Outline of axiomatic singular homology theory

Class notes
John Wood

A. The axioms of Eilenberg and Steenrod.

There is a sequence of functors from pairs of spaces to abelian groups written H, (X, A),
H,(X,0) is written Hg(X), and natural transformations

O« : Hoy1(X, A) — Hy(A)

satisfying:
exactness:
o H(A) 2 Hy (X) 25 Hy (X, A) 25 H, () — -+ is exact.
homotopy:
f~g:(X,A) —(Y,B) implies f. = g..
excision:
' U c A° implies Hy(X — U, A—U) = Hy(X, A).

dimension:

H,(Point) = Z if ¢ =0, and =0if ¢ #0.

“..the construction of homology groups is a long and diverse story, with a fairly
obscure motivation. In contrast, the axioms ... state precisely the ultimate goal... No
motivation is offered for the axioms themselves. The beginning student is asked to take
these on faith... This should not be difficult, for most of the axioms are quite natural, and
their totality possesses sufficient internal beauty to inspire trust in the least credulous.”
E & S: Foundations of Algebraic Topology, Princeton Univ. Press, 1952, pp iz, z.

These axioms were introduced by Eilenberg and Steenrod around 1945 to organize the
various homology and cohomology theories which had been developed to extend simplicial
homology to more general topological spaces. By 1960 new theories had been found (in-
cluding K-theory and stable homotopy) which satisfy the (cohomology form of the) axioms

except for the dimension axiom. These are called generalized homology theories.



B. Retracts and reduced homology.

An inclusion i : A— X is a retract if there is a map r : X — A with roi = 14. In

that case 74 0 3« = 144 in the short exact sequence
0 — H,(A) — Hy(X) — H,(X, 4) —0
(we say that the sequence splits) and consequently
H,(X) = Hq(A) ® Ho(X, A).

Let P be a space with one point. Any map P— X is a retract so Hy(X) — Hy(P) is
onto. The map X — P is unique. The reduced homology groups are defined by

ﬁq(X) = ker{ Hy(X) — Hq(P)}.
H,(X) = Hy(X) for ¢ > 0. H,(P) =0, and H,(D") =0, for all g, since D™ ~ P.

There is a long exact sequence for reduced homology:

T ﬁq(A) - ﬁq(X) - Hq(X’A) - Nq—l(A) e
— Hy(4) — Hy(X) — Hy(X,4) — g—1(4) —--

— Hy(P) — Hy(P) — Hy(P,P) — -1(P) —- -
The top row of groups is the kernel of the map from the middle row to the bottom row.

The existence of the maps in the top row and exactness follows by diagram chasing.
Teking A = P, H,(X) = H,(X,P) and hence Ho(X) = Z & Ho(X). The reduced
homology sequence of the pair (D™, S™~1) shows H, (D™, S* ') = H,_,(S™).
C. Homology of spheres and consequences.

The purse string map f : (D™, S™~1) —(S™, P) induces an isomorphism on homology.
To see this let
UcAcD" and U c A cS”

be defined by U = {z : 3/4 < |z] < 1}, A = {z : 1/2 < |z| £ 1}, A’ = f(A), and
U’ = f(U). In the diagram

(Dn’sn—l) _L (Sn,P)

(D", A) — (5™, 47)

(D" -U,A-U) — (S"-U,A-U")
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the down arrows are homotopy equivalences, the up arrows are excision maps, and the
bottom arrow is a homeomorphism. It follows that all maps induce isomorphisms on
homology.

Hence the maps ﬁq_l(Sn_l)g*—Hq(D", S"_l)th(S", P) «— H,(S™) are all isomor-
phisms. Let S° = {+1} U{—1}. Then H,(S°) = Hy(S° {+1}) which, by excision is
isomorphic to H,({—1}). Thus we have computed

A" = HD", ") = {0 itermie

Several results of L. E. J. Brouwer are consequences. S™ ! is not a retract of D™
It follows, as for the case of D?, that any f : D™ — D™ has a fixed point. Spheres and
euclidean spaces of different dimensions are not homeomorphic, and in fact no open subset
U c R™ is homeomorphic to any open subset V C R™ if m # n (invariance of dimension).

To prove this last result, let P be a one-point subspace of U. Since U is open there is
a closed ball D™ C U centered at P. Let W =U — D™. Then W =U —(D™)° cU — P
which is open. Then by excision Hy(U,U — P) = Hq(D™,D™ ~ P) = H, (8™ 1) so that
the dimension m is determined by the homology groups of the pair (U,U — P). Now if

h:U —V is a homeomorphism, take any one-point space P in U and let Q = h(P). The
pair (U,U — P) is homeomorphic to (V,V — P) and hence m = n.

