaded regions
of K. If two shaded regions have a crossing in common, the corresponding
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FiG. 2.5. Knots and their graphs.

nodes in G(K) are connected by an edge (one edge for each shared
crossing). Each edge of G(K) is assigned a number, +1 or —1, according
to the relationship of the corresponding crossing in K with its two shaded
regions. If by turning the over crossing strand at a crossing counterclock-
wise, this line sweeps over the shaded region, then this crossing and the
corresponding edge in G(K) is assigned a + 1; otherwise a — 1. In Fig. 2.5,
the construction of the signed graph is shown for the right-hand trefoil
and for the figure eight knot. We shall refer to G(K) as the (signed) graph
of the knot or link diagram K. Note, by the construction, that since K is
connected, G(K) is connected.

Conversely, given a connected planar signed graph H, there is a link
diagram L(H) such that G(L(H)) = H (see Fig. 2.5 and [31, 17]). Note
that H connected implies that K is connected. Moreover, L{G(K)) = K
and thus K < G(K) is a bijection between connected link projections and
connected signed planar graphs. (More precisely, the bijection is between
equivalence classes of each under continuous deformation of the plane.)
This correspondence is called the medial construction; K and H are
called the medials of each other. The correspondence can be extended to
nonconnected link diagrams and graphs by applying the constructions
separately to each component of the link diagram or graph. This exten-
sion, which we also call the medial construction, is a bijection only if we
ignore the relative positions of the components in the plane.

One can transfer the Reidemeister moves (of Fig. 2.3) to a correspond-
ing set of moves on signed graphs [31]. These graphical Reidemeister moves
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Fic. 2.6. Graphical Reidemeister moves.

are shown in Fig. 2.6, where, as for link diagrams, they are local moves,
restricted to the signed configurations enclosed by the black triangles
(which represent connections to the rest of the graph) and not affecting
the other part of the graph. In Fig. 2.6, we also indicate informally how the
graphical moves come about from the link diagram moves. The vertices
incident to the triangles can have any valency, but the nodes marked with
an x are only incident to the edges shown in the figures. Note that there
are two graphical Reidemeister moves corresponding to the first Reide-
meister move on link diagrams and two more corresponding to the second.
This multiplicity is a result of the two possible local shadings. Move zero
corresponds to allowing two-dimensional isotopies of the planar graph.
The different possibilities for over and undercrossings in move three
require exactly two of the three number on the triangle to have the same
sign and the same for the star.
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We now turn to the notions of tunnel knots and links, tangles, and their
associated graphs—the topological concepts that are our main objects of
study.

A tunnel link is a link that is embedded in Euclidean three-space with
two infinite straight tunnels removed from it. More precisely, let D; and
D, be two disjoint closed disks in the plane R Regard R*® as the
Cartesian product R®> = R? X R!. Then let the tunnel space T(R?) be
defined by 7(R*) = R® — [(D, X R") U (D, X R")]. The theory of knots
and links in the tunnel space is equivalent to the theory of link diagrams
(up to Reidemeister moves) in the punctured plane R?* — (D, U D,). In
other words, tunnel links are represented by diagrams with two special
disks such that no Reidemeister moves can pass through those disks. For
example, the three “knots” in Fig. 2.7 are distinct from each other in this
theory, where the disks D,, D, are indicated by the black disks in these
diagrams. The relevance of tunnel links will become apparent shortly.

A (two input—two output) tangle is represented by a link diagram, inside
a planar rectangle, cut at two points of the diagram. Two adjacent lines of
one cut are regarded as the top of the tangle and emanate from the top of
the rectangle, and the other two lines from the bottom. Hence, inside the
rectangle, no lines with endpoints occur. Examples of tangles are shown in
Fig. 2.8.

The two simplest tangles, shown in Fig. 2.8, are “x” and “0.” In “o”
each top line is connected directly to its corresponding bottom line. In “0”
the two top lines are connected directly to each other, as are the two
bottom ones. The third tangle shown in Fig. 2.8 is the Borommean tangle
B. Note the two general tangle constructions shown in Fig. 2.8. The
numerator of a tangle, denoted n(T), is the link obtained from T by
joining the top strands to each other and the bottom strands to each other,
on the outside of the tangle box. The denominator, d(T), is the link
obtained by joining top strands to bottom strands by parallel arcs—as
shown in Fig, 2.8. The figure illustrates that the numerator, n(B), of the
Borommean tangle is the Borommean rings (see Fig. 2.2) and the denomi-
nator, d(B), is the Whitehead link (see [6]).

Two tangles are equivalent if there is an ambient isotopy between them
that leaves the endpoints of the top and bottom lines fixed and is
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Fic. 2.8. Tangles: Numerators and denominators.

restricted to the space inside the tangle box. For more details on tangles,
see [11, 26, 16, 6, 7].

Tangles are related to tunnel links as follows. If T is a tangle, let #(T)
be the tunnel link obtained by placing disks in the (“top and bottom™)
regions of the numerator n(T) (see Fig. 2.9a for an example). A tunnel
link K gives rise to a tangle if its disks are in regions adjacent to the
unbounded region of the diagram (or to a common region if the diagrams

. Q)
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Fic. 2.9. Borommean tunnel link.



276 GOLDMAN AND KAUFFMAN

G(dB)) = G(B)/(v=v")

FiGure 2.10

are drawn on the sphere). If this is the case the diagram will have the form
of Fig. 2.9b, and hence K = A(T), for a tangle 7. In this sense, tunnel links
are generalizations of tangles.

A tunnel link K is said to be special if its disks lie in the shaded regions
of K. This is the case for tunnel links of the form 7(T). Note that the
disks of a special tunnel link remain in shaded regions throughout iso-
topies generated by Reidemeister moves. From now on, when we say
tunnel link, we mean a special tunnel link.

The graph of a tunnel link K has two distinguished nodes corresponding
to the shaded regions occupied by the disks D, and D,. Let these nodes
by v and v’ respectively. The graph of the special tunnel link (K, D,, D,)
will also be called the tunnel graph of K, denoted by (G(K),v,v’)
(Fig. 2.10). A signed planar graph with designated nodes v and v’ will be
called a two-terminal (signed) graph with terminals v and v'. By the medial
construction, every such two-terminal graph is a tunnel graph for some
tunnel link.

