CHAPTER 13
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A graph i5s completely determined by cither its adjacencies or its incidences.
This information can be conveniently stated in matnx form. Indeed, with a
given graph, adeguately labeled, there are associated several matrices,
in¢luding the adjacency matrix, incidence matrix, cycle matrix, and cocycle
malrix. It is ofien possible to make use of these matrices in order to identify
cerlain propertics of a graph. The classic theorem on graphs and matrices
15 the Matrix-Tree Theorem, which gives the number of spanning trees in
any labeled graph. The matroids associated with the cycle and cocycle
matrices of a graph are discussed.




THE ADJACENCY MATRIX

The adjacency matrix A = [a;;] of a labeled graph G with p pomnts is the
p = pmatrix in which a;; = 11f p; 15 adjacent with ¢; and a;; = 0 otherwise.
Thus there is a one-lo-one correspondence between labeled graphs with p
points and p x p symmetric binary matrices with zero diagonal

Figure 13.1 shows a labeled graph & and n1s adjacency mainix A. One
immediate observation 15 that the row sums of 4 are the degrees of the points
of . In general, because of the correspondence between graphs and matrices,
any graph-theorcticconcept 15 reflected in the adjacency matnx. Forexample,
recall from Chapter 2 that a graph & is connected if and only if there is no
partinon ¥ = ¥, w ¥; of the points of & such that no line joins a point of ¥,
with a point of ;. In matrix terms we may say that & is connected if and only
il there 15 no labeling of the points of G such that its adjacency matrix has the

reduced form
. ."1|| 1}
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Fig- 13.1. A labeled graph and s adjacency matmx,

where A,, and A, are square. If A, and A, are adjacency matrices which
correspond to two different labelings of the same graph G, then for some
permutation matrix P, 4, = P~ '4A,P. Somectimes a labeling is irrelevant,
as in the followmg results which mterpret the entries of the powers of the
adjacency matrix.

Theorem 13.1 Let & be a labeled graph with adjacency matrix 4. Then the
L, j entry of A" 15 the number of walks of length » from v; to v,

Corollary 13.1(a) For i  j, the i, j entry of 4% is the number of paths of
length 2 from v; to vy, The i, i entry of 4* is the degree of v; and that of 4°
15 twice the number of tnangles containing o,.

Corollary 13.0(b) If G is connected, the distance between v; and o; for § # j
15 the least integer » for which the i, j entry of A" 15 nonzero.




The adjacency matrix of a labeled digraph D is defined similarly: A =
A(D) = [a;] has a;; = 11f arc v, 15 in D and 1s 0 otherwise. Thus A(D)
15 not necessanly symmetric. Some results for digraphs using A{D) wall
be given in Chapter 16. By definition of A(D), the adjacency mairix of a
given graph can also be regarded as that of a symmetric digraph. We now
apply this observation to investigate the determinant of the adjacency
matrix of a graph, lollowing [ H2T].

A lingar subgraph of a digraph [} 15 a spanning subgraph 1n which each
point has indegree one and outdegree one. Thus 1t consists of a disyont
spanning collection of directed cycles.

Theorem 13.2 If [} 15 a digraph whose linear subgraphsare D, i = 1, -, n,
and Dy has ¢; even cycles, then

-:leu{m=i{—1}'-
=1




Every graph G 15 associated wath that digraph D with arcs v and v,
whenever v; and vy are adjacent in . Under this correspondence, each linear
subgraph of D yields a spanning subgraph of G consisting of a point disjoint
collection of lines and cycles, which is called a linear subgraph of a graph.

Those components of a linear subgraph of & which are lines correspond to
the 2-cycles in the linear subgraph of D in a one-to-one fashion, but those
components which are cycles of O correspond to two directed cycles in D

since A(G) = A(D) when & and D are related as above, the determinant of
A(CG ) can be calculated.

Corollary 13.42) Il & 15 a graph whose lincar subgraphs are G, i = 1, - -, n,
where &, has ¢, even components and ¢; cycles, then

det A(G) = i{- g

i=1




THE INCIDENCE MATRIX

A second matrix, associated with a graph @ in which the points and lines are
labeled, 15 the incidence matrix B = [b;]. This p »x g matrix has b; = |
ifp,and x; are incident and b, = 0 otherwise. As with the adjacency matrix,
the incidence matrix determines G up to isomorphism. In fact any p = 1
rows of B determine & since each row is the sum of all the others modulo 2.