D. Involutions and degree.

If X = AU B is a disjoint union of nonempty open subsets and i4 , ig are the

inclusions, then .
0 TA* 0

— Hy(4) =5 Hy(X) — HyX,4) —
NiBs T:
Hy(B)

The vertical map is an isomorphism by excision, so the sequence splits and Hy(X) =
Hy(A) ® Hy(B). _
An involution ¢ : X — X is a map such that tot = 1x. Let t : S®— S° be given

by t(+1) = —1 and t(~1) = +1. Now Ho(5°) = Ho({—1}) ® Ho({+1}) and taking the
homology of the diagram
{-1} — 8% «— {+1}

I (O |
{+1} — 5% — {-1}
shows that t. : Ho(S®) — Ho(S®) is given by to(a,b) = (b,a) where we regard Hy(S%) =
Z®Z.



From the diagram

0 — Ho(S%) — Ho(S°) — Ho(P) — O

B B I

0 — Ho(S%) — Ho(S®) — Ho(P) — 0

we see t, = —1: INIO(SO) —>ﬁo(50).
The involution t can be extended to spheres and disks. Define ¢; : R**! — R™¥!
by t1(z1,%2s. .., Tns1) = (—Z1,%2,...,Tny1). Let S* = {z € R™' : |g| = 1} and

D" = {z € R™!: 2,41 =0,|z| < w}. The purse string map can be defined equivariantly;
define f : D™ — S™ by

f(z)= {COS |z] ent1 + (sin|a|/|z]) 2, if 2 #0;

€ntl, if z =0.

Then f(8D™) = {—ent1} = P, t1 induces an involution of D™ and S™, and f is equivariant:
f(t1(z)) =t1(f(x)). This gives the diagram:

Ho(S%) &= mH\(DY,S%) 1% Hi(SL,P) — H(SY) «— -+ «— Hu(S")
114 t1a J,tl* ltlw J/tl*
Ho(s%) & mHy(D',s%) I8 H(SL,P) — H(SY) — --- «— Ha(S")

where the horizontal maps are all isomorphisms, the groups are all isomorphic to Z, and
consequently in each case t1. is multiplication by —1.

Given any map f : S* — S™or f : (D", 8" 1) —(D",S™!), we define the degree of
f by fe(a) = (deg f)o where a € H,(S™) or H,(D",S™). The degree has the following
properties:
(1) degl =1
(2) deg(f o f') =degf degf’
(3) f ~ f’ implies deg f = deg f’ (and conversely by a result of H. Hopf)
(4) If f is a homotopy equivalence, then deg f = £1
(5) If f: (D™, 8™ 1) — (D™, 8™ 1), then deg f = deg(f|S™).

Let t; be the involution of R™t1! which changes the sign of the jth coordinate and let
s interchange the first and jth coordinates,

S(:B1, e ,xn+1) = (a:j,:vg, vy Lj—1, L1, Tj~1y. - ,:En).

Then t;s = sty, by (4) degs = %1, and by (2) degt; = degt; = —1 The antipodal map

on 5™, a(z) = —x, can be written a =ty oty 0 - otnp and hence dega = (—1)"*!.
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If f : S*— S™ has no fixed point, then f is homotopic to a and hence degf =
(—1)™*1, another result of Brouwer. If f takes no point to its antipode, then f is homotopic
to 1gn and degf = 1. For f : S®— S™, the Lefschetz number is defined by L(f) =
1+ (=1)"deg f. If f has no fixed point, we have L(f) = 0, so L(f) # 0 implies f has
a fixed point. The Lefschetz fixed point theorem generalizes this fact to a larger class of
spaces. For f: X — X the Lefschetz number is defined by

L(f) = 3 (~1)erace (£ Hy(X).

(If ¢ is an endomorphism of a free abelian group with a basis e1,...,e, We can write
o(e;) = Y ale; and define tracep = Y a.) For example if X = D", L(f) =1 and f hasa
fixed point by Brouwer’s theorem. On the other hand, if X = (D™)°, L(f) = 1, but there
are maps f with no fixed point.