In the case of a tangle T, where n(T) defines a special tunnel link (disks
in the top and bottom regions), the two terminal graph (G(n(T),v,v"),
also denoted by (G(T), v, v'), is the tangle graph of T (Fig. 2.10). We also
use G(T) for short, when no confusion can arise. Again, by the medial
construction, a two-terminal graph is a tangle graph if and only if its
terminals are both incident to the unbounded region in the plane. Note



KNOTS, TANGLES AND ELECTRICAL NETS 277

that G(d(T)), the graph of the link d(T), is obtained from the tangle
graph (G(T), v, v') by identifying the terminals v and v’ (Fig. 2.10). Thus,
as graphs, G(n(T)) = G(T), while G(d(T)) = G(T) /(v = v').

In order to be faithful to the restrictions on Reidemeister moves for
tangle equivalence (moves only in the tangle box), we must add a corre-
sponding restriction on the graphical moves allowed on the two terminal
graphs corresponding to tangles. These restrictions are as follows:

1. If a node labeled x in a signed graph in Fig. 2.6 is a terminal, then
the corresponding Reidemeister move is not allowed.

2. In the graph of a tangle, extend lines from each terminal to
infinity, as shown in Fig. 2.11. No isotopy of the plane (graphical move
zero) can carry parts of the graph across these lines.

Restriction 1 is general for the two terminal graphs corresponding to
any tunnel link. Restriction 2 is necessary for tangles as shown in Fig. 2.11;
otherwise, we could move a locally knotted piece on one strand over to
another strand, which does not correspond to an ambient isotopy of
tangles.

GM &)

FiGure 2.11
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3. CLassicaL ELECTRICITY

A classical (passive) electrical network can be modeled by a graph (with
multiple edges allowed) such that each edge e is assigned a positive real
number r(e), its resistance. The basic theory of electrical networks is
governed by Ohm’s law and Kirchoff’s laws (see {3, 23]).

Ohm’s law, V = ir(e), relates the current flowing in an edge e to the
resistance r(e) and the potential difference (voltage) measured across the
endpoints. Kirchoff’s current law states that the sum of the currents at a
node (taking account of the direction of flow) is zero, while his voltage law
says that the potential V' (v, v’), measured across an arbitrary pair of nodes
v and v’, equals the sum of the changes of potential across the edges of
any path connecting v and v'.

If a current i is allowed to flow into the network N, only at the node v,
and leaves it, only at v’ then the resistance r(v, v’) across v and v’ is given
by r(v,v’) = V(v,v')/i. We find it more convenient to deal with the dual
concept of the conductance c(v, V') (or ¢(N, v, v")) across the nodes v and
v', which is defined to be 1/r(v, v'). We also define c(e), the conductance
of an edge to be 1/r(e).

It is an interesting fact that ¢(v, v") can be computed strictly in terms of
the c(e), for all edges e, independent of any currents or voltages (a formal
definition, in a more general context, is given in the next section). More-
over, there are two types of “local” simplifications that can be made to a
network, the series and parallel addition of edges, without changing
c(uv,v'):

(i) If two edges with conductances r and s are connected in parallel
(they are incident at two distinct nodes), then ¢(v,¢’) does not change
when the network is changed by replacing these edges by a single edge,
with conductance ¢ = r + s, connecting the same endpoints (Fig. 3.1).

>

FiGure 3.1



KNOTS, TANGLES AND ELECTRICAL NETS 279

FIGURE 3.2

(ii) If two edges with conductances r and s are connected in series
(they have exactly one vertex x in common and no other edges are
incident to x) and x # v,v’, then c(v,v’) does not change when the
network is changed by replacing these edges by a single edge of conduc-
tance ¢, where 1/t = 1/r+ 1/s or t = rs/(r + s) (Fig. 3.2).

There are two more subtle transformations of networks allowed, the
so-called star to triangle and triangle to star substitutions, which leave
the conductance invariant. We present it in a more symmetric form, the
star—triangle relation [3, 19]:

(iii) Let the network N, contain the triangle with vertices u, w, y, with
conductances a', b, ¢’ on the edges (Fig. 3.3—other edges may also
connect 4, w, and y). Let the network N, be identical to N, except that
the triangle is replaced by the star with endpoints u, w, y and a new center
point x and edge conductances a,b,c (Fig. 3.3-——no other edges are
incident to x). If the conductances satisfy the relations

a=3S/a, b =58/b, ¢ =8/c, )
a=D/sa, b=D/b, c=D/c, (1)

",

triangle

Ficure 3.3
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where D =a'b’ + a'c’ + b'c’ and § = abc/(a + b + ¢) (of course, by (1),
S = D), then c(N,,v,v') = (N, v,0").

Note an absolutely remarkable ““coincidence.” The operation of replac-
ing a star by a triangle or a triangle by a star corresponds, purely
graph-theoretically, to the third graphical Reidemeister move (Fig. 2.6).
Moreover, if we let a = ~-1, b=c=+1, a=+1, b=¢c = -1 in
Fig. 3.3, then these values correspond to the signs on graphical Reidemeis-
ter move three in Fig. 2.6 and they also satisfy the relation in (1). But the
relations in (1) refer to positive conductances. The observation that it
holds for the signed graphs describing the Reidemeister move is amazing
and the goal of this paper is to understand it.

There is a generalization of electrical networks, which includes a gener-
alization of the notion of conductance across two nodes. The two terminal
signed graphs of tunnel links and tangles are a subclass of these networks.
The graphical Reidemeister moves are special cases of series and parallel
addition (for move two), star-triangle transformations (for move three),
and one other transformation (for move one), and the conductance across
two nodes is invariant under these operations, This allows us to define a
new ambient isotopy invariant for special tunnel links and tangles. We
develop these ideas in the next two sections.

4. MoperN ELEcTRICITY —THE CONDUCTANCE INVARIANT

Up to now we have discussed (two terminal) signed graphs and classical
electrical networks, as well as motivating the need for allowing negative
conductances. Now we think of these graphs as embedded in a broader
class of “generalized electrical networks” and generalize the notion of
conductance across the terminals.

