532  Must mathematical physics be reductionist? Nature’s imagination. Ed. J. Cornwell, 12-26. 1995

CHAPTER TWO
Must mathematical physics be
reductionist?

ROGER PENROSE

I think that one of the things to be learned from Freeman Dyson’s presentation
is that one cannot be a self-respecting scientist without also being a rebel. This
“would séem to imply thatin this book we areurged to rebel against the pointof =
view of reductionism. This is difficult’ to do unless we know first what’
reductionism is; and in fact I am not clear that I do know what the word
means. Some forms of reductionism are almost synonymous with ‘scientific’,
in which case we find ourselves driven to a contradiction. If we are going to be
scientific, we have to be rebellious, but that rebelliousness leads us to resist the
critical stance of the symposium—which would mean science itself if we take
‘reductionist’ to mean merely ‘scientific’.

I am going to interpret the word ‘reductionism’ in various ways that are
different from this. I have certainly been accused of being non-reductionist,
and I have to try to understand what this charge means. There are perhaps
two main alternative interpretations that come to mind, and I shall try to
illustrate them in this contribution.

There are indeed certain areas of mathematics that are, in one real sense,
non-reductionist. This does not prevent us from discussing problems in those
areas in a very clear and characteristically mathematical way. We might take
reductionism to mean the breaking-down of things into smaller and smaller
parts, so that if you understand how the small parts work, that will in principle
tell you how the big thing works. It may be that you need other kinds of ideas to
say interesting things about the big things, as Freeman Dyson stressed, but
here, the idea of reductionism is that the behaviour of the big things we study is
governed by the behaviour of the individual units of which they are composed.
" That is one strand of reductionism. Another strand of reductionism may be
related to this by asking if knowledge of the present behaviour of those small
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“units will allow us to predict the behaviour of the big*thingsinfthe{uture?

Determinism has been a central concern of philosophy and physics for many

' centuries: we may understand it as the proposition that the behaviour of the
system at one time will determine what it does at a later time. It is important

- to emphasize that the computability of the behaviour at later times is a separ-
ate question. I want to stress the difference between computability and
determinism because the distinction may prove to be an important one. Before
we address it, I should like to return to our first interpretation of reductionism
and illustrate how it is possible to talk about holistic concepts in a clear and
mathematically precise fashion.

HOLISM AS MATHEMATICS

Let us start by investigating what we medn by a holistic concept. Figure 2.1

illustrates an impossible triangle. By virtue of what particular property is the

triangle impossible? The fact that it possesses this feature of impossibility is

clear. It is supposed to be an image that conveys to themind a particular three-

dimensional object, but that three-dimensional object simply cannot exist in

ordinary space. We must ask ourselves what is wrong with the picture: can we
_ point to somewhere in the picture where the mistake was made?

that if we covered up that corner the figare:

would make -sense as.the: ;.

Fig. 2.1. An impossible. triangle. Where is the impossibility?

~We might locate ;'thga‘_ilmﬁpissribﬂity‘ in one spécified corner of the triangle, S0 ...
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representation of a possible three-dimensional object. We could then say that
the impossibility has disappeared. Apparently it did not reside in the rest of the
picture. If we hide any one corner, or remove any edge, the structure suddenly
becomes possible. When we study the complete picture, however, the
impossibility re-emerges.

This impossibility is a property of the whole structure. It cannot be localized
in some part: it is a feature of the complete mathematical object, so it is a
holistic property. There are areas of mathematics dedicated to discussing this
kind of property in a rigorous way.

Let us imagine breaking the figure into three pieces, as illustrated (Flg 2.2),
and then glueing the parts together again. We could continue breaking the
structure down, and each of the pieces would be a possible object in ordinary
space. The process of glueing them together is the operation which eventually
produces the impossible triangle. In technical mathematical terms, we take all
the pieces together with all the specific glueing operations and by a factoring-
out procedure, we extract what is called the cohomology. This mathematical
concept abstracts what it is that interests us: the measure of impossibility of the
triangle. In this particular instance, we can give this measure as a single real
number, describing the ‘degree of impossibility’ of the triangle,

] :vriimenswnal object, I can measure e the ratlo of the distances from my eye ofone
end of the break to the other end of the break: That ratio is a measure of the

glue

" Fig. 2.2, Cohomology: an impossible triangle broken and reassembled.
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impossibility of the structure arfd‘it*willfbethe—same,,no.matt,e,r where Lcut the
figure. This holds also with more than one break, no matter how many pieces I
| teduce it into, provided that 1 multiply all the relevant factors together. That
‘ perhaps gives you something of the idea of cohomology. In this particular
‘ structure, cohomology supplies the degree of impossibility of the object, and it
! is a perfectly well-defined and precise holistic mathematical concept.
| - If we take a knot (Fig. 2.3), we might ask another question. where does the
property of knottedness reside in this knot? Like the impossibility of the
triangle, we find that the ‘knottedness’ cannot be localized. Itis a property of
the structure as a whole. There are profound mathematical theories that deal
with this question of knottedness: and though it looks simple. enough,
‘, knottedness is more difficult to deal with than cohomology. Research in this
! field dates from the turn of the century and more recently and is now very well
developed. .
Another example is a Mobius band (Fig. 2.4). Where, we might ask, is the
twist? If we take a piece of paper, twist it once and glue it together, we get a
Mébius band. Then wherever we cut it, the twist is gone. It does not matter
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Fig. 2.3. Where does the knottedness reside in the knot?

Fig. 2.4. A Mbbius band. Where is the twist?







2. Geometrical Preliminaries.

Before we describe the model in any detail, it may be revealing to recount an incident - -
actually an epiphany of sorts - - that your intrepid author experienced, in fact, one that
initiated the entire process of model development. In the waning years of the 20™ century
said author was staring at the cover of a small book published in 1964, coincidently a
book on recreational topology [10]. Here’s what the cover looks like (Figure 2-1); no
printing, no information other than the pictured diagram, which clearly depicts a flattened
Moebius strip, in fact, the canonical one half-twist MS, ubiquitous in elementary
topological disquisition (and in commercial logos). :

Figure 2-1

But now, suppose, as in figure 2-2, we arbitrarily associate a direction of fraverse, say
counterclockwise, to such a diagram. Then we can characterize the corner folds as two
down into the plane of the diagram and one up out of it. -And-if we start out with an MS
with the same direction of traverse but with the opposite direction of twist,

“with one down and two ip-folds. ™7 - Y SEILE T T TR

Figure 2-2

The astute reader will undoubtedly have seen where this is going®; by coincidence, 1964,
was also the year that Gell-Mann and Zweig published their ground-breaking theory of
quarks as the fractionally charged, component particles of the hadrons, two.ups and a
down for the proton and two downs and an up for the neutron with antiquarks making up
the corresponding antiparticles and various combinations of a quark and an antiquark for
mesons. For our intrepid author the connection was immediate (and undoubtedly so for
the reader (s) of this paper as well) and soon led to the development of the alternative
model,which we (finally!) summarize below.

*Not to imply that not seeing indicates non-astuteness.
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