A vector field on S™ is a continuous assignment to each point z € S™ of a vector v,
tangent to S™ at z. We regard v, as a vector in R™+! which is perpendicular to z. For n
odd, and z = (z1,...,Znt1) € S™, the assignment v; = (=2, %1,..., ~Tnt1,Tn) gives a
field of unit tangent vectors. If v, is a nonvanishing vector field on S™, then v, /|v,| is a
unit vector field. Assuming v, itself is a field of unit vectors, h(z,t) = cos(t) = + sin(t) v,
for 0 < t < 7, is a homotopy from 1s» to the antipodal map. Hence n must be odd.

On S® there are three linearly independent vector fields which give an orthonormal
basis for the tangent space at each point:

U1($) = (*932,901,—934,583)
172(93) = (—1‘3,334,581,—932)
v3(z) = (—x4, —23, T2, T1).

If you regard z as a quaternion of unit length, then these vector fields are iz, jz, and kz.

The tangent bundle of S™ is the space of tangent vectors
TS™ = {(x,vz) € S" x R™"' i |z| =1,z L v, }.

The bundle of unit tangent vectors is the Stiefel manifold Va(R™*!). There is a projection
map p : TS™ — S™ defined by p(z,v;) = z. For the 3-sphere, the tangent bundle is trivial,
that is, it is a product. The map

W

o N B
Sm x Rett — TS™
(IIJ, tla t2’t3) = (CE, tlvl + t2v2 + t3’U3)
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is a homeomorphism which commutes with projection onto S™ and is a linear map on
each fibre p~1(z). The Cayley numbers give a similar construction for S7. The spheres
of dimensions 1, 3, and 7 are the only ones whose tangent bundles are products by a
result of Bott, Milnor, and Kervaire in 1958. The determination of the number of linearly
independent vector fields on S™ is due to J. F. Adams in 1962.

E. Additivity of degree.
Let S™V S™ be the one-point union and denote the inclusion maps and retractions by

sn 2, gnysn &2 ogn
s L ognysr Bogn

From the diagram

. H(S™) &% H(SmvST) —  Hy(SmVShSY) —

TJ"A T:

Hy(s™) = Hy(S".P)

where the last vertical arrow is an isomorphism by excision and a homotopy equivalence,
we deduce that the sequence splits and

H,(S™V 5™) = Hy(S™) ® Hy(S™).
with the isomorphisms given by 7 — (147, r2+7y) and (o, B) — ji«a + jou 8. Hence

jl*rl* +j2*r2* = 1§q(S"\/S")'

The map ¢ : §* — 8™ V S™ collapses the equator to the point which is common to the
two spheres. Composing with the retractions above r; o ¢ ~ 1gn for ¢ = 1,2. Hence

¢ : Hy(S™) — H,(S™ Vv S™) satisfies
CiX = (jl*ﬁ* + jz*Tz*)C*a = J1+ Q& + JosCr.

For f; : (8™,1) —(X,x0), i = 1,2 define f1 % fo = (1 V f2) oc. Now (f1V fa) o ji = fi,
i =1,2 and hence

(f1 * fo)e = (f1 V f2)«(J1e + Jou@) = fraa + fouar.

In case X = S™ this implies that deg(fi * fo) = deg f1 + deg fo Thus beginning with the

maps lg» and t; : S™ -— S™ we can construct maps of any degree.

6



The support of f : (S, 1) — (X, 2o) is defined to be f~1(X — {zo}). The operation
+ could also be described this way: if the maps fi and fo are modified by a homotopy so
that they are supported on disjoint balls By and By C S™ — {1}, then

{fl on B,

fixfa=4q f2 on By,

€14, e€lsewhere.

Let (X, zo) = [(S™, 1), (X, z0)] be the set of homotopy classes of maps from S™ to X pre-
serving the base points. The operation * induces a map 7, (X, Zo) X T (X, Zo) — 7 (X, o)
which in the case n = 1 is just the fundamental group structure. For n > 1 we will show

Jater that 7, (X, zo) is an abelian group, the nth homotopy group of Hurewicz.
Fix a generator v € H,(S™) and define the Hurewicz map

h: (X, 20) — Hn(X)

by h([f]) = f«(7). The formula for (fi * f2)«c above shows h is a homomorphism. For
X = S it is an isomorphism. We will show later that for n = 1 and X arc-connected,
h is onto with kernel equal to the commutator subgroup of 71 (X, zo), so H1(X) is the
abelianization of 71 (X, o).

As an application we compute the homology of the projective plane, RP? which can
be constructed by attaching D? to S* by p : 8D? — S'. There is an identification map
f: (D?,8') —(RP?,8') which sends antipodal points on the boundary of D? to the same
point of RP?, so f|@D? = p is the double covering map from S* to S' which has degree
2. Let U € A C D? be as on page two, f(A) = M is a Mobius band, and U’ = f(U).