We allow graphs with loops and multiple edges. A (signed) network is a
graph with a nonzero real number c(e) assigned to each edge e, called the
conductance of e. If T is a spanning tree of the network N, the weight of
T, w(T), is the product TTc(e), taken over all edges e of T. w(N), the weight
of N, is the sum Lw(T), taken over all all spanning trees T of N. If
c(e) > 0, for all e, then N is an electrical network.

A two-terminal network (N,v,v') is a signed network N with two
distinguished nodes v and v’, called terminals (we allow v = v'). Let
N + ¢ (really (N + €', v, v') be the net obtained from N by adding a new
edge ¢, connecting v and v', with c(e’) = 1 (Fig. 4.1). w'(N + ¢') is the
sum Iw(T), taken over all all spanning trees T of N + e’ which contain ¢'.

We define ¢(N,v, v'), the conductance across the terminals v and v' in
(N, uv,v'). For now, let N be understood and just write c(v,v’). ¢(v,v’)
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will take values in the real numbers with the symbols 0,/0 and « adjoined,
with the conventions r/0 = o, for r a nonzero real number, and r /o = 0,
for any real r.

DeriniTion. (1) If N is connected, then
c(v,v')y =w(N)/W(N+¢€) (D

Gf v =0, we let w' (N + ¢') = 0—there are no spanning trees containing
the loop e¢—and if N =uv, i.e., there are no edges, we take w(N) =
1—there is only the empty spanning tree of weight 1—and, in this case,
¢c=1/0 =),

(2) If N has two connected components, one containing v and the
other containing ¢’, then ¢(v, v') is also given by Eq. (1), where w(N) = 0
(N has no spanning trees). In this case, c(v, v') is either 0 or 0/0.

(3) In all other cases, c(v,v’) = 0/0.

Remarks. (i) If all edges have positive conductance, then our defini-
tion does yield the classical notion of conductance across two terminals in
an electrical network (see [5, Theorem 3.4} and our appendix). We also
define K(N,v,v’), the resistance between v and v’ to be 1/c¢(N,uv,v"),
which also reduces to classical resistance when all c(e) are positive.

(ii) If e is an edge of the network N, let N — e denote the network
obtained from N by deleting e, and let N /e denote the network obtained
from N by contracting along the edge e (deleting e and identifying its
endpoints—Fig. 4.2).

[ b=c
b Qe c V
a a a
N N-e N/e

FiGURE 4.2
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Now Eq. (1) can also be written as

c(v,t') = w(N' = ) /w(N'/e'), (1)

where N' = N + ¢'. Since N = N’ — ¢, the numerators in (1) and (1') are
equal. If ¢ is not a loop, then T « T /¢ is a bijection between those trees
T of N which contain ¢ and all spanning trees of N/e'. Since w(T) =
c(ew(T/e') = w(T /e'), we have w'(N') = w(N'/¢'), and the denomina-
tors of (1) and (1") are also equal. When ¢’ is a loop or in other cases, the
equality of the denominators is handled by the definition of w(N'/e).

In the case of a tangle graph (G,v,v’) of a tangle K, the somewhat
more symmetric form (1) is important because (G + €') — ¢’ and (G +
¢')/e are the graphs of the numerator and denominator of K, respec-
tively.

(iii) Both tangle and tunnel graphs are planar. However, conductance
is a function of the underlying abstract graph and independent of any
special planar embedding.

The following theorems show that the operations discussed in the last
section, together with the hanging edge result in Theorem 1 which are
routinely used to calculate resistance and conductance in electrical net-
works, are true for our more general networks. Special cases of these
operations correspond to the invariance of conductance under the graphi-
cal Reidemeister moves and therefore the conductance of the graph of a
tunnel knot or a tangle is an invariant of the corresponding tunnel knot or
tangle.

Unless otherwise stated, tree will mean spanning tree. Recall that an
edge e with endpoints a and b is a loop if a = b and a link if a + b.
When no confusion can arise, we use the same symbol to denote an edge
and its conductance.

An edge e of the network N is a hanging edge if it is a loop or if it is a
link connected to the rest of the graph at exactly one endpoint
(Figs. 4.3a,b). Hanging edges play no role in computing conductance, i.e.,

N N N
(a) (b) ()

FIGURE 4.3
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Tueorem 1. If (N,uv,v"),v # ', has hanging edge e, then ¢(N,v,v’) =
(N —e,v,V").

Proof. 1If e is a loop, it is not in any tree of N. Therefore, the trees of
N and N — e are identical, as are the trees of N+e¢ and N—e + €
containing e’. So the corresponding weights are the same and we are done.

If e is a link, then every tree of N (resp. N + ¢’') contains e, and the
correspondence T <> T — e defines a bijection between the trees of N and
the trees of N — e (resp. between the trees of N + €' containing €' and
the trees of N — e + €' containing ¢’). Since w(T) = ew(T — ¢), in all
cases, ¢ cancels from the numerator and denominator of the formula for
c(N,v, ") and (N, v,v') = ¢«(N — e, v, v').

When the conductance of the hanging edge is +£1, Theorem 1 implies
that the conductance of a tangle graph or a tunnel graph across the
terminals is invariant under Reidemeister move 1. More generally, it is
easy to prove that we can delete a “hanging” subnetwork H from a
network N without changing the conductance (Fig. 4.3c), if w(H) #
0,0/0,o. Figure 4.10 at the end of this section illustrates the problem
when w(H) = 0.

THEOREM 2. Let (N,,v,U') be a two-terminal network which contains
two links r and s connected in series, with their common node x not incident
to any other edges, and assume x # v, V’.

() If r + s # 0, let N, be the network obtained from N, by replacing
the edges r and s by the single edge t (Fig. 3.2). If 1/t =1/r + 1/s or
t = (rs)/(r + 5), then

w(N,) = (r + s)w(N,), w(N, +¢€)=(r+s)w'(N,+¢), (2)
and

c(N,v,U') =c(N,,v,0). (3)

(i) If r + s = 0, let N, be the network obtained from N, by contacting
the edges r and s to a point (Fig. 4.4). Then

w(N) = (=r)w(Ny),  Ww(N, +¢) = (~r)w' (N, +¢), (4)

and

c(Ny, v, ") =c(N,,v,07). (5)
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Proof. We need only prove (2) and (4), since taking quotients yields
(3) and (5).

