
92 CHAPTER NINE

Philip of Spain, promoting astrology, and recommending salt as a
fertilizer. Napier's book Mirifici logarithmorum canonis descriptio (A
Description of the Wonderful Rule of Logarithms) was published
earlier (614) than BUrgi's (620), and he is generally regarded as the
discoverer of logarithms.
These developments, naturally, facilitated the calculation of 17 by

the Archimedean method or its modifications, and accuracies far
beyond any possible practical use were obtained. We shall come back
to this point in the next chapter, but first we shall examine the
theoretical progress made during this period. The main achievement
was that of another amateur mathematician, Franfois Viete, Seigneur
de la Bigotiere 0540-1603). He was a lawyer by profession and rose to
the position of councillor of the Parlement of Brittany, until forced to
flee during the persecution of the Huguenots. The next six years or so
during which he was out of favor, he spent largely on mathematics.
With the accession of Henry IV, a former Huguenot, was
restored to office, becoming Master of Requests (1580) and a Royal
Privy Councillor (589). He endeared himself to the king by breaking
the Spanish code made up of some SOO cyphers, thus enabling the
French to read all secret enemy dispatches. Thereupon the Spanish,
with singular one-track-mindedness, accused him of being in league
with the devil.
Viete made important contributions to arithmetic, algebra, trigo-

nometry and geometry. He also introduced a number of new words
into mathematical terminology, some of which, such as negative and
coefficient, have survived. His attack on 17, though still proceeding
along general Archimedean lines, started with a square rather than a
hexagon, and resulted in the first analytical expression giving 17 as an
infinite sequence of algebraic operations.
His procedure consisted (essentially) of relating the area of an

n-sided polygon to that of a 2n-sided polygon (see figure on opposite
page). The area of an n-sided polygon is

A(n) = n times area of triangle OAB
1h nr 2 sin 2{3 (l)

= nr 2 cos{3sin{3 (2)
Similarly,

A(2n) = n r 2 sin {3

so that from (2) and (3),
(3)

A(n)/A(2n) cos {3 (4)
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Viete's method of finding TT.

and if we double the sides of the polygon again, we have
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A(n)
A( 4n)

A(n) x A(2n)
A(2n) A(22 n)

cos (3 cos«(3I2) (5)

Continuing like this k times, 'We obtain

A(n)

A(2n)
x

A(2n)

A( 4n)
x ... x

cos (3 cos«(3/2) ... cos( (3I2k ) (6)

But if k tends to infinity, the area of a regular polygon with 2k sides
is indistinguishable from that of a circle, so that

I · k1m A(2 n) = TTr 2 •
k-+oo

Substituting (7) and (2) in (6), we have

(7)

TT =
cos (3 oos«(3I2) cos«(3/22 ) ...

(8)

Viete chose a square to start with, so that n = 4, (3 = 45°, cos (3 =
sin (3 =
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Also, each of the cosine factors in (8) is expressible in terms of the
preceding factor through the half-angle formula

cos( el2) y( Y2 -t Y2 cos e) (9)

so that we finally have

17
2 (10)

and this is Viete's expression, published in 1593 in his Variorum de
rebus mathematicis responsorum liber VIII (Various mathematical
problems, vol. 8). Actually, his derivation used the supplementary
chord of a polygon, that is, the chord joining a point of a polygon on a
circle to the other end of the diameter, marked SC in the figure on
p. 93. (Note that this is the supplementary chord of a 2n-sided, not of
an n-sided polygon.) Viete showed that the supplementary chord of
n-sided polygon is to the diameter as the area of the polygon with n
sides is to that of the polygon with 2n sides. But since that ratio is
simply cos (-3 ,the derivation given above conveys the essence
procedure.
Viete's result represents one of the milestones in the history of 17,

and it is also the high point of renaissance mathematics connected
with TT; therefore it deserves a few comments.
First, we note that Viete was still imprisoned by the idea of the