(DTI) L, (RP?,SV)
(D2, A) — (RP2, M)

(D*-U,A-U) — (RP*-U,M-U").
As on page two, the down arrows are homotopy equivalences, the up arrows are excision

maps, and the bottom arrow is a homeomorphism, so all maps induce isomorphism in
homology. Then we have

Z Z

I _ I
0 — 0 . Ho(D%,SY) = Hy(SY) — 0

| |

0 — H,(RP?) — Hy(RP%,S") 23 Hi(S') — Hi(RP?) — O



Since f. is an isomorphism and p. is multiplication by two, it follows that the labeled map
in the bottom row is multiplication by two. By exactness, H>(RP?) =0 and H,(RP?) =
Z/2Z. Extending the diagram to the left, the higher groups H,(PR*) =0 forn > 2.
Extending the reduced homology sequence of the pair to the right shows FIO(RP2) =0,

F. Exact sequences.

The exact sequence of a triple.

Given a nested triple of spaces B C A C X, the exact sequences of the three pairs
(X, 4), (X,B), and (4, B) fit into a commutative diagram called a braid with a new
sequence called the exact sequence of a triple.

H,(B) —  H(X) —  HJ(X,4) ——  H,_1(A,B)
N S N / N /
H,(A) H,(X,B) H,_1(A)
/! N /! N / N
Hy(X,A) ——  Hy(A,B) — H,-1(B) — H,—1(X)

Each sequence goes diagonally up two steps, right one step, diagonally down two steps,
right one step, and so on. The boundary map of the triple, Hy11(X, A) — H,(4, B), is
defined by composition of diagonal arrows. Other maps are either boundary maps in the
exact sequence of a pair or are induced by inclusions. To prove exactness of the sequence
of a triple first notice that the inclusion (A, B) —(X, A) can be factored in two ways:

(X, B)
/ N
(4, B) (X, 4)

N\ /
(4, 4)

Since H,(A, A) = 0, it follows that the upper composition is zero on hornology. The other
five steps in the proof are accomplished by diagram chasing.

For an example, the sequence of the triple X x P C X x S™~! C X x D™ shows that
{_‘/,‘_‘ Hy (X x D™, X x S"‘l)iH@(X x S% X X P). Then methods similar to section C show
' that Hy(X x S™, X x P) = Hg_n(X x 5% X x P), which by excision is equal to Hg—n(X).
It follows that
Hy(X x 8™) = Hy(X)® Hy—n(X)

which can be used to compute the homology of finite product of spheres.
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The Mayer-Vietoris sequence.

If X = UUYV is the union of two open sets U and V, then X — V=X -V CU =U°

and the excision axiom gives
H,(V,UNV)=H, U UV, D).
The roles of U and V could be reversed. Whenever the excision maps
(V,UnV)—(UUuUV,U) and (U,UNV)—U UV, V)
induce isomorphisms on homology there is an exact Mayer-Vietoris sequence:
A H(UNY)SH,U) e Hy(V)-SH,UUV)SH,((UNV)— -
where i = (i1.0, —i2.@) and j(8,7) = ji«B8 + Jou7-
U
S N\
unv vuv

Nz /2
vV

The boundary map A is defined to be the composition:

H,(UUV)— Hy(UUV,V)EHy(U,UNV)2H, o (UNV).

Reversing the roles of U and V here will change the sign of A (see the end of this section).

Exactness of the Mayer-Vietoris sequence can be proved with the aid of the diagram:

H,(U,UNV)—H,(UUV,V)

A
X
/
\/

(S
c
=
=
L
S
=
S
IS

/

H,(UAV)

\Hq
\anf)/ \/ \Hq_l(m

H,(V,UNV)—H,(UUV,U)

o~

—1(UuVv)

Another proof using the Barrett-Whitehead lemma is indicated in problem 40. LUNV #0,

the reduced sequences of the pairs lead to the reduced Mayer-Vietoris sequence.
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The suspension of a space Y is defined by
YY =Y xIUPUQ/{Y x {0} =P Y x {1} = Q}.

where P and Q are one-point spaces. Taking U = XY —Q and V = XY — P and using
the Mayer-Vietoris sequence we find Hy1(XY) = Hg(Y). Since ¥.S™ is homeomorphic to
S™+1 this gives another way to compute the homology groups of spheres.