(i) First we work with w(N,;) and w(N,). Since a tree in N, must
contain the node x, it either contains both r and s or exactly one of them.
In N,, a tree either contains ¢ or it does not.

If a tree T, in N, contains r, but not s, it has weight of the form rw. We
pair 7, with the tree T, = T, — r + s containing s, but not r, of weight
sw. Hence the two trees (T, T} contribute (r + s)w to w(N,). Let {T}, T}
correspond to 7' = T, — r (= T, — s5), a tree in N, of weight w. Hence
w(T)) + w(T,) = (r + s Hw(T).

A tree T in N, containing r and s has weight of the form wrs. Let T
correspond to 7' =T —r — s + ¢, a tree in N, of weight tw = (rs/r +
s)w. Hence w(T) = (r + s)w(T").

Combining both cases, which include all trees in N, and N,, we see that
w(N,) = (r + s)w(N,). The same argument, restricted to trees containing
e’ proves that w'(N; + ') = (r + s)W'(N, + ¢') and we are done.

(ii) We have two edges r and —r in series. The proof requires a small
modification of the proof in (i). Again we work with w(N,) and w(N,).

The sum of the weights of a tree 7| in N, containing r but not —r, and
the tree T, = T, — r + (—r) is zero; so they contribute zero to w(N)).

A tree T in N, containing r and —7 has weight of the form —r?w. Let
T correspond to T'=T —r —(—r), a tree in N, of weight w; so
w(T) = —r?w(T’). Conversely, a spanning tree 7’ in N, must contain x.
Thus we can split the node x and reinsert the two edges r and —r in
series (going from N, back to N,) obtaining the tree T =T + r + (—r).
Therefore T <> T’ is a bijection between trees in N, containing r and —r
and all trees in N,. Since these are the only types of trees contributing
nonzero terms to w(N,) and w(N,), we have w(N,) = (—r?)w(N,). Simi-
larly, w/(N, + €') = (—r>)w/(N, + €') and we are done.
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Note that if the numerator or denominator in the conductance are zero,
our arguments are still okay; so we have included the cases where the
conductance may be infinite or 0/0.

In electrical circuit terminology, the theorem just says that for two edges
connected in series, the reciprocals of their conductances, viz., their
resistances, can be added without changing c(v,v’). If r + s = 0, then
t = o« (a “short circuit”), which is the same as contracting ¢ to a point.

When r = 1, s = —1, Theorem 2 says that the conductance of a tangle
graph or tunnel graph across the terminals is invariant under the series
version of Reidemeister move II.

THEOREM 3. Let (N, v,0') be a two-terminal network which contains
two links r and s connected in parallel (the two edges are incident at two
distinct vertices).

() If r +s # 0, let N, be the network obtained from N, by replac-
ing the edges r and s by the single edge ¢. If t = r + s (Fig. 3.1), then

w(N;) = w(N,), W(N +¢e)=w(N, +¢), (6)
and

c(Ny,v,0") =c(N,,v, ). (N

(i) If r + s = 0, let N, be the network obtained from N, by deleting
the edges r and s (Fig. 4.5). Then

w(N;)) =w(N), WwW(N +e)=w(N,+¢), (®
and

c(N,,v,v") = c(N,,0,0'). 9)

FIGURE 4.5
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Proof. Equations (7) and (9) follow from (6) and (8), so we prove the
latter. The proofs are very similar to those of Theorem 2 for series
connections.

(1) Since r and s are in parallel, every tree in N, contains exactly one
of the two edges or neither edge. If a tree T, in N, contains r, but not s,
it has weight of the form rw. We pair T, with the tree T, = T, — r + 5,
containing s, but not r, of weight sw. Hence the two trees (T, 7.}
contribute (r + s)w to w(N,). Let {T|, T,} correspond to Ty = T, — r + ¢,
a tree in N, of weight sw. Therefore, {T), T,} and T, contribute the same
weight to w(N,) and w(N,), respectively.

A tree T in N, which does not contain r or s is also a tree in N,, not
containing ¢. Hence it contributes the same weight to w(N,) and w(N,).

Since we have considered all trees in N, and N,, we have w(N,) =
w(N,). Similarly, w'(N, + ¢') = w'(N, + ¢').

(ii) When r + s = 0, the only modification we need in (i) is to note
that w(T,) + w(T,) = rw + (—r)w = 0 and there is no corresponding T’.
Hence only the trees 7 not containing r or s may contribute nonzero
weights to w(N,) and w(N,), and they are the same trees in both
networks.

In electrical circuit terminology, the theorem just says that for two edges
connected in parallel, their conductances can be added without changing
c(v,v'). If r + s = 0, then ¢t = 0 (no current can flow), which is the same
as deleting the edge.

When r = 1, s = —1, Theorem 2 says that the conductance of a tangle
graph or a tunnel graph across the terminals is invariant under the parallel
version of Reidemeister move I

The last class of operations we need to generalize from electrical theory
are the star—triangle (or wye—delta) transformations, which are also used
in a variety of other network theories (switching, flow, etc.) as well as in
statistical mechanics (see [1, 20, 2, 18, 24]D). A triangle (or delta) in a
network is, of course, a subset of three edges uy, yw, wu, with distinct
nodes u, y,w (Fig. 3.3). A star (or wye) in a network is a subset of three
edges xu, xy, xw, on the distinct nodes u, y,w, x, where x, the center of
the star, has degree three (Fig. 3.3).

Given a star in a network N, with conductances a4, b, ¢ and end-nodes
u,y and center x, such that Y=a +b +c +# 0, a star—triangle (or
wye—delta) transformation N consists of replacing the center and edges of
the star by the triangle with nodes u, y,w and conductances a', ¥, ¢’
(Fig. 3.3), given by

a@=S/a, b=S/b, =S5/, (10)
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where S = abc /Y. Equivalently,
a =bc/Y, b =ac/y, ¢ =ab/yY. (10"

Given a triangle in a network N, with conductances a’, ', ¢’ and nodes
u,v,w,such that D = a'b’ + b'c’ + c'a’ # 0, a triangle—star (or delta—wye)
transformation N consists of replacing the triangle by the center and
edges of the star with end-nodes u, y,w, center x, and conductances
a', b’ (Fig. 3.3), where

a=DJa, b=D/, c=DJc. (11)

These operations are inverse to one another and Eqgs. (10) and (11) have
a pleasing symmetry. To prove this and obtain some useful relations, we
start with a triangle, but state the results as a purely arithmetic lemma.