The next theorem relates the adjacency matrnx of the line graph of @ to
the incidence matrix of G. We denote by BT the transpose of matrix B.

Theorem 133 For any (p, g) graph & with incidence matrix B,
ALIGY) = B"B - 2,

Let M denote the matrix obtained from — A by replacing the ith diaponal
entry by deg v,. The followmg theorem s contained in the pioneenng work
of Kirchhoff [[{T]-




Theorem 13,4 (Matrix-Tree Theorem) Let G be a connected labeled graph
with adjacency matrix 4. Then all cofactors of the matrix M are equal and
their commaon value 15 the number of spanning trees of G,

Proof. We begin the proof by changing either of the two 1's in each column
of the incidence matnx B of G to — 1, thereby forming a new matrix E. (We
will see in Chapter 16 that this amounts to arbitrarily orienting the lines of
( and taking £ as the incidence matrix of this onented graph.)

The i, j entry of EE" 15 ;€5 + €265 + °° + £,48;,, which has the
1.'311;3 deg v, if i = j, =1 if v, and v, are adjacent, and 0 otherwise. Hence
EE" = M.

Consider any submatnx of E consisting of p — 1 of its columns. This
P * (p — 1) matrix corresponds to a spanning subgraph H of ¢ having
p — 1 lines. Remove an arbitrary row, say the kth, from this matrix to
obtain a square matrix F of order p — 1. We will show that |det F| 15 1 or

() according as i 15 or 15 not a tree.  Farst, if M 1s not a tree, then because
H has p points and p — 1 lines, it is disconnected, implying that there 15 a




component not contaimng ;. Since the rows corresponding to the points of
this component are dependent, det F = (. On the other hand, suppose H1sa
tree, In this case, we can relabel its lines and points other than v, as follows:
Let u, # v, be an endpoint of H (whose existence is guaranteed by Corollary
4 1{a)}, and let y, be the line incident with it; let u; # v, be any endpoint of
H — w, and v, its incident line, and so on. This relabeling of the points and
lines of H determines a new matrix F° which can be obtained by permuting
the rows and columns of F independently. Thus |det F'| = |det F|. However,
F is lower triangular with every diagonal entry 4+ 1 or — 1 ; hence, |det F] = 1
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Fig. 131 K, — x and i3 spanning 1rees,




The following algebraic result, usually called the Binet-Cauchy Theorem,
will now be very useful.

Lemma 13.4(a) If P and Q are m = nand n x m matrices. respectively, with
m = n, then det PO 15 the sum of the products of corresponding major
determinants of P and Q.

(A major deterrminant of P or ! has order m, and the phrase “corre-
sponding major deterrminants” means that the columns of P in the one
determinant are numbered like the rows of 0 in the other.)

We apply this lemma to calculate the first principal cofactor of M.
Let E, be the (p = 1) = g submatrix obtamed from E by striking out 1its
first row. By letting P = E, and Q = E!, we find, from the lemma, that the
first principal cofactor of M is the sum of the products of the corre-
sponding major determinants of E, and E;. Obviously, the corresponding
major determinants have the same value. We have seen that their product 15
11fthe columns from E, correspond to a spanning tree of G and is 0 otherwise.
Thus the sum of these products 15 exactly the number of spanning trees.

The equality of all the cofactors, both principal and otherwise, holds lor
every matrix whose row sums and column sums are all zero, completing the
proof.




To illustrate the Matrix-Tree Theorem, we consider a labeled graph G
taken at random, say K, — x. This graph, shown in Fig. 13.2 has eight

spanning trees, since the 2,3 cofactor, for example,

of M= |~ - . i§ =|=1 =1 —=1|=4&
-1 =1 3 =1 1 " ;
-1 0 -1 2

The number of labeled trees with p points is easily found by applying the
Matrix-Tree Theorem to K. Each principal cofactor i1s the determinant
of order p - 1:
lp =1 =1 - - - =1

-1 =1 -« - p=1

subtracting the first row from each of the others and adding the last p — 2
columns to the first yields an upper triangular matrix whose determinant
15 pF e,

Corollary 13.4(a) The number of labeled trees with p points 1s pP = 2.