For another application we prove a generalization to n-dimensions of the Jordan curve
theorem, but with an additional hypothesis. Let U be an open subset of R"™ and let
h: 8™ 1 x (=1,+1) — U be a homeomorphism. We call U a bicollar neighborhood of
¥l = p(§"~! x {0}). £~ ! is a subspace of R™ homeomorphic to an n-sphere in such
a way, and this is the additional hypothesis, that it has a neighborhood homeomorphic to
571 x (—1,+1). This is true for example if Y"1 is a differentiably embedded sphere.
Taking V = R™ — ¥"~!, the Mayer-Vietoris sequence shows that Ho(R" — X" 1) = Z& Z.
Now it follows from the axioms that the number of connected components of X is less than
or equal to rank Ho(X), since X contains a discrete set of points as a retract. Singular
homology theory has the property that Ho(X) is the free abelian group generated by the
path components of X. Thus we have that R — Y"1 has two path components. In the
case n = 2, we have shown that the complement of a simple closed curve in the plane has
two path components provided that the curve is bicollared. In the next section we give a
proof without this assumption on X",

To investigate the definition of A insert the group D = H (UUV,UNV) in the center
of the diagram above. Then, simplifying notation, we have

F — G

where the three straight line compositions are exact. This implies D is the direct sum of
the injective images of A and F; write § € D as § = 64 +0r. Then A(y) = ¥(p(v)a) and,
since %(p(7)a + ©(7)F) = ¥ o p(v) = 0, it follows that (o (y)r) = —A(7).
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G. The axiom of compact support.
Singular homology satisfies the axiom of compact support:
(a) Given any z € Hy(X, A) there is a compact subpair i, : (X1,A1) C (X,A) and an
element z; € H, (X1, A1) with z = i1.21.
(b) Given z; € H,y(X1, A1) with é1,z1 = 0, 4; can be factored through a compact pair
i1 = j o ip where
(X1, A1) (X2, A2)5 (X, A)

so that j.21 = 0.

Axiom (b) follows from axiom (a) and exactness, see Spanier 4.8.12, but both will
follow easily from the construction of singular homology. These axioms can be restated in
terms of direct limits, but we need only a special case.

Let {U,} be a nested sequence of open subsets of X:
UgcUC---CU,C---

with X = JU,. Let jn : Up — Upy1 be the inclusion map.

Consider sequences X = {Z, Tkt1,...} of elements z, € Hy(U,) such that 2,1 =
Jn(zn) for n > k. Two sequences x and y are called equivalent if z, = y,, for all sufficiently
large n. Notice that the sequence is determined by its first element and that the sequence
determined by zx is equivalent to the one determined by y, if and only if there is an integer
m > k, £ such that z; and ¥, map to the same element of Hy(U,,) under the maps induced
by inclusions. Define the sum x+y to be the sequence {Zm +¥m, Tm+1 +Ym+1, .- .} where
m is large enough that both z,, and y. are defined. This makes the set of equivalence
classes into an abelian group. The direct limit, lim H,(U,,), is defined to be this group.

Let i, : U, — X be the inclusion. Then tie sequence of maps {in.} gives a map
lim H,(U,) — H,(X). By axiom (a), this map is onto: given an element z € H,(X), we
}gve z1 € Hy(X) for some compact X;. By compactness X; C Uy for some k. Let z; map
to zx € Hy(Ux). Then the sequence {2k, zk+1,...} represents an element of lim Hy(U,)
which maps to z € Hy(X). Similarly, by axiom (b) this map is onto, hence -

lim H, (Un)=>H, (X).

For a more general description of direct limits see Bredon, Appendix D, or Spanier.

As an application we prove the Jordan-Brouwer separation theorem. This approach
is due to Alexander, 1922, cf. Bredon, IV.19.

LEMMA. If A C S™ is homeomorphic to a disk D* | then ﬁq(S" — A) =0 for all .
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The proof is by induction on k. For k =0, S™ — A is homeomorphic to R™. Suppose
the lemma is true for k — 1, but that H,(S™ — A) contains an element yo # O for some
g. Since D¥ ~ D*' x I, let h : D*' x I= A and let A = h(DF"1 x [0,1/2]) and
AL = h(D*' x [1/2,1]). Then A = A1 U A} and A; U 4] is homeomorphic to D*~! so
the inductive assumption and the Mayer-Vietoris sequence for the open sets S™— A; and

— Al give an isomorphism
H, (5™ — A) = H (5™ — A1) @ Hy(S™ — AY).