LEmMMA. Letd', b, ¢’ be nonzero real numbers, such that D = a'b’ + b'c’
+ c’'a’ # 0. Define a,b,c, by Egs. (11), and let Y=a +b +c and S =
abc/Y. Then

(i) D? =Ya'b'c,

) Y, S+ 0,
(iii) DY = abc and S = D,
(iv) Egs. (10) are true.

Proof. (1)

Y=a+b+c=Dsa +D/b +D/c, by (11)
=D(1/a + 1/b + 1/c") = D((a'b’ + b'c’ + c'a’) /ab'c’) = D*/a’b'c.

(ii) By assumption, D,a,b',c¢’#0, so Y# 0, by (i), and S =
abc/Y # 0.

(iii) Multiplying the three equations in (11) yields abc = D*D/a'b'c’,
which by (i) equals (Ya'b'c’)D/a’b’'c’ = YD, and, by the definition of S,
S=D.

(iv) By Eq. (11), &’ = D /a, which equals S /a, by (iii). Similarly for &’
and ¢'.

Of course, (iv) yields the invertibility; i.e., beginning with a triangle
(D # 0), replacing it with a star (§ # 0, by (ii)), and replacing this star
with a triangle, vields the original triangle. Conversely, we could start with
a star (with § # 0, and «’, b’, ¢’ defined by (10)) and prove that D # 0 and
Eqgs. (11) are satisfied. Thus § + 0 < D # 0.
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THEOREM 4. If the network (N,, v, V") is obtained from (N, v,v') by a
star—triangle or a triangle—star transformation, where the center of the star is
not a terminal, then

w(N,) = Yw(N,), w(N,+e)=Yw(N +¢),
and

c(N,v,U) =c(Ny,v,0").

Proof. Assume we go from N, to N, by a triangle—star as labeled in
Figure 3.3. We first consider w(N;) and w(N,). A tree in N, contains 0, 1,
or 2 edges of the triangle, while a tree in N, contains 1, 2, or 3 edges of
the star (it must contain the center x). Let T be a tree in N,.

(1) If T does not contain any edges of the triangle, let it correspond
to the three trees {T, =T +a, T, =T + b, T, = T + ¢} in N, (Fig. 4.6).
Then Ew(T)) = (a + b + cIw(T) = Yw(T).

(2) If T contains exactly one edge of the triangle, say ', let it
correspond to the tree 7" =T — a' + b + ¢ in N,, where we replaced 4’
by the two edges b, ¢ of the star which are incident to it (Fig. 4.7). Then
w(T') = w(T)bc/a’ which, by the first equation in (10'), equals Yw(T),
and similarly if T contains b’ or c'.

(3) If T contains two edges of the triangle, say 4’ and &', then
replacing these edges by the pair b, ¢’ or ¢’, 4’ yields two more spanning

N4 Fu
—> x
y a' w VI{}}W
\ S
Sz’ N, ot
T T

FiGuURE 4.7
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trees T, and T,. Associate these three trees with the tree T' =T — a' —
b +a + b+ cin N,; ie., replace the triangle edges by the complete star
(Fig. 4.8). Writing w(T) in the form a'b'w, we then have w(T,) = b'c’w,
w(T,) = a'c’w, and w(T’) = abcw. By part (ii) of the lemma, abc = DY; so
w(T’) = DYw. But w(T) + w(T,) + w(T,) = (a'b’ + b'c’ + c'a’)w = Dw
and, therefore, w(T") = Y(w(T) + w(T,) + w(T,)).

Combining all three cases, which include all trees contributing to w(N,)
and w(N,), we have proved that w(N,) = Yw(N,). The same reasoning
applies to prove that w'(N, + ¢') = Yw'(N, + ¢') (note that case 3 cannot
occur if both terminals are nodes of the triangle). Hence the conductances
are equal.

When the conductances on a star (or triangle) are +1 and not all of the
same sign, then Theorem 4 says that the conductance of a tangle graph is
invariant under the graphical Reidemeister move III.

We define the conductance ¢(T) of a special tunnel link T or of a tangle
T to be the conductance across the terminals of its two terminal signed
graph, i.e., o(T) = c(G(T),v,v'). For the case of a tangle we have, by
Remark (ii) at the beginning of this section,

c(T) = w(G(n(T)))/w(G(d(T))). (12)

Since we have proved that two terminal signed graphs are invariant under
all the graphical Reidemeister moves, we have our main theorem.

THeEOREM 5. The conductance of a special tunnel link or of a tangle is an
ambient isotopy invariant.

Not only do we have an invariant, but also some very powerful tech-
niques for computing it. Using series, parallel, and star-triangle transfor-
mations, which usually transform the two-terminal graph to a more gen-
eral two-terminal network with the same conductance, provides the gen-
eral approach. For example we compute c(v,v’) for the Borommean
tangle (Fig. 2.8). The series of transformations shown in Fig. 4.9, consisting
of a star—triangle transformation followed by three parallel additions and
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finally a series addition, convert the two-terminal graph to a two-terminal
network with the same conductance. The final network consists of two
terminals connected by one edge with conductance —2, and, therefore,
c(v,v") = —2 by definition (Eq. (1)).

It is natural to ask whether we can always compute the conductance of a
two-terminal signed network (or more special, a tangle or tunnel graph)
using only the operations of series and parallel addition, star and triangle
swaps, and deleting allowable hanging subnetworks. For classical planar
electrical networks (positive conductance on all edges) a conjecture that
this could always be done was made by A. Lehman in 1953 [20). It was first
proved true by Epifanov [10], with subsequent proofs by Truemper [28]
and Feo and Proven [12]. In this case it is equivalent to using our
operations to transform any connected planar electrical network to a
network consisting of the two terminals connected by one edge.