Archimedean polygon; he is, in fact, one of the last men to use a
polygon in furthering the theory of calculating 17 (the others were
Descartes, Snellius and Huygens, as we shall see in Chapter 11),
though he was far from last in using it for numerical evaluation.
Second, Viete was the first in history to represent 17 by an analytical

expression of an infinite sequence of algebraic operations. (As a
matter of fact, he was also the first to use the term "analytical" in
mathematical terminology, and the term has survived.) The idea of
continuing certain operations ad infinitum was of course much older.
Archimedes had used it, and before him Antiphon expressed the
principle of exhaustion, as we have seen on p. 37. Viete was familiar
with the Greek classics, and he refers to Antiphon in his treatment;
his approach executed Antiphon's idea mathematically. However,
there is a vast difference between expressing an idea qualitatively and
giving quantitative instructions how to execute it, and Viete was the
first to achieve this. Viete's expression, in fact, is the first known use
of an infinite product, whether connected with 17 or not.
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Third, Viete was a typical child of the Renaissance in that he freeley
mixed the methods of classical Greek geometry with the new Arabic
art of algebra and trigonometry. The idea of substitution is algebraic,
and the square roots in his expression come from the trigonometric
half-angle formula for the cosine, but otherwise his treatment is
entirely Greek, based on considerations of area ratios involving the
supplementary chord. Had he tried to express the mouthful ratio of
the supplementary chord to the diameter trigonometrically, he would
have found that it equals cos {-3 , a much more easily manipulated
quantity. He would then have obtained our formula (8) above, and a
man of Viete's stature could hardly have overlooked that by express-
ing f3 in radian measure and setting e = 217ln, he would have
obtained the formula

sine

cos(eI2) cosW/22 ) ...
(11)

which Leonard Euler obtained in a quite different way almost 200
years later. Viete's result (10) is a special case of (11) for e = 17/2.
Fourth, Viete did not yet know the concept of convergence and did

not worry whether his infinite sequence of operations would "blow
up" or not. We need not worry either, because as far as the formula
for 7T is concerned, it is sufficient to take k arbitrarily large, but finite.
However, if you are a friend of mathematical rigor and this kind of
"sloppy engineering mathematics" disgusts you, rest assured: The
convergence of Viete's formula was proved by F. Rudio in 1891. 53
Fifth, it should be noted that Viete's formula is of almost no use for

numerical calculations of TT; the square roots are much too cumber-
some, and the convergence is slow. Viete himself did not use it for his
calculation correct to 9 decimal places; he used the Archimedean
method without substantial modification by taking a polygon of
393,216 sides (the number is obtained by 16 successive doublings of
the original hexagon). This enabled him to reduce the Archimedean
bounds to

3.1415926535 < 17 < 3.1415926537 (12)

but this is only a minor success compared with the formula (10) which
he derived. In the vast majority of practical applications, 7T = 22/7 is
good enough, and to obtain better and better approximations is only a
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matter of drudgery. In contrast, Viete's formula (10) is an entirely new
formulation, one that can be manipulated and investigated. Indeed, if
no better expressions had been discovered since then, this one could
have served for investigating some of the properties of 11 that no
number of decimal places can reveal.
Finally, the fact that Viete introduced a number of mathematical

terms that have survived to the present is a point of interest. Termino-
logy and symbolism cannot, by themselves, solve anything; but if not
conveniently chosen, they can spoil a lot. The long sentence for the
circle ratio (p. 76) could not be squared or subjected to other mathe-
matical operations as the symbol 11 can, and Viete's example shows
that one can miss an important turning to a wide new field by using
Greek geometry instead of the concise symbolism of trigonometry. In
Viete's time, mathematical notation was still a long way from what it
is now. The operator symbols +, -, = had only very recently been
introduced, and algebra often described an equation in words rather
than symbols. The unknown quantity (our "x") had a strange name.
The Italians, through whom algebra mostly came to Europe from the
Arabs, called it cosa, the "thing" (the same word as the Mafia uses in
cosa nostra), and the word went into other languages, e.g., in German
it became die Coss, and in Latin it became numerus cossicus; in
English, algebra was known as the Cossike arte. Robert Recorde
(1510-1558) tells us that in nombers Cossike, all nombers haue not
rootes; but soche only emongest simple cossike nombers are rooted,
whose nomber hath a roote, agreable to the figure of his
denomination.
There are other quaint little tid-bits in mathematical terminology.

For example, the origin of the words tangent and secant are clear
enough, but where does sine come from? It comes from a translator's
error in the Toledo translation center (p. 83). Arabic script, like
Hebrew script, consists of consonants, with the vowels punctuated
underneath, and the latter are often omitted. The sine, which one
would expect to be called "half-chord" in analogy with the secant and
tangent, was given a name by the Hindus, which the Arabs took over,
and which they spelled by the consonantsjb. When Robert of Chester,
one of the Toledo translators, translated al-Khowarizmi's Algebra
from Arabic into Latin in 1145, he encountered this word without
knowing its Hindu origin; supplying the missing vowels, he found the
Arabic word for bay or inlet, and the Latin for bay, inlet or cavity is
sinus.