Say yo — y1 + ¥;. Then at least one of y; and ¥} is not zero, say 0 # y1 € ﬁq(S" — Ay).
Continuing we get a sequence of nonzero elements yo — y1 — Y2 > -~ with y; €
H (8™ — A;), As = h(D*=' x I,), and (N A; =~ DF71.
Since S™ — () A; = J(S™ — 4;) and S™ — A; is an increasing family of open sets,

hmH a(S™ — Ay) ﬂA

which is zero by induction. But {yo,¥1,...} is a nonzero element in the direct limit. Hence
there is no yo # 0.
THEOREM. If S™ ~ ¥™ C S™, then

5 ron m Z forg=n-m-—1
Hy(8" = 2") = {0 othgrwise.
PROOF. Write S™ as the union of two hemispheres, S™ = D" U D3* with D" N Dy* =
Sm=1 Tet ¥™ = A; U A, with A; ~ D", Ay =~ DJ*, and let ¥ ! = A; N A;. Using
the lemma, the Mayer-Vietoris sequence for S™ — Ay, S™ — A gives ITIqH(S" ) =
H 4(8™ — £™). Applying this result m times gives Hy(S™ — ¥™) = Hyym(S™ — So) =
H,1m(S™ 1) and the theorem follows.
In co-dimension one HO(S n %" 1) = Z,s0 " — X" ! has two path components, say
U and V. 7! is the continuous image of S~ !, hence compact and hence closed in S™.
So §™ — "~ ! is open and locally path connected. Therefore U and V are the connected
components of S — X" 1 and are open in S™. This is the Jordan-Brouwer theorem.
The case 5! C S3 is called a knot; Hy(S® — £!) = Z for ¢ = 1 and is 0 otherwise.
Further topological remarks:
(1) =»~! C S™ is the common boundary of the two components of its complement,
¥l = 9U = 9V.
PROOF. Since U and V are open, U C S~V and 8U =U—-U C §"—(UUV) = -l
Similarly 8V C £7~'. We must show L"~! C UNV. Let £ € "' and let N be any
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open neighborhood of z in §™. Let A C X" !N N with ¥"~! — A~ D"~'. By the lemma
Hy(S™ — (87! — A)) = 0, 50 S® — (E™7! — A) is path connected. If pe U and g € V
there is a path w in 8™ — ("1 — A) from p to g which must meet Y"1 and hence A.
Considering the first and last points in which w meets A we see A NU # 0 and ANV #£0.
Therefore N meets U and Vsoz e UNV.

(2) Schoenflies’ theorem says that any embedding of S!in S§? extends to a homeo-
morphism 522,82 taking the standard equator of S? to the embedded S 1. This is false
in higher dimensions; the Alexander horned sphere provides a counterexample.

(3) Invariance of domain (Brouwer).

If U is open in S™ and f : U — S™ is continuous and injective then f(U) is open.

PROOF. Given y = f(z) € f(U), let A be a closed neighborhood of z, with A C U and
Am D™ so 8A ~ S™ 1. Then S™ — f(A) is connected and S™ — f(0A) has 2 components.
Since f is one-to-one, f(A) — f(OA) = f(A — OA) which is connected. Then

S™ — f(04) = (§" - f(A) U(f(4) — f(84))

exhibits S™ — f(8A) as a union of two connected sets, hence these are the components of
S™ — f(DA). Therefore f(A— OA) is open in S™ and is contained in f(U) and hence f(U)

is open.

H. CW-spaces and cellular homology.
A CW-space is a Hausdorff space X partitioned into a collection {e,} of disjoint
subsets satisfying the following four conditions:
(1) There are maps Fy, : D™®) — X for which F|(D™®))° is a homeomorphism onto eq.
Define the n-skeleton of X to be X(™ = |J{ey : n(e) < n}.
(2) fa = FalS™*)~1 maps into X™)~1,
X is finite if there are finitely many cells eo. A subset A is a (finite) CW-space if it
is a closed set and is a union of (finitely many) e ’s.
(3) (Closure finite) Each point of X is contained in a finite CW-subspace.
(4) (Weak topology) X has the topology of the direct limit of its finite CW-subspaces.
The definition of CW space is due to J. H. C. Whitehead.
Remarks:
(a) (4) says A C X is closed if and only if the intersection of A with each finite CW-
subspace is closed.
This is equivalent to the condition: ANg, is closed for all a.
PROOF. Let K be a finite CW-subspace, say K = e; U...Uex. Then K = K =
€ U...U% and hence ANK = (ANe€)U...U(ANE) is closed.
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(b) Fo(D™) = Eq.
PROOF. F () D Fa'(ea) = D™ s0 F, (D™®)) C &y Fo(D™®)) is compact and
X is Hausdorff hence F,(D™®)) is closed so F, (D™ D E,.