When negative conductances are allowed on the edges, the question is
more subtle and difficult. As we see in Fig. 4.10, a connected planar graph
can be transformed to a disconnected one; hence the question is whether
we can use our operations to transform any network to one where each
connected component consists of one edge or one node. One difficulty is
that star and triangle swaps can only be done when S, D # 0, whereas in
the electrical case they can always be done. Series and parallel addition
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can be reduced to the classical case even when deletion and contraction
occur (by allowing c(e) = 0 or ).

5. ToroLoGY: MIRROR IMAGES, TANGLES AND
CoNTINUED FRACTIONS

5.1. Mirror Images

The main purpose of this section is to present a set of examples which
give some idea of the range of applicability of the conductance invariant.
An important property of conductance is its ability to detect mirror
images. The mirror image of a tunnel link or tangle with diagram K is the
tunnel link or tangle whose diagram K* is obtained from K by reversing
all the crossings. If G is a network, G* is the graph obtained from G by
multiplying c(e) by — 1, for all e. Hence the tunnel or tangle graph of K*
is (G(K)*, v, v"). A tunnel link or tangle is achiral if it is equivalent to its
mirror image and chiral if not.

THeOREM. If ¢(G,v,v") # 0,0/0,%, then c(G*,v,0") = —c(G,v,1').
If we also have G = G(K), for some tangle or tunnel link K, then c(K*) =
—c(K) # c(K) and K is chiral.

Proof. By the definition of conductance (Eq. (4.1)), ¢(G*,v,0') =
w(G*)/w'(G* + ¢'). A spanning tree T of G corresponds to a spanning
tree T* of G* (same edges—conductance multiplied by —1). If G and
G* have n + 1 vertices, then T and T* have n edges. Therefore w(T*) =
(—1'w(T) and w(G*) = (- 1)*w(G).

We have a similar correspondence between the spanning trees 7 of
G + ¢, containing €', and the spanning trees T* of G* + ¢, containing
e. Since c(e') =1, w(T*) = (=1D)""'"w(T) and w'(G* + ¢) =
(= D" 'WI(G + €).
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Hence, since ¢(G, v, v’) # 0,0/0,» guarantees w(G*) and w'(G* + ¢')
are not zero,

(-1)'w(G)
(-1 'W(G +¢)

c(G*,v,V) = = —¢(G,v,U').

CoROLLARY. If the tunnel link or tangle K is alternating (the conduc-
tances of all the edges of G(K) have the same sign), then K is chiral.

Proof. By the tree definition of conductance, c(G,v,v') # 0,0/0,x,
and we apply the theorem.

ExamrLE 1. A tunnel link or tangle formed from the trefoil knot of
Fig. 2.5 is alternating (with any choice of terminals) and the corollary
applies. In particular, conductance detects the simplest type of knotted-
ness.

ExampLE 2. The figure eight knot of Fig. 2.5 is achiral [16]. However,
by the theorem, any way of turning this into a tunnel link or tangle (i.e.,
any choice of terminals in the corresponding graph) destroys this property
since it has positive conductance (Fig. 5.1 shows one such example).

ExampLE 3. The Hopf link H (Fig. 2.2) has a graph consisting of two
—1 edges in parallel.; thus there is only one choice of terminals, G(H) is
alternating and the corollary applies. In particular, we see that the
conductance can detect the simple linking of two strands in tunnel links or
tangles,

ExampLE 4. The Borommean tunnel link and tangle (Fig. 2.10) is
alternating and thus chiral. Hence, we see that the conductance can detect
the more subtle linking of this example.

+1
+1

v V'
> Y v
+1 1 series
addition +1/2

5/2
. o—-—w‘
paraliel v v
addition

FiGURrE 5.1
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(a) (b)

FIGURE 5.2

5.2 Rational Tangles and Continued Fractions

Let T be a two-strand tangle (only two strands are used to construct it)
enclosed in the interior of a two-sphere, except for the endpoints of the
four lines emanating from it which are on the boundary of the sphere
(Fig. 5.2a). If there is an ambient isotopy taking T into the trivial o tangle
(Fig. 5.2b), with the restriction that the endpoints can only move on the
sphere and the rest of the tangle remains inside the sphere during the
deformation, then T is called a rational tangle. Intuitively, a rational
tangle is a tangle that can “untwist” by moving the endpoints on the
sphere. Every rational tangle is equivalent to a canonical rational tangle
[6, 7, 11, 27], i.e., a tangle constructed as follows:

Start with two vertical strands (the o tangle). Holding the top two
endpoints fixed, twist the bottom two endpoints around each other some
number of times in the positive or negative direction (the sign is the sign

o Q /o
I PO

T =2 Ty =(2-3)

T3 =(2,-3,3) T4 =(2,-3.3.1)

FIGURE 5.3
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of the edges of the graph of this twist considered as a tangle 7,—see
Figs. 5.3 and 5.4). Then hold the two left endpoints fixed and twist the two
right endpoints some number of times in the positive or negative direction
to obtain a new tangle T, (again, the sign is determined by the sign on the
edges of G(T,) corresponding to this twist—Figs. 5.3 and 5.4). Continue
by alternately twisting the two bottom endpoints and the two right end-
points, stopping either at the bottom or on the right after a finite number
of twists.

For example, the sequence of twists (2, —3, 3, 1) leads to the sequence
of simple tangles shown in Fig. 5.3 and the corresponding tangle graphs of
Fig. 5.4.

More generally, let T be the tangle given by the sequence of twists
(t,ty,...,1,), t; € Z. The graph of T is obtained by ¢, horizontal edges in
series, connecting the top and bottom by ¢, edges in parallel, adding ¢,
horizontal edges in series to the bottom, connecting the top and bottom by
t, edges in parallel, and so on. The signs (# 1) on the edges are
determined by the signs on the t;’s and the top and bottom points of the
final graph are the terminals.

We compute the conductance of G(T,) by an alternating sequence of
series and parallel additions which correspond to the twists (Fig. 5.5). So
¢(G(T,)) is given by a continued fraction. In fact, using the sequence of
twists to denote the corresponding simple tangle, we have, by the interme-
diate steps in Fig. 5.5,

o(T) =c((2)) =7,  o(Ty) =c((2,-3)) = =3+ 7,
1
3+1/(-3+1/2)°

o(T;) =¢((2,-3,3)) =

1

«(T) = (2 =33.0) = 1+ 357577y
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In general, we associate with the simple rational tangle (¢,,...,¢,) the
continued fraction
1
t + ;—‘ +

1
+_
L

Then, the calculations of our examples immediately generalize and we
have, for r even, that the continued fraction equals the conductance of the
tangle, and, for r odd, it equals the resistance (the reciprocal of the
conductance).