It follows that if e, C X(™, then 8, C X (™) 5o that X(™ is closed and hence a
CW-subspace. Also any CW-subspace is itself a CW-space. Further X = 1£n X,

(¢) (3) holds if and only if &, meets only finitely many es.

PROOF. A point in eq lies in a finite CW-subspace K by (3). Since K is a disjoint
union of cells, e C K, so & C K and hence €, meets only finitely many cells. Conversely,
if p € X we may assume that p lies in the n-skeleton but not in the (n — 1)-skeleton.
If n = 0, {p} is a O-cell which is a finite subspace. If n > 0, say p lies in the n-cell
€n. Then e, —e, C X (=1 by remark (b). Now €, — e, meets only finitely many cells,
€1,...,€er, by hypothesis and each e; lies in a finite subspace K; by induction on n. Hence
e UK U...UK} is a finite CW-subspace containing p.

CW-spaces can be constructed by attaching cells. Let Y be a CW-space and fj :
§*~1 YD for A € A. Let X = Y UlJ;, DY, the quotient space formed from the
disjoint union of Y and copies of D™ for each A € A by identifying points z € 8D} with
fr(z) € Y. Set ex = (D})°. The map Fy : D" — X is induced by the identity map
D" — D% and F,|S™! = fi.

We must show X is Hausdorff if Y is Hausdorff. The main case in the proof is for
points p,q € Y. There are disjoint open sets U,V C Y containing p and g. Let

U =UuU{z€ey:|z|>0and fr(z/|z|) € U}.

Defining V' similarly gives disjoint open sets in X.
PROPOSITION. A compact set K C X is contained in a finite CW-subspace.

PRrROOF. We first show the set {a : eo N K # 0} is finite. Choose po € eq N K for
each e, meeting K and let P = | {p.}. Then P Neg is finite by (c) so P is closed by (4).
Also any subset of P is closed and hence P is discrete. P is compact, since P C K, and
therefore finite. Now each p, belongs to a finite subspace by (3) so K is contained in the
union of these.

COROLLARY. X compact if and only if X is a finite CW-space, in general X = lim K
over all compact subspaces K of X, and Hy(X) = lim H,(K) = lim H (X ™).

PRrOPOSITION. @, Hy(D™,5™71) 2l H, (X, X(=1D) is an isomorphism.
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Proor.

Hy(X™, X =) S H,(X™, X™ — P) by homotopy
in(U €a) U(ea —Pa)) by excision
— @ H,(D™,5™ ") by homotopy.

We have a space X with a filtration
=XV XOcxWc...cx™c...cX

such that:
(i) H;(X™,X"=D) =0 for j #n,
(i) H;(X,X@) =lim H;(X™, X®)
Set Cn(X) = Hn(X™, X(»=1) and define 8, : Cn(X) — Cn_1(X) to be the bound-
ary map of the triple (X (™, X(»=1) x("=2)) defined by:

H, (XM, X(n=D) 8, Ho(XO-D)  —  H,_(X(n=D, x(n=2))

Cn(X) L, Cro1(X).
Then 8,,—16, = 0 because

Hpey (X®7D) — Hy g (X070, X(79) — H, o (X(2)

is exact.

{C.(X), By} is called the cellular chain complex of X. A map f: X —Y is cellular if
F(X™) c Y™, Such a map induces a chain map Cp(X) — Cr(Y).

THEOREM. H,(C(X)) = H,(X).

PrOOF. (1) H,(X® ,X@)=0forp>g>norn>p>q by induction on p—q.
This is trivial for p — ¢ = 0. In the exact sequence of the triple

Hn(X(q+1),X(q)) _,Hn(X(p),X(q)) _ﬁHn(X(p),X(qul))

the first term is 0 by (i) and the last is O by induction.

(2) Ho(X,X@) =0 for ¢ >n by (1) and (ii).

(3) Ho (X9, XM = Hy(X, X)) for ¢ > n and ¢ > r by (2) using the sequence of
the triple (X, X @, X™).
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(4) Chasing the diagram:

Hn+1 (X("+1),X(")) 0
b 1
0 — H,(X™) s H (XM, XDy H,_1(XD)

! N !

H,(X) = Hn(X(n+1)) Hn__l(X(n——l)’X(n——Q))

!

0
yields H,,(X) = ker 8,/im Op41.

The nth group in the cellular chain complex,

Co(X) = Ho(X™, X0y E= (N H, (D", 8"7)

can be regarded as the free abelian group generated by the n-dimensional cells of X. We

fix a consistent choice of generators using the sequence/if)isomorphisms from page 4:
Hy(S°) — Hy (D', 8% — Hy(S') « Hy(D?,8") — H(S?) -

taking generators corresponding to (i34« —i—14)1 € Ho(S°).
The space X (W /X ~1DZ, V,S™ is homeomorphic to a bouquet of n-spheres, one for
each n-cell in X and the composition

(Dn,Sn—l) _{‘E} (X(n),X(n—l)) _)\/Sn 2) Sn

is the purse string map.

The boundary map 8,, can be described in terms of the attaching maps f,. Index the
n-cells of X by @ € A and the (n —1)-cells by 8 € B. Let ¢ : X(»=1) — X (n=1) ) x (n=2)
be the collapsing map and rg : X(»~1/X("~2) — §7~1 retract to the Bth cell modulo its
boundary. Then the o, 3 entry in the matrix representing 8, is deg(rs o co fa).

Cu(X) = Ho(X™W,X0=D) = @, Ha(D",5"7)

! s

[ Hya(xe-b)y  He @ Ha(sn ) n—|

Cn—l(X) — Hn_1(X(n_1),X(n_2)) — ®ﬁ Hn_l(Dn—l,Sn_Q)

l:

Ho (XD xn-2y = @ Huor(5™7)
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The real projective space RP™ is obtained from RP™! by attaching one cell of di-
mension n by the double cover map f, : gntl ., RP*~ 1. Thus, by induction, RP" is
a CW-space with one cell in each dimension up to n. The n-skeleton of RP™ is RP"™.
Simplifying the diagram above we have

C.(RP™) = Hu(RP"RP"™') &  H.(D"5"")
5 |-
pn Ho—1(RP™ 1) g (s = Z
Co \(RP™) = H,_,(RP™',RP"?) & H, ,(D"',5"2) = Z

The composition of the maps

Sn—l N RPn—l — (RPn—l, RPn—2) — (Dn—l, Sn—Z)

| |

RPn——l/RPn—2 — Dn—~1/sn—2 = gn-l
is
(1va): S ! — gt

which has degree 1+ (—1)".
Thus the groups C,, = Z and the chain complex is

ezt z%z2357z22% 272 -0

We find
VA for 3 =0,

H,(RP™) = Z/2Z forQ<j'<nf:mdjodd,
VA for j =nif nis odd,
0 otherwise.
Complex projective space CP™ = CP"~1 U, D" attached by the Hopf map. Since
C4(CP™) =0 for q odd, all g, are zero and

H,(CP™) = {Z forquen and 0 < q < 2n,
0 otherwise.
Projective spaces and Hopf maps.

Let F = R, C, or the quaternions H. Let d = dimg F which is 1, 2, or 4 respectively.
Fn+l is the vector space of m -+ 1-tuples, written z = (zo,... ,Zn), With inner product

z-w = Y, 2;Wj The projective space FP" is the space of lines in F™*+1: two nonzero
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vectors z and w lie on the same line if and only if there is a nonzero scaler A € F such
that w = Az.
The set of vectors in F™+! of length 1 is homeomorphic to $%*4~!. The Hopf map

h : §dntd=1_, FPn sends a nonzero vector z to the line [z] containing z. h is onto and
fY([z]) = S¢!. Let

eq = {[2) € FP™: 24 #£0,2; = 0 for j > q}

Then FP" = UZ:O éq.
The unit disk in F9 is homeomorphic to D%. Define G : D% — FP™ by

G(z0,...,2g-1) = |20y ++124-1,7,0,...,0] where r=+v1-2-z

The restriction of G to the interior of the disk is a homeomorphism to the cell e, and
the attaching map G|0D% : §4~! — FPI~! is the Hopf map, h. The projective line,
FP! ~ S% To see this define coordinate charts f; : F— FP! and f, : F— FP! by
f1(z) = [z,1] and fa(z) = [1,Z]. Then f; ' f1(2) =z ' for z # 0. Regarding the nonzero
elements of F' as RY — {0} the same coordinate change defines the manifold structure on
S4. Thus there are Hopf maps S° — 5% and S7 — S4.

R4 2 z!