Conway taught us that every rational tangle is equivalent to a (not
necessarily unique) simple tangle and that the rational number repre-
sented by the continued fraction of a simple tangle is a complete invariant
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for ambient isotopy of simple tangles 7, 6], so we have the remarkable fact
that Conway’s continued fraction is either the conductance or resistance of
the tangle.

It would be interesting to have a proof of Conway’s classification using
our electrical ideas. The graphs of simple tangles (with arbitrary positive
conductances on their edges) have long been known to electrical engineers
as ladder networks, and they have used continued fractions to study them
{301.

Our electrical concept can be extended to study Conway’s notion of an
algebraic tangle [7, 27). We only indicate some ideas. The graphs of
algebraic tangles correspond to series—parallel networks, well known in
electrical theory [9]. Brylawski [4], in his studies of the matroids of
series—parallel networks introduced an algebra for describing them. With
some minor additions to this notation and some conventions on canonical
embeddings of these networks in the plane, Brylawski’s algebra can be
extended to describe the graphs of algebraic tangles, with “monomials” in
this algebra corresponding to simple rational tangles.

6. CLassicaL ToPOLOGY

In this section we show how our conductance invariant is related to the
Alexander—Conway polynomial in the case of tangles. The conductance
invariant for the more general class of special tunnel links appears to
require further analysis in order to be related to classical topology (if
indeed it is related).

Recall [14] that the Conway (Alexander) polynomial is an ambient
isotopy invariant of oriented links. It is denoted by V,(z) € Z[z] and
enjoys the following properties:

(i) If K is ambient isotopic to K’, then Vi(z) = Vi.(2).
(ii) V,(z) = 1 for the unknot U.

(i) If K., K_, and K, are three links differing at the site of one
crossing, as shown in Fig. 6.1, then Vi (2) — Vi (2) = 2V, (2).

XX

FiGuURE 6.1
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Recall also that the writhe, wr(K), of an oriented link diagram (K can
be a tangle as well) is equal to the sum of the signs of the crossings of K
(defined in Fig. 6.2).

TueorReM. Let F be a tangle, and c(F) the conductance invariant, as
defined in Section 4. Let n(F) and d(F) denote the numerator and denomi-
nator of F, as defined in Section 2. Then

wr(d(FNn—-wr(n(F))| V 2i
c(F)=—i|7 =2 m"(F)( )
Vd(F)(ZI)

Remark. 1t is assumed here that the numerator and denominator of F
are oriented separately. If F itself can be oriented as in Fig. 6.3a, then
both n(F) and d(F) can inherit orientation directly from F (Figs. 6.3b, c).
Thus, in this case the theorem simply reads

)
«F) = iY@

.3 oA\
Fl |F

7
(@) o 4(F) e n(F)
+ 4
%

\
4 \

¥
)

FiGURE 6.3
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In general F can be oriented as in Fig. 6.3a or as in Fig. 6.3d, and then
it is easy to reorient d(F) so that (wr(n(F)) — wr(d(F)))/2 is the linking
number between two components of d(F). With this convention, the ratio
of Conway polynomials is itself an invariant of the tangle.

The properties of ¢(F) with respect to mirror images of tangles are then
seen to correspond to known properties of the Conway polynomial (see
[14]), but it is remarkable that they can be elucidated with the much more
elementary means of the conductance invariant.

The proof of this theorem will be based on the state model for the
Conway polynomial given in [15], plus some properties of the state model
for the Jones polynomial in bracket form [16-18]. We shall assume this
background for the proof.

Proof of the theorem. We must identify the tree sums of Section 4 with
factors in the Conway polynomials of the numerator and denominator of
the tangle F. Accordingly, let K be any (oriented) link diagram that is
connected. Recall the state sum for Vi(z) given in [15]. In this state sum
we have Vi (z) = L(K|S), where S runs over the Alexander states of the
diagram K and (K|S is the product of the vertex weights for the state S.
These vertex weights are obtained from the crossings in the link diagram
by the conventions shown in Fig. 6.4. Each state S designates one of the
four quadrants of each crossing. The designated quadrant has a vertex
weight of 1, +¢, +¢7' and {K|S) equals the product of these vertex
weights. The states are in one-one correspondence with Jordan-Euler
trails on the link diagram, and they are also in one-one correspondence
with maximal trees in the graph of the diagram.

Now focus on the case Vi(2i). Here z =t —t"'=i—i"' whence
t = i. We write this symbolically in Fig. 6.5. Familiarity with the bracket
polynomial state model {16-18] then shows that this reformulation of the
vertex weights implies that, as state sums

Vi (2i) = i K2R (i172). (1)

Now recall that the clock theorem [15] implies that any two Alexander
states can be connected by a series of “clocking” moves. In terms of
G(K), the graph of K, a clocking move always removes one edge e from a

FIGURE 6.4
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maximal tree 7 of G(7T') and replaces it with another edge ¢’ to form a
new tree T'. It is easy to verify for V,(2i) that we have the equality
(K|S)wt(e) = {K|S'>wt(e’'), when S’ is obtained from S by a single
clocking move and wt(e), wt(e') are the weights (+ 1) assigned to the edges
of G(K) by our standard procedure in Section 2 (we used the notation
c(e), c(e') in Section 4). We leave the verification of this equation to the
reader. It follows at once that for any state S, the product

p(K) =<KIS) TT wt(e)

e€T(S)

is invariant under clocking (here T(S) is the tree in G(K) determined by
the state S); hence it is a constant depending only on the diagram K. We
can rewrite this equation as

(K|S> = p(K) 11 wi(e), (2)

e T(S)

since (wt(e))? = 1. Therefore,

Ve(2i) = Y(KISY =p(K)Y, TT we(e),
S § esT(S)
Vi (2i) = p(K)w(G(K)),

where w(G(K)) is the tree sum (weight) defined at the beginning of
Section 4.
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Returning to our tangle F, we recall that the conductance invariant is
given by Eq. 4.12, viz.,

c(F) =w(G(n(F)))/w(G(d(F))).
Therefore, the theorem will follow from a verification of the formula
p(n(F))/p( d(F)) = i_i(wr(n(F))—wr(d(F)))/Z_

We omit the details of this verification, but point out that it is an
application of Egs. (1) and (2). These equations give a specific expression
for p(K), namely,

p(K) — iwr(K)/Z n wt(e)iwr(e)/Z 1"'[ iwr(e)/Z .

eeT eeT*

Here T is any maximal tree in G(K) and T* is the corresponding maximal
tree in G(K)*, where G(K)* denotes the planar graph dual to G(K). By
e € T (or e € T*) we mean that e is an edge of the tree T (or T*). The
formula for p(n(F))/p(d(F)) follows from this expression for p(K). This
completes the proof.

Remark. It is remarkable to note that, for tangles, our conductance
invariant is related to both the Alexander—Conway and the Jones polyno-
mials. This follows here because of the relationship (proved in the course
of the theorem above) V,(2i) = i*"®2( K ¥(¥i); (K ) is an unnormalized
form of the Jones polynomial. In the usual form Vy(¢) for the Jones
polynomial [13, 17], this identity becomes V,(2i) = V,(—1). This point of
coincidence of the Alexander—Conway and the Jones polynomials is of
independent interest.

Since the Jones polynomial can be expressed in terms of the signed
Tutte polynomial [17], the conductance is also expressible as a special
evaluation of the quotient of two signed Tutte polynomials.

AprPENDIX: FrROM ELECTRICITY TO TREES

It is worthwhile recalling how the calculation of conductance occurs in
electrical network theory, based on Ohm’s and Kirchoff’s laws. Ohm’s law
states that the electrical potential (voltage drop) between two nodes in a
network is equal to the products of the current between these two nodes
and the resistance between the two points. This law is expressed as
E = IR, where E denotes the potential, { is the current, and R is the
resistance. Kirchoff’s law states that the total sum of currents into and out
of any node is zero.
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1

FIGURE A.1l

These laws give the local rules for combining conductance. Conductance
C is defined to be the reciprocal of resistance, viz., C = 1/R. Thus
E =1/C and C = I/E. Note that one also uses the principle that the
voltage drop or potential along a given path in the network is equal to the
sum of the voltage drops from node to node along the path.

With these ideas in mind, consider a node i with conductances
Ci1»Ci2s-++,C; ON the edges incident to this node (Fig. A.1). Here c;
labels an edge joining nodes i and j. Then let E; denote the voltage at
node [ with respect to some fixed reference node (the ground) in the
network (the voltages are only determined up to a fixed constant). Then
the current in the edge labeled ¢, is (E; — E;)c,;,. (EC = I, where C is
the conductance.) Hence we have by Kirchoff’s law,

n

Z (Ei—E)cy=0.
k=1

This equation will be true without exception at all nodes but two. These
special nodes v, v’ are the ones where we have set up a current source on
a special edge between them as shown in Fig. A.2. We can assume that the

FIGURE A.2
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battery edge delivers a fixed current /;, and voltage E,,. Then the set of
equations for voltages and currents takes the form

~1, E,
0 E,
0 |=M|E|,
0 E

where the nodes in the graph are labeled 0,1, ..., m, 0, with 0 labeling v
and 0’ labeling ¢v'. We take 0’ to be the ground, whence E, = 0. We take
M to be the matrix for the system of equations for nodes 0,1,2,...,m.
Then, if M is invertible, we have

E, _1,
E, 0

E,l=M"1' 0

E 0

m

M is the famous Kirchoff matrix. It is a remarkable fact that the
determinant of M enumerates the spanning trees in G (no battery edge)
in the sense that, up to sign, det(M) is the sum over these trees of the
products of the conductances along the edges of the tree. This is the
matrix tree theorem (see [29, 25]).

ExampLE. Consider the equations for the network of Fig. A.3:

(node 0),— 1, =(E, — Eg)a +(E, — E,)b

(node 1), 0=(E, - E)a +(E, - E)c +(Ey —EDd
(node2), 0= (Eg - E)b +(E; — E))e +(Ey — Eje.
Thus
—1, E,
0 - M El )
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Ficure A.3
where
—a-b a b
M= a —a—-c—d c
b c -b—c—-e¢

The matrix M is obtained from a matrix K defined for the graph G
without the special edge

0 ——fb——10.
The matrix K is a node—node matrix with nondiagonal entry &, ; equal to
the sum of the labels (conductances) on the edges connecting nodes i and
J, if such edges exist, and O if there is no edge. The diagonal entries &, are
the negative sum of the labels of edges incident to node i. Hence

0 1 2 o

0 —a—0b a b 0

_ 1 a —a—c—d c d

K_Z b c —-b—c—e e
o 0 d € —d—e

Thus we see that M is obtained from K by removing the 0’ row and the 0
column.
Now go back to our system of equations and solve for E:

=1, a b
Detl 0 -a-c¢-d c
0 c -b—-—c—e
E
0 Det M
Det —a—c—d _b_cc_e

Det M
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Gl

FIGURE A.4

Since 1, = CE, where C is the conductance from v to v’ (0 to ('), we have

—Det M

Det| —@—¢—d c ]
c -b—-c—e

C =

Let G’ be the graph obtained by identifying v with ¢’ (Fig. A.4). The
Kirchoff matrix K’ is given by

0 1 2
0| —a—-b-d-e a+d b+e
K =1 a+d -a—c—d c
2 b+e c -b—c~e
and we take
r_|—a—c—d c
M_( c —b—c—e)'

Thus Det(M’) enumerates the trees in G'.
Therefore, we see that the conductance is given by the ratio of tree
summations

C(G,uv,v") =|Det(M)/Det(M’')| = w(G) /w(G").

This is the full electrical background to our combinatorics and topology.

Remark. That the determinants of minors of the Kirchoff matrix enu-
merate spanning trees in the graph has been the subject of much study. In
the electrical context, it is worth mentioning the Wang algebra [8] and the
work of Bott and Duffin [9] that clarified some of these issues in terms of
Grassman algebra.
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